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Abstract: This study proposes the optimum performance of the irreversible air refrigerators through recently developed metaheuristic 

algorithm called Crow search algorithm by means of finite time thermodynamics. Finite time thermodynamics is based on choosing the 

optimum pathways for any kind of thermodynamic system in order to reach the maximum efficiency of the thermodynamic cycle. Handful 

of objectives for assessing the performance of the irreversible air refrigerators such as coefficient of performance (COP), exergetic 

efficiency (ηII) , ecological coefficient of performance (ECOP), thermos economic optimization (F), and thermos ecologic optimization 

functions (ECF) have been successfully applied on the system. Three optimization scenarios have been studied for the multi objective 

optimization of irreversible air refrigerators. First scenario evaluates the concurrent optimization of objectives including exergetic 

efficiency (ηII), coefficient of performance (COP), and ecological coefficient of performance (ECOP). In second scenario, coefficient of 

performance (COP), thermos economic parameter (F), and thermos ecological coefficient of performance (ECOP) have been 

simultaneously maximized to retain optimum working point of the cycle. Third case studies the simultaneous optimization of the imposed 

objectives such as second law efficiency (ηII), coefficient of performance (COP), and thermos ecological function (ECF). Widely known 

decision-making theorems of LINMAP, TOPSIS, and Shannon’s entropy theorem have been applied on the Pareto curve constructed by 

the non-dominated solutions to decide the most favorable solution on the frontier.  
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1. Introduction 

Environmental restrictions occurred by the protection of the 

Ozonosphere against the hazardous chlorofluorocarbon (CFC) gas 

has urged researchers to seek more environmental friendly 

alternatives as a refrigerant in refrigeration industry. Among of all 

options, the performance of air refrigeration cycles has drawn more 

attention than the other alternatives, as the working fluid of the 

cycle (air) is free, safe and non-toxic. In addition, air cycle 

equipment is conveniently reliable and prone to reduce the 

maintenance cost and system downtime. The performance of an 

ordinary air refrigeration cycle does not worsen  as much as that of 

a vapour compression cycle unit when it is operated far away from 

its design point. Another advantage of an air refrigeration cycle is 

that air cycles can procure higher temperature difference as 

compared to vapour-compression cycles. This advantage can lead 

two important points: one is that cryogenic air can be produced 

through the utilization of this cycle, and the other is that, released 

heat to the ambient can produce at moderate and useful 

temperature ranges, which, if accompanied by cooling, can 

develop efficient and low-grade energy. As a result of these 

specific advantages, many researchers have devoted themselves to 

optimize the working parameters of a Brayton refrigerator in order 

to attain better system performance [1-4].  

There has been many literature studies concerning with the 

performance optimization of non-regenerative Brayton cycles. 

Most of these studies consider the cooling load, coefficient of 

performance, exergetic efficiency, and thermoeconomic aspects as 

an optimization objective to be determined. As a preliminary study, 

Wu [5] investigated the heat exchanger effect on the power input 

of a gas refrigerator. A basic Brayton cycle coupled with two heat 

exchangers was analyzed and optimized by means of finite time 

thermodynamics approach. Chen et al. [6] mathematically 

analyzed the effect of the heat resistance on the performance of an 

air cycle refrigerator through finite time heat transfer approach. 

Interactions between cooling load, pressure ratio, and COP 

(coefficient of performance) values had been clearly identified and 

mathematical expressions had been derived. The results developed 

from mathematical models revealed that the cooling load has a 

parabolic dependence on COP rates. Zhou et al. [7] carried out 

numerical tests regarding to the performance analysis and 

optimization of an end or eversible air refrigerator by considering 

the cooling density, which is the ratio of  cooling load to maximum 

specific volume in the cycle, as an optimization objective. 

Numerical experiments showed that pressure ratios and allocation 

of heat exchangers have considerable effect on the optimum 

system design. Luo et al. [8] examined the performance of an air 

refrigeration cycle by applying finite time thermodynamics theory 

as an evaluation criterion. Cycle characteristics were thoroughly 

studied with varying cycle parameters. Chen and Su [9] carried out 

numerical analysis related to exergetic efficiency optimization for 

an irreversible Brayton cycle. The objective function considered in 

the mentioned study, exergetic efficiency, is defined as the ratio of 

output exergy rate to the input exergy rate of the system. 

Analytically obtained solutions concerning with exergetic 

efficiencies were compared with those of determined by the 

traditional methods. Numerical calculations also took into account 

and evaluated the heat leak between hot and cold reservoirs and the 

effect of ratio of two reservoirs on the exergetic efficiencies. Tu et 

al.[10] used finite time thermodynamics theory to optimize a real 

air refrigerator with a simple irreversible variable-temperature heat 
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reservoir. The allocation of heat exchanger inventory and ratio of 

the thermal capacities between the working fluid and heat 

reservoirs were optimized in order to obtain maximum cooling 

load and COP rates. The variable influences of pressure ratio, the 

efficiencies of expander and compressor, and the thermal 

capacities of the working fluids on the performance of the cycles 

were examined by numerical parametric studies. 

Recent years have witnessed the application of thermos ecological 

optimization studies by various researchers. This new term was 

primarily benefited in the works of Yan and Lin [11], and Chen et 

al. [12]. In these studies, the mentioned term stated above which 

was introduced by Angulo-Brown [13] for power generation cycles 

was modified to evaluate the performance of the refrigeration 

cycles and defined as 
L C o

ECF Q T = −  where 

  


C
= T

L
/ (T

H
− T

L
)  is the COP value for reversible Carnot 

refrigerator, To is the ambient temperature,   is the entropy 

generation rate, and QL is the cooling load. Using this modified 

criterion, Kalaiselvam et al. [14] investigated the optimal 

performance of two-stage refrigerator and analytically obtained the 

optimal conditions of cooling load, entropy generation rate, and 

coefficient of performance rates. Wouagfack and Tchinda [15] 

considered ecological coefficient of performance (ECOP) as an 

objective function to optimize the working parameters of 

irreversible refrigeration absorption system. Analytically derived 

performance parameters including optimal temperatures had been 

optimized with respect to maximum ECOP values and 

corresponding effects of heat leakage rates, internal irreversibility, 

and the source temperature ratios had been explicitly discussed. 

Ust and Sahin [16] carried out numerical experiments on the 

performance of an irreversible Carnot refrigerator model by taking 

ECOP as an optimization objective. This term was previously 

defined as a ratio of the cooling load to the entropy generation rate. 

Analytically derived optimal temperatures of working fluids, 

optimum coefficient of performance, and optimal cooling load was 

obtained through the maximization of ECOP values. Ust [17] 

examined the thermo-ecological performance analysis of an 

ordinary reversible Brayton refrigerator. The optimum design 

parameters along with their maximum ECOP rates were 

determined analytically. Following these studies, Ust[18] extended 

his earlier works [16,17] and investigated the ecological 

performance of irreversible regenerative Brayton refrigerator by 

considering the ECOP objective function. The influences of 

regeneration and heat source temperature ratios were examined. 

Interested readers can also find related papers about finite time 

thermo-ecological optimization in the literature[18 - 28]  

Finite time thermoeconomic optimization evaluates the economic 

aspects of thermodynamic systems using finite time 

thermodynamics. Sahin and Kodal [29] firstly presented 

thermoeconomic performance criteria, which is the cooling load 

per unit cost, in order to take into account of both investment and 

energy consumption rates. In their study, the optimum cycle 

parameters of end or eversible heat pumps and refrigerators those 

maximizing the objective function described above. Kodal et 

al.[30] investigated the effects of internal irreversibility and heat 

leakages on the refrigerators and heat pumps based on the 

thermoeconomic criterion with using finite time thermodynamic 

theory. Using finite time thermodynamic, thermoeconomic 

analysis of absorption irreversible refrigerators and heat pumps 

were performed by Kodal et al [31]. Analytically obtained optimal 

design parameters were determined at the maximum 

thermoeconomic objective function rates.   

This study is a pioneer work on multi objective optimization of 

irreversible air refrigeration cycles since, after a comprehensive 

literature survey; it was found that there is no records for the multi 

objective performance optimization of air cycle refrigerators. This 

paper considers three different optimization scenarios for optimum 

design of irreversible heat pump based on reversed Brayton cycle. 

Three decision-making theories of LINMAP, TOPSIS and 

Shannon’s entropy theory have been utilized to determine final 

best solution among the set of non-dominated solutions.  

2. Thermodynamical modelling of irreversible air 

refrigeration cycle 

Figure 1(a-b) gives the basic depiction of an irreversible Brayton 

cycle along with its corresponding T-S diagram. 

 

 
The cycle operates between extreme temperatures of heat source at 

TL (cold and refrigerated space) and heat sink temperature at TH 

(warm ambient). As its nature, cycle at hand includes two isobaric 

processes (the processes those operating between 2-3 and 4-1) and 

two non – isentropic processes ( the compression process 1-2 and 

the expansion process 3-4). Heat transfer from heat source to the 

refrigerator (
L

Q ) and the rate of heat exchange from the 

refrigerator to the heat sink ( )
H

Q  can be simply calculated as in 

Eq. (1) and Eq. (2) 

( ) ( )
1 4L L L wL

Q U A LMTD C T T= = −                    (1) 

( ) ( )
2 3H H H wH

Q U A LMTD C T T= = −                  (2)                   

Where AH and AL are the corresponding total heat exchange areas, 

UH and UL are overall heat transfer coefficients for both hot and 

cold side heat exchangers, respectively. Assuming the ideal gas 

approximation with constant heat capacities 
w

C  is the heat 

capacitance rate of the working fluid. Logarithmic mean 

temperature differences for corresponding hot and cold sides are 

calculated by Eqs. (3-4) 

Fig. 1 (a) Schematic of an irreversible air refrigerator and (b) its 

corresponding T-s diagram 
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1 4
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4
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ln
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L
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L

T T T T
LMTD

T T

T T

− − −
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−

−

 
 
 

                       (4)   

Obeying the ε-NTU methodology, heat transfer rates at hot and 

cold sides can be alternatively expressed as Eqs. (5-6) 

( ) ( )
2 3 2H w w H H

Q C T T C T T= − = −                    (5)          

( ) ( )
1 4 4L w w L L

Q C T T C T T= − = −                     (6)                          

Where the heat transfer effectiveness’s of hot and cold sides (εH 

and εL) for counter flow heat exchangers can be calculated as Eqs. 

(7-8) [32] 

( )1 exp
H H

NTU = − −                                 (7)                          

( )1 exp
L L

NTU = − −                                  (8)                           

The number of heat transfer units of hot and cold sides of the heat 

exchangers is defined as Eqs. (9-10) 

( )
H H

H

w

U A
NTU

C
=                                     (9)                           

( )
L L

L

w

U A
NTU

C
=                                     (10)                        

According to the linear model of Bejan [33], total amount of heat 

leakage (
LK

Q ) from the hot side at temperature TH to the cold side 

at temperature TL is expressed by Eq. (11) 

( ) ( )
LK I H L w H L

Q C T T C T T= − = −                  (11)                          

Where 
I

C  is the internal conductance of the refrigeration cycle 

and   represents the ratio between the internal conductance and 

the thermal capacitance rate of the working fluid, given by the 

following equation Eq. (12).  

/
I w

C C =                                          (12)                        

Considering Eq. (12), the total transfer rate at the hot reservoir 

becomes as in Eq. (13). 

( ) ( ) 
2HT H LK w H H H L

Q Q Q C T T T T = − = − − −     (13)                           

And the respective heat transfer rate at the cold reservoir can be 

calculated as Eq. (14).  

( ) ( ) 
4LT L LK w L L H L

Q Q Q C T T T T = − = − − −      (14)                          

Power input to the refrigerator, which is obtained by obeying the 

rules of the first law of the thermodynamics, is calculated by the 

following equation Eq. (15): 

( ) ( ) 
2 4in HT LT w H H L L

W Q Q C T T T T = − = − − −      (15)                             

Total entropy generation rate in the refrigerator is expressed by the 

below given equation Eq. (16) 

HT LT

H L

Q Q

T T
 = −                                    (16)   

The coefficient of performance of the irreversible Brayton cycle 

refrigerator is computed through the Eq. (17), which is the ratio of 

the cooling load to required input power.  

LT

in

Q
COP

W
=                                           (17) 

The exergetic efficiency of the cycle can be stated as the ratio of 

the rate of exergy output (
out

E  ) to the rate of exergy input (
in

E ) 

and formulated as Eq. (18)[18]: 

0 0
1 1

LT HT

out L H

II

in in

T T
Q Q

E T T

E W


− − −

= =

   
   
   

            (18)                             

On the basis of Eqs. (5) and (6), T3 and T4 take the form of given 

equations Eqs. (19-20). 

( )
3 2

1
H H H

T T T = + −                               (19)                       

( )
1

4
1

L L

L

T T
T





−
=

−
                                       (20)                                        

The compression and the expansion efficiencies in the irreversible 

Brayton refrigeration cycle are defined as Eqs. (21-22). 

2 1

2 1

s

C

T T

T T


−
=

−
                                        (21)                    

3 4

3 4

E

s

T T

T T


−
=

−
                                        (22)                           

Then, Eq.(21) and (22) yield to Eqs. (23-24) 

2 1 2
(1 )

s C C
T T T = − +                                (23)                               

( ) ( )( )
4 4 3

/ 1 1 /
s E E

T T T = + −                        (24)                         

Using the ideal gas relation on the second law of thermodynamics 

yield the following formulation Eq. (25). 

2 3

1 4

s

s

T T

T T
 = =                                         (25)                                 

Where ϕ is the isentropic temperature ratio of the cycle. Eqs (23-

25) transforms into the Eqs. (26-27)[17] 

2 1

1
C

C

T T
 



− +
=

 
 
 

                                 (26)                          

( )
3 1

1
1

C

H H H

C

T T T
 

 


− +
= − +

 
 
 

                  (27)  

By substituting Eqs. (19), (20), (21), (24), (26), (27) into Eq (25), 

temperature T1 becomes the function of the isentropic temperature 

ratio of the cycle and simplification parameters defined in Eqs (28-

33) [17]  

1 2

1 2

3 4 5

k k
T

k k k



 

+
=

+ +

                                        (28) 

( )
1

1
1

1

L L

H H

E E L

T
k T




  
= − −

−

 
 
 

                  (29) 

2 H H
k T= −                                           (30)                           

( )
3

1 1
1 1

H

C E

k 
 

= − −
 
 
 

                            (31)                        

( )
( )

( )

4

1 1
1

1

1 1
1 1 1

H

C E L

H

E C

k 
  


 

= − +
−

+ − − −
  

  
  

                        (32) 

( )
5

1
1 1

H

C

k 


= − −
 
 
 

                               (33)  

Based on the construction of the formulation given in Eq (28), 
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remaining state point temperatures of the cycle are formed through 

the Eqs. (34-36) [17] 

1 2

2 2

3 4 5

1
C

C

k k
T

k k k

 

 

− ++
=

+ +

 
 
 

                      (34)                                 

( ) 1 2

3 2

3 4 5

1
1

C

H H H

C

k k
T T

k k k

 
 

 

− ++
= − +

+ +

   
   

  
     (35)                             

( )

( )( ) ( )
1 2

4 2

3 4 5
11

L L

LL

k k T
T

k k k

 

  

+
= −

−− + +

              (36)                           

The ecological coefficient of performance (ECOP) for an 

irreversible Brayton refrigeration cycle, which is the one of the 

objective functions to be simultaneously optimized in this study, is 

expressed by the ratio of the cooling load to entropy generation rate 

multiplied by the ambient temperature and formulated by the 

following equation, Eq. (37). 

0

LT
Q

ECOP
T 

=                                         (37)  

Another objective function that will be studied in this paper is 

thermoeconomic optimization that was previously elaborately 

studied in [29-31]. Basic formulation of this optimization objective 

can be given as Eq. (38) 

 

F =
Q

LT

C
i
+ C

e
+ C

m

      (38)  

Where Ci, Ce, and Cm correspondingly represent the annual 

investment, energy consumption and the maintenance costs. 

Investment cost includes the annual expenditures of main 

components of the cycle including the heat exchanger, compressor 

and expansion devices along with their prime movers. For the heat 

exchangers, it is considered that total investment cost is 

proportional to the total heat exchange area. Moreover, investment 

costs related to the compressors and their drivers are considered 

proportional to the required input power. Therefore, the annual 

investment cost of the cycle becomes the function of the mentioned 

factors and can be accordingly defined as Eq. (39) [34] 

( )
i H L in

C a A A bW= + +                               (39)                          

Where a is the capital recovery factor times investment cost per 

unit heat exchanger area with the dimensional representation of 

ncu/(year m2) . The coefficient for the investment costs of the 

compressors with their drivers, b, is the capital recovery factor 

times investment cost per unit power with the dimensional 

representation of ncu /(year kW). The unit ncu represents the 

national currency unit. Annual energy consumption cost is the 

function of the power input and can be formulated as Eq. (40)[34] 

2e in
C b W=                                             (40)                          

Where the coefficient b2 symbolizes the annual operation hours 

times the price per unit energy with dimensional representation of 

ncu/ (year kW). Total maintenance cost of system is assumed to be 

proportional to the cooling rate and defined as Eq. (41)                             

  
C

m
= a

2
Q

LT
                                         (41)                        

Where the coefficient a3 stands for annual cost per unit energy 

input rate with the dimensional representation of ncu/(year KW). 

And finally, the last optimization objective considered for this 

study is thermo-ecological function (ECF) which is subtly 

described in introduction section.   

3. Crow Search Algorithm 

In this study, the new emerged metaheuristic optimization 

algorithm called Crow Search will maintain multi objective 

optimization of the irreversible Brayton refrigeration cycle. 

Current trend in engineering optimization is to take advantage of 

the nature inspired metaheuristic algorithms in hard-to-solve 

design problems.  Literature studies show that utilization of these 

strategies in engineering problems lead to the very efficient and 

effective results [35].  

Various types of metaheuristic algorithms have been developed in 

recent years to solve variety of real world optimization problems. 

These algorithms are all nature inspired and simulate some 

principles of physics, biology and swarm intelligence [36]. The 

metaheuristic algorithms do not guarantee finding global optimal 

solution as they are based on stochastic search strategies. The most 

popular metaheuristic optimization algorithms those have been 

developed during two decades can be listed as follows. Genetic 

algorithm (GA) [37] is based on the Darwinian natural selection 

strategy and depends on the survival of the fittest. Differential 

evolution (DE) [38] adopts the perturbation schemes of the Genetic 

algorithm and tries to get the optimum results with a slight 

modification to the adopted schemes. Particle Swarm Optimization 

(PSO) [39] is a population based swarm intelligence algorithm, 

which mimics the social behavior of flocks of birds. Harmony 

Search (HS) [40] mimics the effort of the musician who aims to 

find the perfect state of the harmony determined by the aesthetic 

standards. Bat Algorithm (BAT) [41] is constructed on the 

echolocation of the micro bats. Firefly Algorithm (FA) [42] is 

based on the flashing light of the fireflies. Readers can easily 

observe that researchers have used only limited characteristics of 

nature and there is still room to develop more efficient 

metaheuristic algorithms. Based on this interpretation, Askerzadeh 

[43] proposed Crow Search Algorithm (CSA) which is built on the 

concept of subsistence behaviors of crows. 

Crows are clever animals, as their nature. They have been 

considered as the most intelligent birds. They have the ability to 

remember faces when a strange looking one appear and warn each 

other with a sophisticated communication ways.[44 - 45] Crows 

are prone to watch other birds and observe where the watched bird 

hide their food, and they steal the food from when the owner leaves 

from the area. The crow who steals the food will take extra 

precautions in order to avoid being a future victim. As potential 

thieves, they use their own experiences to get rid of being pilfered, 

and can find safer courses to protect their catches from the pilferers 

[46]. 

According to the above-mentioned intelligent behaviors of the 

crows, CSA is developed obeying the principles below [43]  

• Crows live in the form of flock 

• Crows recalls their hiding space positions 

• Crows observe other birds to do thievery 

• Crows take care of their catches to avoid being pilfered 

by other birds 

3.1. Implementation of Crow Search Algorithm 

Table 1 gives the pseudo-code of the proposed CSA. This section 

provides the stepwise procedure for the implementation of CSA 

[43]. 
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Table 1 Pseudo-code of Crow Search Algorithm  

Initialize the position of N crows in the search space 

Evaluate the position of the crows 

Initialize the memory of each crow 

    While iter < maxiter 

          for i =1 to N 

             Choose a random crow from the flock to follow it (for instance j) 

             Determine an awareness probability (AP)      

                 if 
  
r

j
 AP

j ,iter
  

                    ( ), 1 , , , ,i iter i iter i iter i iter i iter

i
x x r fl m x

+
= +   −    

                else 

                      x
i ,iter+1

 = Choose a random position from the search space 

                end if 

           end for 

      Check the boundary control 

     Evaluate the new position of the crows 

     Update the memory of the crows and increment iteration counter (iter) 

     end while 

 

Step 1: Initialize the algorithm parameters  

Optimization problem, the limits of the search space, and design 

variables are defined. After that, adjustable algorithm parameters 

including flock size (N), maximum number of iterations (maxiter), 

flight length (fl), and awareness probability (AP) are valued. 

 

Step 2: Initialize the position and memory of crows 

As the members of the flock, N crows are randomly positioned in 

D–dimensional space in Eq (42). In this context, each crow 

symbolizes a sample solution and D is the number of design 

variables of the problem. 

1 1 1

1 2

2 2 2

1 2

1 2

D

D

N N N

D

Crows

x x x

x x x

x x x

=  
 
 
 
 
 
  

                        (42) 

Eq. (43) shows the initialization of the memory of each crow in the 

flock.  

1 1 1

1 2

2 2 2

1 2

1 2

D

D

N N N

D

Memory

m m m

m m m

m m m

=  
 
 
 
 
 
  

                     (43) 

Step 3: Evaluate the fitness of each crow in the flock Each crow in 

the flock is evaluated through its corresponding fitness value. 

Step 4: Position update of the crows 

Crows update their position in the search domain with the 

following procedure. Assume that crow i wants to move to a new 

position. Then, this crow selects one of the crows from the flock 

(for example crow j) and follows it to find the position of the 

hidden food concealed by this crow (mj). Consequently, the new 

position of the crow i is determined by the following equation Eq. 

(44).  

( ), 1 , , , ,i iter i iter i iter i iter i iter

i
x x r fl m x

+
= +   −             (44)                               

Where ri is the Gaussian random number generated between 0 and 

1 and fli,iter is the flight length of crow i at iteration iter.  

Step 5:  Check the boundary control and evaluate the feasibility of 

the each solution 

Position of each crow in the flock is checked. If the position of the 

crow extends the prescribed boundaries of the search space, then 

this crow is restricted into the predefined search domain. After that, 

the feasibility of the new position is checked. If the the position is 

feasible then the crow updates its position, or else the crow stays 

in its current position.  

 

Step 6: Evaluate the fitness values of the new position of the crows 

The new position of the each crow in the flock is evaluated by its 

corresponding fitness function value. 

 

Step 7: Memory update 

Following procedure given in Eq. (45) shows the memory update 

mechanism of each crow in the flock  

( ) ( ), 1 , 1 ,

, 1

,

      is better than  

       otherwise

i iter i iter i iter

i iter

i iter

x f x f m

m

m

+ +

+
=





 (45)  

Eq. (45) shows that if the objective function value of the updated 

position of a crow is better than the fitness value of the memorized 

position, then the crow updates its memory   

Step 8:  Check termination criteria 

Step 4 to Step 7 are repeated until predetermined maximum 

number of iteration value is reached. At the end of the iterations, 

the best memory position in the memory matrix with respect to 

objective function value is taken as the optimum solution of the 

problem along with its respective fitness value.  

3.2. Multi objective optimization 

Multi objective optimization is a real world problem solving 

strategy, which includes conflicting objectives with a number of 

equality and inequality constraints to be optimized simultaneously. 

This problem solving strategy has become popular amongst the 

researcher community as most of the design problem inherits more 

than one objective, which should be concurrently solved for 

reassuring the optimum design. Traditional optimization methods 

based on single optimization procedure yields one optimum 

solution for the problem at hand. Therefore, the use of multi 

objective optimization in system design or problem solution is 

inevitable to some degree since it comprises set of non-dominated 

solutions those satisfying the conflicting objectives at acceptable 

levels [47]. These solutions on the search space built up the Pareto 

frontier along with the ideal and nadir solutions. Pareto frontier is 

constructed by the set of solutions, which are trade-off solutions 

between the various objective functions. Best compromising 

solution on the Pareto curve can be selected through the decision-

making theories such as LINMAP, TOPSIS, fuzzy, and Shannon’s 

entropy theory. Multi objective optimization problem can be 

mathematically defined as Eq. (46). 

 

( )

( )

( )

( )

       1, 2, 3, ...,

min   max         1, 2, 3, ...,

0        1, 2, 3, ...,

0        1, 2, 3, ...,

i par

i obj

j

k

Find x x i N

Arg or Arg f x i N

g x j m

h x k n

=  =

 =

=  =

  =

       (46)                               

Where x , Npar , ( )if x ,Nobj, ( )jg x , and ( )kh x   correspondingly 

represent design variables vector, number of design variables, 

objective functions, number of objectives, equality and inequality 

constraints [48]. 
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3.3. Decision making strategies in multi objective optimization 

Pareto frontier comprises set of non-dominated solutions, which 

are tradeoff between conflicting objectives. Multi objective 

optimization uses various types of decision-making theories in 

order to select the most feasible solution on the Pareto curve. There 

are plenty of decision-making approaches in the literature [49]. 

This study utilizes three decision-making methods including 

TOPSIS, LINMAP, and Shannon’s entropy approach. Before 

utilizing these decision-making theorems, all the objective 

functions must be unified and re-scaled. For this aim, objective 

functions should be non-dimensionalized with using Euclidian, 

linear, and fuzzy non-dimensioned methods given below.   

Linear non-dimensionalization approach 

Objective functions can be nondimensionalized by the 

linearization strategy described in Eqs. (47-48). 

( )
( )  maximization problem

max

ijn

ij

ij

F
F For

F
=           (47) 

( )
( )  minimization problem

max 1 /

ijn

ij

ij

F
F For

F
=         (48)  

 

Euclidian approach 

Objective functions can be non-dimensionalized through the 

Euclidian approach as following equation Eq. (49).  

( )
2

1

ijn

ij
m

ij

i

F
F

F

=

=



                                 (49)  

 

Fuzzy approach 

Objective functions of the optimization problem can be non-

dimensionalized via the fuzzy approach as defined in Eqs. (50-51). 

  

F
ij

n
=

F
ij
− min(F

ij
)

max(F
ij

) − min(F
ij

)
  (For maximization problem)    (50)                      

  

F
ij

n
=

max(F
ij

) − F
ij

max(F
ij

) − min(F
ij

)
  (For minimization problem)     (51)                          

 

In Eqs (47 - 51), Fij symbolizes the matrix of objectives at some of 

the solutions on the Pareto frontier and i stands for the index of 

non-dominated solutions on the Pareto curve and j symbolizes the 

index of each objective of the optimization problem. The fuzzy 

Bellman–Zadeh decision making theories utilizes the fuzzy non-

dimensionalization procedure whereas the LINMAP, TOPSIS and 

Shannon’s entropy theory methods use Euclidian non-

dimensionalization procedure.  

 

3.3.1. LINMAP decision making approach 

Ideal point on the Pareto curve is the solution, which is the 

optimization result of the each objective irrespective of satisfaction 

to the other objectives. In multi objective optimization, it is 

obvious that optimal solution of each solution can not be obtained 

as it is acquired in single objective optimization. Therefore, ideal 

solution is not located on the Pareto frontier. In LINMAP decision 

making approach, after making Euclidian non-dimensionalization 

of all objectives in the objective space, the distance between the 

each solution on the Paretor frontier and ideal solution is calculated 

by the following equation Eq. (52). 

( )
2

1

n
ideal

i ij j

j

d F F
+

=

= −                            (52)  

Where n represents the number of objectives, i stands for index of 

the solution on the Pareto curve (i=1,2,3,..,m), and 
 
F

j

ideal
 is the 

ideal value of the jth objective obtained through the single objective 

optimization. LINMAP method selects the solution with minimum 

distance from the ideal point as a final optimum solution, which 

can be shown as Eq. (53)[51]: 

( )min ;    1, 2, 3, ..,
final i

i i d i m
+

=  =                  (53)  

3.3.2. TOPSIS decision making approach 

This method utilizes the nadir solution (non-ideal point) instead of 

the ideal point. The nadir point in the objective space is the solution 

in which each objective function has its worst value. Therefore, 

this procedure calculates the Euclidian distance of the each point 

on the Pareto curve from the nadir point with the given equation in 

Eq. (54) 

( )
2

1

n
nadir

i ij j

j

d F F
−

=

= −                             (54) 

In this method, final form of the Euclidian distance, di, is calculated 

as Eq. (55)[52]: 

i

i

i i

d
d

d d

−

+ −

=
+

                                       (55)  

Solution with a maximum di is selected as a final desired output, 

and respectively ifinal is the index of the final selected solution 

given as Eq. (56). 

  
i

final
= i max d

i
( );    i = 1, 2,3,..., m                     (56) 

3.3.3. Shannon’s entropy approach 

This method takes into account of the weight of the alternatives 

based on the Lij in non-dimensional Fij matrix with n number of 

solutions on the curve and m objective functions. The elements of 

Lij is calculated as Eq. (57)[53]: 

  

L
ij
=

F
ij

F
ij

i=1

n



,    i = 1, 2,3,..., n    j = 1, 2,3,..., m              (57) 

Shannon’s entropy value can be obtained by the following equation 

Eq. (58). 

  

SE
j
= −M L

ij
ln L

ij
,      M = 1 / ln(n)

i=1

n

                  (58) 

Deviation degree (Dj) is computed by Eq. (59). 

  
D

j
= 1− SE

j
                                         (59) 

The weight of jth objective is calculated by the Eq. (60). 

  

W
j
=

D
j

D
jj=1

m


                                       (60)  

Finally, this yields to Eq. (61).  

 
Y

i
= L

ij
W

j
                                            (61)  

Maximum Yi is selected by Shannon’s entropy approach to decide 

the final optimum solution with using the index of maximum point 

in Yi . That is, Eq. (62), 

  
i

final
= i max(Y

i
)
                           (62) 

4. Results and Discussion 

Three case studies are taking into account in this paper to optimize 

the pathways between the state point temperatures of irreversible 
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air refrigerators (Brayton refrigerators). First case explains the 

multi objective optimization of exergetic efficiency (ηII), 

coefficient of performance (COP), and ecological coefficient of 

performance (ECOP). Second case deals with the concurrent 

optimization of the problem objectives of coefficient of 

performance (COP), thermoeconomic parameter (F), and thermo-

ecological coefficient of performance (ECOP). Third case 

simulates the multi-objective optimization of three problem 

objectives such as second law efficiency (ηII), coefficient of 

performance (COP), and thermo-ecological function (ECF). These 

problem parameters are iteratively optimized through Crow search 

algorithm until the termination criteria of the optimization method 

is satisfied. Six design variables including the effectiveness of the 

heat exchanger at hot side (εH), the effectiveness of the heat 

exchanger at the cold side (εL), ), compression efficiency (ηC), 

expansion efficiency (ηE), internal conductance (ξ), and isentropic 

temperature ratio (ϕ) have been considered to be optimized in order 

for attaining the efficient design of the irreversible air refrigerators 

in terms of finite time thermodynamics. The whole system is 

designed under the following operating conditions: Cw = 1050.0 

(W/m2K), TL = 260.0 (K), T0 = 290.0 (K), TH = 320.0 (K), UH = 

500.0 (W/m2K), UL = 500.0 (W/m2K), a = a2 = 0.15, b = b2 = 0.1. 

Apart from these definitions, there exists a conceptual parameter 

in the context of multi-objective optimization called “the deviation 

index.” This expression is used to select the best final answer 

obtained from the different decision making theorems at hand. 

Calculation of this term is explicitly detailed in Ahmadi et al. [54]. 

As the deviation index rate is close to zero value, it means that its 

corresponding solution tends to reach optimum point while leaving 

away from the non-ideal point. 

4.1. Results of the case study 1 

This case maintains the multi-objective optimization of exergetic 

efficiency (ηII), coefficient of performance (COP), and ecological 

coefficient of performance (ECOP) of an irreversible air 

refrigerator. Figure 2 depicts the pareto frontier built on the basis 

of the set of the non-dominated solutions of these aforementioned 

design objectives. As seen from Figure 2, final solution obtained 

by LINMAP method is superior to the remaining decision making 

theorems. Table 2 reports the optimum solutions retained through 

three different decision-making theorem along with their 

corresponding design variables and state point temperatures. 

Outcomes of the LINMAP optimizer are selected as the best final 

answer due to its corresponding deviation index value, which is 

closer to zero than the others. 

Table 2 Optimum solutions for case study 1  

Design variables TOPSIS LINMAP 

Shannon’s 

entropy 

theory 

εH  0.8985  0.8945  0.8669 

εL 

ηc 

 0.8907 

 0.9494 

 0.8993 

 0.9484 

 0.8983 

 0.9496 

ηe  0.9499  0.9488  0.9497 

ξ  0.0115  0.0106  0.0101 

φ  1.5221  1.4894  1.4678 

Temperatures    

T1  255.735  256.498  256.851 

T2s  389.258  382.040  377.013 

T2  396.374  388.863  383.379 

T3  327.746  327.258  328.379 

T4 

T4s 

 220.945 

 215.324 

 225.220 

 219.718 

 229.018 

 223.755 

Objective 

functons 

   

ηII  0.3044  0.3050  0.3037 

COP  1.0076  1.0103  1.0042 

ECOP  1.4488  1.4537  1.4424 

Deviation index  0.1287 0.0931   0.2451 

 

 

 

Fig. 2 Pareto frontier for case study 1 
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4.2. Results of the case study 2  

This case deals with the simultaneous optimization of coefficient 

of performance (COP), thermoeconomic parameter (F), and 

thermoecological coefficient of performance (ECOP) to scrutinize 

the optimum state point temperatures of the irreversible air 

refrigerators through Crow Search Algorithm. Figure 3 plots the 

scatter of non-dominated solutions over the objective function 

domain, along with the final best solutions obtained by three 

decision-making theorems. Table 3 reports the best results 

acquired by three different decision makers accompanied with 

optimum design variables and state point temperatures. Results 

retrieved from Table 3 indicates that all decision makes finds the 

same optimal output which reassuring the idea that the obtained 

result is the best final solution with a deviation index of 0.018  

 

 

 

Table 3 Optimum solutions obtained from different decision makers 

Design variables TOPSIS LINMAP Shannon’s entropy theory 

εH  0.8999  0.8999  0.8999 

εL 

ηc 

 0.8884 

 0.9497 

 0.8884 

 0.9497 

 0.8884 

 0.9497 

ηe  0.9497  0.9497  0.9497 
ξ  0.0139  0.0139  0.0139 

φ  1.4604  1.4604  1.4604 

Temperatures    

T1  256.477  256.477  256.477 
T2a  374.581  374.581  374.581 

T2  380.834  380.834  380.834 

T3  326.086  326.086  326.086 
T4 

T4s 

 228.434 

 223.272 

 228.434 

 223.272 

 228.434 

 223.272 

Objective functons    

COP 1.0188  1.0188  1.0188  
ECOP 1.4699  1.4699  1.4699  

F 1.6794  1.6794  1.6794  

Deviation index  0.018  0.018  0.018 

 
 

Fig. 3 Non-dominated solutions for case study 2 

Fig. 4 Non dominated solutions for case study 3 
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4.3. Results of the case study 3  

This case simulates the multi-objective optimization of three 

problem objectives of second law efficiency (ηII), coefficient of 

performance (COP), and thermoecological function (ECF) by 

means of Crow Search Algorithm. Figure 4 shows the Pareto 

optimum solutions of three different problem objectives along with 

the final optimum results obtained through three decision-making 

theorems. Table 4 gives the optimum solution outputs and their 

corresponding state point temperatures and decision variables. 

Table 4 shows that the best solution is found by Shannon’s entropy 

with a deviation index value of 0.1953 that is closer to the zero. 

Other decision makers find the same results with a deviation index 

value of 0.2397. 

5. Conclusion 

This comprehensive study is mainly concerned with the multi-

objective optimization of irreversible air refrigerators through 

Crow Search Algorithm by means of finite time thermodynamics. 

Three case studies have been considered to investigate the thermal 

behavior of the air Brayton  cycle through the problem objectives 

of coefficient of performance (COP), Ecological coefficient of 

performance (ECOP), second law efficiency (ηII),,thermo-

ecological function (ECF), and  thermoeconomic function criteria 

(F). Pareto optimal solutions between triple objectives have been 

achieved and best optimal results among the conflicting objectives 

have been selected by three decision- making theorems including 

TOPSIS, LINMAP, and Shannon’s entropy theory. The optimal 

values of design variables including the effectiveness of the heat 

exchanger at hot side (εH), the effectiveness of the heat exchanger 

at the cold side (εL), compression efficiency (ηC), expansion 

efficiency (ηE), internal conductance (ξ), and isentropic 

temperature ratio (ϕ) have been decided according to the deviation 

index rates which explains the feasibility of a particular decision 

making theory for a specific optimization problem. Apart from 

those, Crow Search Algorithm proves its efficiency and robustness 

on multi-objective optimization problems with paving the way for 

future improvements on thermodynamic cycle design.  

 

Table 4 Optimum solutions obtained from three different decision makers 

for case study 3  

Design 

variables 

TOPSIS LINMAP Shannon’s 

entropy theory 

εH 0.8799  0.8799   0.8844 

εL 

ηc 

0.7304 
0.9484  

0.7304 
0.9484  

 0.8691 
 0.9437 

ηe 0.9494  0.9494   0.9483 

ξ 0.0238 0.0238  0.0117 
φ 1.2945  1.2945   1.4441 

Temperatures    

T1  257.999  257.999  256.247 
T2s  333.991  333.991  370.045 

T2  338.120  338.120  376.822 

T3  322.175  322.175  326.565 
T4 

T4s 

 252.577 

 248.872 

 252.577 

 248.872 

 231.326 

 226.138 

Objective 

functons 

   

ηII  0.1731  0.1731   0.2936 

COP  0.3794  0.3794   0.9551 

ECF -35.397 -35.397  -56.005 

Deviation 
index 

 0.2397 0.2397   0.1953 
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