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Abstract: Cervical cancer is one of the most common causes of cancer death of women. Prediagnosis of cervical cancer at early stages is 
critical to reduce mortality ratios.  Additionally, early prediction of cervical cancer can help both the patients and the physicians depending 
on easiness of treatment. Cervical cancer results from various risk factors such as family history, education level, having multiple full-term 
pregnancies, smoking, and sexually transmitted diseases and etc. Recently, different types of advanced methods were developed for risk 
prediction analysis based on machine learning techniques. The purpose of this study is to investigate the efficacy of using multi-label 
classification techniques for diagnosing cervical cancer at early stage. Four common learning algorithms such as Naïve Bayes, J48 Decision 
Tree, Sequential Minimal Optimization, and Random Forest were compared in terms of their accuracy, hamming loss, exact match (subset 
accuracy) and ranking loss performance evaluation metrics. Thus, this study can help to physicians, academics and cancer researchers to 
make fast and accurate diagnosis. 
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1. Introduction 
A risk factor highly affects chance of getting rid of a disease, 
especially in cancer. Different cancer types have different risk 
factors. For example, cervical cancer arise from the interaction 
between a genetic predisposition and behavioral and 
environmental risk factors. Five or more full term pregnancies, 
smoking cigarettes or breathing in secondhand smoke, use of 
hormonal contraceptives for five or more years, previous exposure 
to sexually transmitted diseases (STDs), i.e. AIDS, some herpes 
viruses, and Hepatitis B are some causing factors associated with 
an increase in the risk of cervical cancer among [1, 2].  
It is crucial to build predictive models using risk factors for 
interventions relating to the progress of cervical cancer. Because, 
early prediction of cancer plays a pivotal role in the treatment 
process and effective preventive strategy. Actually, correct and 
timely diagnosis of cervical cancer is one of the biggest problem 
in health. The World Health Organization (WHO) suggests the 
development of basic strategies to identify those at risk of cervical 
cancer and ensure them with early lifestyle interventionist [3].  
In this study, different combination of multi-label classification 
methods and learning algorithms were used for diagnosing cervical 
cancer based on common risk factors. Four widely used multi-label 
classification models, Binary Relevance (BR), Conditional 
Dependency Networks (CDN), Classifier Chains (CC), and Label 
Combination (LC) were used. As a base classifier, four learning 
algorithms such as Naïve Bayes, J48 Decision Tree, Sequential 
Minimal Optimization, and Random  Forest were analyzed and 
compared using MEKA software (Multi-label Extension to WEKA 
data mining tool). These software ensure an open source 
implementation classifier chains techniques for multi-label 
classification [4]. 

2. Multi-label classification  
The methods used in classification problems are divided into two 
groups according to the number of labels; single label and multi-
label. As seen Table 1, for the single label classification, labels 
(category) are mutually exclusive and each instance is assigned to 
only one category.  
Table 1 Single label classification 

Instance X1 X2 X3 Y 
i1 1 0.2 1 0 
i2 2 0.6 0 1 
i3 3 0.7 0 0 
i4 4 0.9 1 0 
... … … … … 
in 2 0.6 1 ? 

 
On the other hand, in the multi-label classification, the labels are 
interrelated and each instance corresponds to multiple class labels 
(Table 2).  The multi-label classification has recently attracted 
attention of many researchers and has been used in several 
applications such as scene classification [5,6], text classification 
[7,8], bioinformatics [9], and music and movie categorization 
[10,11].  
 
Table 2 Multi-label classification 
Instance X1 X2 X3 Y1 Y2 Y3 

i1 1 0.2 1 0 1 0 
i2 2 0.6 0 1 0 0 
i3 3 0.7 0 0 0 0 
i4 4 0.9 1 0 1 1 
… … … … … … … 
in 2 0.6 1 ? ? ? 
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In recent years, many well-established methods have been 
developed to analyze multi-label classification problems. 
According to Tsoumakas and Katakis [12], the multi-label 
classification methods are separated into two main categories: (a) 
Problem Transformation (PT) methods and (b) Algorithm 
Adaption (AA) methods.  
Algorithm adaptation methods (fitting algorithm to data), modify 
traditional single-label classification algorithms to handle multi-
label data directly. Several base algorithms have their multi-label 
variants such as lazy learning [13], support vector machines [14], 
neural networks [15], and decision trees [16].  
Problem Transformation methods (fitting data to algorithm), 
transform a multi-label classification problem into one or more 
single label classification problems.  
In this study, the most popular PT methods for multi-label 
classification such as Binary Relevance (BR), Classifier Chains 
(CC), and Conditional Dependency Networks (CDN), Label 
Combination (LC) were used on cervical dataset. The comparison 
of these methods were briefly described on Table 3. 

2.1. Binary Relevance 

Employing independent classifiers in a series of various decisions 
is the continuation to the single label problem. In the multi-label 
literature, this approach often called binary relevance for case of 
binary labels. Binary Relevance (BR) is a well-known and the most 
popular transformation method that learns q binary classifiers; one 
for each possible labels in L. As illustrated in Figure 1a, BR 
converts a multi-label classification problem into several different 
single-label binary classification problems according to the one-
vs.-all strategy. Each binary classifier is responsible for predicting 
the association of a single label [17].  

2.2. Classifier Chains 

J. Read et al. [19] proposed  Classifier Chains (CC) that contains q 
binary classifiers like BR, but includes previous predictions as 
feature attributes. Classifiers are connected along a chain where 
each classifier deals with the binary relevance problem associated 
with label L, see Figure 1 (b). The attribute space of each link in 
the chain is extended with the 0/1 label relevance of all previous  
classifiers; therefore building a classifier chain. This method 
improves prediction performance and can be applied with any type 
of base classifier.  
 
 

2.3. Label Combination 

Label Combination (LC) is an alternative paradigm to BR (Binary 
Relevance) method, is also known as Label Power set [19]. LC 
uses all label sets as single labels, i.e. each label set becomes a 
single class label within a single label problem. Therefore, the set 
of single labels represents all different label subsets in the multi-
label training data. As a graphical model for this approach was 
illustrated by Figure 1 (c). 

2.4.  Conditional Dependency Networks  

Conditional Dependency Network (CDN) is a fully connected 
bidirectional graphical model, which ensures an intuitive 
representation for the dependencies between multiple label 
variables, and a well-integrated structure for efficient model 
training using binary classifiers and label predictions using Gibbs 
sampling inference [20].  
CDN can effectively exploit the label dependency to improve 
multi-label classification performance. Moreover, it allows a very 
simple training procedure, while its representation naturally 
facilitates a simple Gibbs sampling inference on the test instances. 
It can also incorporate a wide range of simple classification 
algorithms, including both probabilistic classifiers and non-
probabilistic classifiers. The graphical model of CDN was 
represented on Figure 1 (d). 
 

 
Fig 1. Several multi-label methods depicted as directed/undirected 

graphical models [21,22] 
 

Table 3 Comparison of several multi-label classification methods 

Class Name Computational 
complexity Advantage(s) Disadvantage(s) 

BR Binary Relevance  O(m) - Computationally efficient, 
simple and fast. 

- It does not consider the 
relationship among the class variables 
-Class imbalance 

CC Classifier Chains O(m) 

- Achieves higher predictive 
performance, 
- It can work with any type of 
base classifier. 

- It cannot utilize available unlabeled data for 
classification 

CDN Conditional Dependency 
Network O(m) 

- It is effective to exploit the 
dependencies among multiple 
labels. 

- The inference is more expensive and may not 
scale to large labels. 
- The convergence rate for the network is very 
slow. 

LC Label Combination or 
Label Powerset O(2m) - It considers the relationship 

among the class labels 

- It creates exponentially many classes, so 
computationally very expensive and complex. 
- It leads to overfitting of the training data. 
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3. Material and Method 
3.1. Dataset 

The dataset used in this study was obtained from UCI machine 
learning repository [23]. The dataset consist of demographic 
information, habits, and historic medical records of 858 patients 
with 36 attributes. The dataset is multi-class and multi-label i.e. 
each patient can be involved in multiple classes (categories) at the 
same time. Several types of tests can be used to diagnose cervical 
pre-cancers and cancers. 
 In this experiments, four different medical test results of patients 
such as Hinselmann, Schiller, Cytology, and Biopsy were used as 
target variables to classify. Table 4 summarizes the dataset 
attributes.  Four common learning algorithms such as NB, SMO, 
J48, and RF were analyzed and compared using MEKA data 
mining tool. MEKA is a multi-label extension of WEKA software 
and provides predicting multiple output variables for each input 
instance. The dataset was randomly divided into two sets; training 
and test. A training data set and testing data set containing 70% 
(566) and 30% (292) patients, respectively. In order to evaluate  the 
unbiased estimate of the four prediction models for comparing 
their performances the 10-fold cross-validation methods were 
used. 

3.2. Performance Evaluation Metrics 

Multi-label classification methods needs different measurements 
than used in traditional single-label classification.  

 

 
In the multi label classification the performance of all labels should 
be taken into account [24-27]. There are number of evaluation 
measures available for multi-label classification, from them 
accuracy, hamming loss, exact match ratio, and  rank loss were 
used in this study, described on Table 5.  
In this table, (𝑥𝑥𝑖𝑖 ,𝑌𝑌𝑖𝑖) is the instances of multi-label dataset for 𝑖𝑖 =
1,2, 3, … ,𝑚𝑚, Yi ⊆ L is the set of true labels, 𝐿𝐿 = (𝑙𝑙𝑗𝑗: 𝑗𝑗 =
1,2,3, … , 𝑞𝑞) is the set of all labels. 𝑍𝑍𝑖𝑖 is the set of labels that are 
predicted by an algorithm, 𝑟𝑟𝑖𝑖(𝑙𝑙) is the LR method for the label l, I 
is the indicator function defined as I(true) = 1 and I(false) = 0, ∆ 
stands for the symmetric difference of two sets, and 𝑌𝑌𝚤𝚤�  is the 
complementary set of Yi with the respect to L. 

4. Results and Discussion 

Multi-label classification was performed on cervical cancer dataset 
using four classification methods and learning algorithms. Their 
performance were evaluated based on accuracy (AC), Exact Match 
(EM), Hamming Loss (HL) and Rank Loss (RL). Figure 2 shows 
the evaluation of the classifiers based on these performance 
parameters. 
As seen from Fig. 2, the accuracy percent for examined algorithms 
were approximately over 80%, except for J48-BR and J48-CDN. 
Similar behavior was observed for exact match where J48-BR and 
J48-CDN showed lower values than 80%. All algorithms with CC 
and LC methods yielded in close accuracy, exact match, hamming 
loss and ranking loss results. 
  

Table 4. Dataset description [24] 
No Attribute Name Type No Attribute Name Type 
1 Age Integer 19 STDs:pelvic inflammatory disease  Binary 
2 Number of sexual partners  Integer  20 STDs:genital herpes  Binary 
3 First sexual intercourse (age)  Integer 21 STDs:molluscum contagiosum  Binary 
4 Number of pregnancies Integer 22 STDs:AIDS Binary 
5 Smokes  Binary 23 STDs:HIV  Binary 
6 Smokes (years)  Binary 24 STDs:Hepatitis B  Binary 
7 Smokes (packs/year)  Binary 25 STDs:HPV  Binary 
8 Hormonal Contraceptives  Binary 26 STDs: Number of diagnosis  Integer 
9 Hormonal Contraceptives (years)  Integer 27 STDs: Time since first diagnosis  Integer 
10 Intrauterine Devices (IUDs)  Binary 28 STDs: Time since last diagnosis  Integer 
11 IUDs (years)  Integer 29 Dx:Cancer  Binary 
12 Sexually Transmitted Diseases (STDs) Binary 30 Dx:CIN  Binary 
13 STDs (number)  Integer 31 Dx:HPV  Binary 
14 STDs:condylomatosis  Binary 32 Dx  Binary 
15 STDs:cervical condylomatosis  Binary 33 Hinselmann  Binary 
16 STDs:vaginal condylomatosis  Binary 34 Schiller Binary 
17 STDs:vulvo-perineal condylomatosis  Binary 35 Cytology Binary 
18 STDs:syphilis  Binary 36 Biopsy Binary 

Table 5. Several Multi-label performance evaluation measures [27] 
Measure Equation Description 

Accuracy 
1
𝑚𝑚
�

|𝑌𝑌𝑖𝑖 ∩ 𝑍𝑍𝑖𝑖|
|𝑍𝑍𝑖𝑖 ∪ 𝑌𝑌𝑖𝑖|

𝑚𝑚

𝑖𝑖=1

 The percentage of the correctly classified labels to the total 
number of labels for each example. 

Hamming Loss 
1
𝑚𝑚
�

|𝑌𝑌𝑖𝑖∆𝑍𝑍𝑖𝑖|
|𝐿𝐿|

𝑚𝑚

𝑖𝑖=1

 
This is the opposite of Hamming Score which evaluates 
number of  times an sample-label pair is in correctly classified. 
Its best value occurs when its value is equal to 0. 

Exact Match 

Ratio  
1
𝑚𝑚
�𝐼𝐼 (𝑍𝑍𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= 𝑌𝑌𝑖𝑖) The percentage of examples that have all their labels classified 
100% correctly 

Rank Loss 
1
𝑚𝑚
�

1
|𝑌𝑌𝑖𝑖||𝑌𝑌𝚤𝚤�|

𝑚𝑚

𝑖𝑖=1

|{(𝐼𝐼𝑎𝑎 , 𝐼𝐼𝑏𝑏): 𝑟𝑟𝑖𝑖(𝑙𝑙𝑎𝑎) > 𝑟𝑟𝑖𝑖(𝑙𝑙𝑏𝑏), (𝑙𝑙𝑎𝑎 , 𝑙𝑙𝑏𝑏) 𝜖𝜖 𝑌𝑌𝑖𝑖𝑥𝑥𝑌𝑌𝚤𝚤�}| 
It evaluates the fraction of label pairs that have been ranked in 
a wrong order. 
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a) 

 

b) 

 

c) 

 

d) 

 

Fig 2. Performance of different combination of multi-label classifiers and learning algorithms in terms of a) Accuracy b) Exact Match c) Hamming Loss 

d) Rank Loss performance evaluation metrics. 

As seen in Table 6, especially for J48 and Random Forest methods 
there is a slight difference, except for BR classification method. 
RF algorithm based CC and LC models were superior when all 
parameters considered. J48-CC and J48-LC methods followed RF-
CC and RF-LC. J48-BR showed worse accuracy and exact match 
performance. Rank loss for all algorithms combined with BR, CC, 
LC and CDN methods, nearly same. However, significant 

difference was observed in Hamming Loss. Highest hamming loss 
results was obtained for J48-BR (0.261).  

5. Conclusion  

Nowadays, MLC has received significant attention in the machine 
learning literature and large number and considerable variety of 
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methods have been developed. In this study, a comparative study 
on application of some popular multi-label classification methods 
was presented. The assessment of methods was performed using 
cervical cancer dataset of 858 patients with 36 risk factors. 
Different combinations of multi-label classification with four 
learning algorithms were compared. The performance of methods 
were measured and evaluated with four measures: Hamming loss, 
accuracy, rank loss and exact match. Results of this study may help 
researchers and physicians for diagnosing of cervical cancer at 

early stage. 
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Table 6.  Performance of different multi-label classifiers 
Naïve Bayes 
 BR CC LC CDN 
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J48 
 BR CC LC CDN 
Accuracy 0.052 0.887 0.887 0.733 
Exact Match Ratio 0.024 0.887 0.887 0.723 
Hamming Loss 0.261 0.059 0.059 0.11 
Rank loss 0.024 0.051 0.051 0.031 
SMO 
 BR CC LC CDN 
Accuracy 0.870 0.862 0.860 0.865 
Exact Match Ratio 0.866 0.856 0.860 0.863 
Hamming Loss 0.063 0.067 0.072 0.066 
Rank loss 0.050 0.050 0.051 0.053 
Random Forest 
 BR CC LC CDN 
Accuracy 0.776 0.890 0.890 0.777 
Exact Match Ratio 0.767 0.890 0.890 0.764 
Hamming Loss 0.103 0.057 0.057 0.101 
Rank loss 0.039 0.051 0.051 0.045 
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