
International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 251–261 | 251

Text line Segmentation in Compressed Representation of Handwritten

Document using Tunneling Algorithm

Amarnath R.*1, Nagabhushan P. 1

Accepted : 01/10/2018 Published: 31/12/2018 DOI: 10.1039/b000000x

Abstract: In this research work, we perform text line segmentation directly in compressed representation of an unconstraint handwritten

document image using tunneling algorithm. In this relation, we make use of text line terminal point which is the current state-of-the-art

that enables text line segmentation. The terminal points spotted along both margins (left and right) of a document image for every text

line are considered as source and target respectively. The effort in spotting the terminal positions is performed directly in the compressed

domain. The tunneling algorithm uses a single agent (or robot) to identify the coordinate positions in the compressed representation to

perform text-line segmentation of the document. The agent starts at a source point and progressively tunnels a path routing in between

two adjacent text lines and reaches the probable target. The agent’s navigation path from source to the target bypassing obstacles, if any,

results in segregating the two adjacent text lines. However, the target point would be known only when the agent reaches destination; this

is applicable for all source points and henceforth we could analyze the correspondence between source and target nodes. In compressed

representation of a document image, the continuous pixel values in a spatial domain are available in the form of batches known as white-

runs (background) and black-runs (foreground). These batches are considered as features of a document image represented in a Grid.

Performing text-line segmentation using these features makes the system inexpensive when compared to spatial domain processing.

Artificial Intelligence in Expert systems, dynamic programming and greedy strategies are employed for every search space while

tunneling. An exhaustive experimentation is carried out on various benchmark datasets including ICDAR13 and the performances are

reported.

Keywords: Compressed Representation, Handwritten Document Image, Text-Line Terminal Point, Text-Line Segmentation, Search

Space, Grid.

1. Introduction

Technological advances of storage and transfer have made it

possible to maintain many documents in the digital format. It is

also necessary to preserve these documents in digital image

format only, particularly in case of handwritten documents for

verification and authentication purposes [1, 2, 3, 4, 5].

Maintaining these document images in the digital form would

require huge storage space and network bandwidth. Therefore, an

efficient compressed representation would be an effective

solution to the storage and transfer issues [6, 7, 8] particularly

arising from document image. Generally, the document image

compression format follows the guidelines of CCITT Standards

[9, 10] which is a part of the ITU (International Telegraph

Union). These standards were specifically targeted towards

document images stored in digital libraries. On the other hand, if

document images, audios and videos are to be archived and

communicated in the compressed form itself, then it would be

considered as a third advantage in addition to storage and

transmission.

The digital libraries with document images in their compressed

formats could imply a solution to a big data problem arising from

the document images, particularly about storage and transmission

[11]. The compressed image file formats such as TIFF, JPEG,

and PNG, strictly follow CCITT standards [7, 8, 9, 10, 11, 12].

For any digital document analysis (DDA), the image in its

compressed format must undergo the decompression stage.

However, performing operations on decompressed documents

would unwarrantedly suppress the advantages of both the time

and buffer space [6, 13, 14, 15]. If DDA could be achieved in the

compressed version of the document image without

decompression, then the document image compression could be

viewed as an effective solution to the immense data problems

arising from document images [13].

The idea of operating and analysing directly in the compressed

version of the document image without decompression is known

as Compressed Domain Processing (CDP) [6, 13, 14, 15). A

recent literature [12] on CDP shows the strategies to perform

document image analysis in its compressed representation.

However, the model is subjected to the printed documents only.

The challenging job is to perform DDA in compressed

representation of handwritten document image. Performing DDA

on uncompressed handwritten document could be a difficult task

because of oscillatory variations, inclined orientation and

frequent touching of text lines while scribing on un-ruled paper

[13]. An initial attempt [13] to spot the separator points at every

line terminals in compressed unconstrained handwritten

document images using run-length features (Run Length

Encoding or RLE) is the state-of-the-art technology. This

motivates to carryout text-line segmentation in compressed

document image. In this research, we have attempted to segment

the text lines in the compressed representation with the help of

these spotted terminal points. In this context, a research [16]

1 Department of Studies in Computer Science, University of Mysore,

 Karnataka, India

* Corresponding Author Email: amarnathresearch@gmail.com

International Journal of

Intelligent Systems and Applications in Engineering

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 251–261 | 252

shows a method of extracting run-length features from the

compressed image format supported by CCITT group 3 and

CCITT group 4 standards. These protocols use run-length

encoding, which is widely accepted for binary document image

compression. Our paper aims to segment the text lines of the

document image using the run-length data which is represented in

a grid. The detailed explanation about the RLE format of the

document image is provided in Section 3.

The current state-of-the-art uses a single column (first column) of

the grid to find the separator points at every line terminal along

left margin of the document image. But the last column of RLE

does not infer the depth of right margin of the document for

spotting separator points. To work on the right margin of the

document image, the final non-zero entry of every row in RLE

data was observed for creating a virtual column and thus

separator points are spotted. Now, these identified separator

points at both the margins are considered as source (separator

points along left margin) and target (separator points along right

margin) nodes. In this paper, we make use of single agent (or

robot) for text-line segmentation. The agent’s job is to tunnel or

trace the path by navigating between the two-adjacent text-lines

starting from a source point at one end of a document and

reaching the destination point present at the other end of the

document. This process is applied to all the source nodes

resulting in segmentation of all text-lines. Some interesting

observations inculcated includes analysing the correspondence

between the source nodes and terminal nodes. We also addressed

some of the issues related to wrong segmentation that is when

two or more paths converge to one destination traced by the

agent. Corrective measurements are taken to tackle this issue by

understanding the correlation between two adjacent paths.

Our approach identifies the text line positions operating directly

in the RLE representation of the document images which results

in text-line segmentation. The rest of the paper is organized as

follows. A survey of related research is presented in section 2. In

section 3, we have explained the RLE representation of a

document image. Further, we provide the terminologies and

corollaries used in this paper. Section 4 describes the algorithmic

modelling along with comparative time complexity with respect

to both RLE and uncompressed document versions. Further,

experimental results conducted on benchmark handwritten

datasets such as ICDAR 13 and other databases [17] are

described in Section 5. Section 6 summarizes the research work

with future avenues.

2. Related Works

In the recent past, we could trace few related works on CDP, but

restricted to printed document images. A literature [15] on CDP

provides a detailed study on document image analysis techniques

from the perspectives of image processing, image compression

and compressed domain processing. This enabled various

operations carried out in the field of skew detection / correction,

document matching, document archival.

Recent article [18], demonstrates straight line detection in RLE

representation of the handwritten document image. Incremental

learning-based text-line segmentation in compressed handwritten

document images are reported in literature [19]. Further, there

was a technical article [13] that discusses about performing direct

operations on the compressed representation of handwritten

document. The effort is to spot the separator points at every text

lines in both margins of the document image enabling text line

segmentation. For better understanding, the identified line

terminal points applied over an uncompressed document image is

shown in Figure 1.

Fig. 1. Line Separators at both borders of a document in uncompressed

documents (Reference: A portion of ICDAR13 test image - 320.tif)

One of the significant models [20] uses seam carving approach to

segment the text-line that works on historical documents of

uncompressed images. Another recent study [21] discusses

various path finding algorithms which are a class of heuristic

algorithms based on Artificial Intelligent. These techniques are

domain specific that works on uncompressed document images.

However, the ideas of path finding approaches are inculcated in

our proposed model, that is to operate on compressed version for

decision-making in every search space. Further, an effort was

made to carry out the text-line segmentation directly in

compressed handwritten document images to avoid

decompression [13] which is the main objective of this paper.

3. Compressed Image Representation and
Corollaries

The Modified Huffman (MH) [7, 8] is the most common

encoding technique following CCITT compression standards

which is supported by all the facsimiles. The improved

compression versions are Modified Read (MR) [7, 8, 9, 10] and

Modified Modified Read (MMR) [7, 8, 9, 10]. A comparative

study on encoding / decoding techniques of these compression

standards are tabulated (Table 1). MH uses RLE for an efficient

coding, whereas MR and MMR exploit the correlation between

successive lines of a document image.

Table 1. Compression standards

Characteristics MH MR MMR

CCITT Standard T.4 T.4 T.6

Dimension 1-D 2-D 2-D (Extended)

Algorithm
Huffman and

RLE

Similarity

between two
successive lines

Extended MR

Figures 2, 3 and 4 show a sample binary image, its corresponding

hexadecimal image viewer and the RLE representation of the

image respectively. The RLE representation of an image is

defined as Grid (G) in this paper.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 251–261 | 253

Fig. 2. A sample image of size 18X10 (WidthXHeight)

Fig. 3. Hexadecimal visualization of the image from Fig. 2

Fig. 4. RLE data inferred as Grid of the image from Fig 2

The odd and even columns of the RLE data represent the count of

white-runs and the black-runs of an uncompressed document

image. The number of continuous pixel value, say ‘0’

(background), is called as white-runs [22, 23, 24, 25, 26].

Similarly, the number of continuous pixel value, say ‘1’

(foreground) is called as black-runs [22, 23, 24, 25, 26]. If a row

in an image starts directly with foreground, then the value in the

first column of the corresponding row in RLE has an entry zero

(‘0’). This infers that odd columns and even columns in the grid

contain count of white-runs and black-runs respectively. The

white-runs represent background whereas the black-runs

represent foreground as text-content.

Some of the corollaries used in this article are listed here:

a. Each separator points spotted in the first column of the Grid

() is considered as Source Node ().

b. Each separator points spotted in the virtual column is

considered as Target Node (). Final non-zero entry in

every row of G makes this virtual column.

c. A path () is defined as segmentation of adjacent text lines;

an agent (or robot) navigates along blank space (white-

runs) available between two adjacent text-lines from to

with reference to .

d. Edges () are defined as sequences of white-runs that exist or

tunneled between two adjacent text-lines. These sequence

of formulates .

e. An obstacle () appears because of touching characters

between two adjacent text-lines, which is a hurdle while

tracing from to . This may also occur due to ascenders

and descenders of characters, which appears larger in length

when compared to a given threshold ().

f. t is the length covered by an agent tracing both the direction

vertically up and down () from the current

position , where arguments and refer to the

position in along (columns) and (rows) axis

respectively; this search space is induced whenever there is

an . is chosen empirically based on experiments

conducted on the datasets.

g. For every , there is a . The relationship between and is

one-to-one function defined as and strictly

follows the ascending order. The correspondence of and

 is not defined in the literature [13]. However, in this

paper, we could find the probable correspondence between

 and with help of an agent (or robot) and algorithmic

strategies.

h. When relationship between and is onto function or

crossover, then it is observed as wrong segmentation. Even

though and hold a relation one-to-one and there exist

crossovers, then it is considered as wrong segmentation.

i. The distance () calculated between and denotes the

shortest covering longest distance (weights), which is

defined by a function, . depends on the number of

edges () used in by an agent to cover between and

.

j. The terminal points and does not necessarily possess

larger white-runs because, they are heuristically chosen as

mid-points of the bands corresponding to the two-adjacent

text-lines along axis (columns) of . Therefore, may

not be an actual start point, in the given situation, whereas

the weight of the is longer than . So, the actual start

point would be and it would be within the search space of

 from .

k. The distance between two intermediate hubs such as

 and must be equal or greater than a given threshold ().

 is calculated by finding a maximum number of bins

observed from the histogram of with respect to odd

columns (white-runs) only.

Some of the assumptions concerning the state space search

(tunnel or traversal or) are given below:

a. and are finite.

b. There must be at-least one between and

c. One agent (or robot) is employed at a time for tracing

.

d. There is no self-loop in (a cycle of length one).

e. Tunnel (Move to next state) if exist on .

Figure 5 shows the terminal points of and in an

uncompressed version for better understanding. It depicts 10

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 251–261 | 254

source nodes and 10 target nodes. The one-to-one function for the

figure 5 is defined below:

Based on the observation, the source does not have a

corresponding target . Therefore, an agent starting from may

reach or , where is presumed as a new (correspondence)

or . This infers that the agent may reach closer or nearer to

but not exactly the target , which is illustrated in the following

section.

Fig. 5. Line Separators displaying S and T at both ends of a document in

uncompressed documents. (Reference: A portion of ICDAR13 test image

- 320.tif)

4. Text-line Segmentation

Grid () of a document image starts with a column of white-

run(s). The starting column of is referred [13] as a white space

that exists at the beginning of a text document. A larger depth

(white-runs) in this column indicates the text-line separation gap

(bands) along left margin of the document image between the

corresponding adjacent text-lines. Mid points are chosen as

terminal points (Source nodes) from the constructed bands

(corollary) as shown in the figure 5. In this context, these points

do not necessarily possess larger white-runs. Therefore, the agent

needs to choose the starting point S among its vertical neighbors

having largest white-runs among its vertical neighbors within the

range from its current position. Now, assuming that the agent’s

start position S is fixed based on the corollary and this state is

at an initial search state . Next, the agent reaches at a

station or hub () starting from resulting in a new search state

. An edge connecting between these two stations and

is the shortest path travelled by the agent to cover maximum

distance and obviously heading towards the probable target. The

distance or weight, from to an intermediate hub is

computed directly from the position, say , then it is

inferred in the first column of . The search process continues

until the agent reaches the corresponding or new target

(probable destination).

The basic idea is that for every , the agent needs to choose the

next hub which is nearer to or by selecting the white-runs

from the current position in and thus ensures that a direct edge

 exists between the two stations (hubs). In other words, the

agent selects the largest white-runs from to adhoc, to navigate

to the next hub closer to or . At every , greedy strategy is

employed to identify the next successive hub h’ by choosing

largest white-runs (or largest weight) from the current and

henceforth the agent reaches or using a minimum number of

 with respect to the hubs visited. The agent hopping hubs

starting from to or results in creating a path . is based

on the edges connected between the intermediate hubs starting

from to or and this indicates a progressive segmentation of

the two-adjacent text-lines in a document image, starting from the

left margin and precedes towards the right direction. If the total

search space for a given is one, then this indicates that the

agent has visited only two hubs and those are and

respectively; this articulates direct segmentation without much

variations exist because of skew, curvy and touching lines in the

handwritten document image. This situation sometimes would be

pronounced in-between two paragraphs in the document image

holding a large horizontal space between them and may occur in

the top and bottom of the documents which is entitled to have an

adequate margin spaces. However, the whole operation is carried

out with reference to .

Consider that the agent reaches an intermediate hub which is at

, then we perform local search by employing corollary to

reach to the next hub (). This situation is related to Hill-

Climbing [27] technique in Artificial Intelligence. If the hubs h

and h’ visited by the agent are located in the positions say

 and respectively, then the search space (local

maxima) is written as.

The selection of each successive hub is based on the distance d

computed by summing up the entries from successive columns in

 along axis starting from the first column with respect to the y

coordinate position. The distance computation is carried out for

every coordinate position which varies within the range of

from either side of position, , as given in the above equation.

The job of the agent is to select the largest weight (distance)

among these computed cumulative values which crosses the

current hub (intermediate hub). However, measuring the

distances for every SS ranging between to (both

inclusive) along axis is computationally expensive. In

computing, memoization [28] or memorize [28] is an

optimization technique used primarily to speed up computer

programs by storing the results of expensive function calls and

returning the cached result when the same inputs occur again. To

avoid this re-computation for every , we use memoization or

memoize technique in dynamic programming strategy to

remember the last computed of previous which in-turn

reduces the computational complexity. The gap or distance

 between two successive hubs must be within a minimum

distance of a given threshold . is chosen heuristically based on

the experiments conducted on the benchmark datasets.

A common issue encountered as mentioned in the corollary is

when two adjacent text-lines are touching one another. In this

case, we just bypass or crossover the lines [29]. Algorithmically,

we choose next successive column (black-runs) with respect to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 251–261 | 255

the current position. In other case, the same strategy is extended

when the ascenders and descenders appear to be greater than the

given threshold value , where the agent would not be able to go

beyond the search limit, say . One of the important issues

mentioned in corollary is when a distance between

hubs is greater than . is given below.

t’= maximum(histogram(values in odd colums of G))

where values in odd columns of G represents white runs

In this case, we calculate t’ by considering the largest bin from

the histogram of G with respect to the counts of white runs (odd

columns). If the distance is found to be larger than t’, then we

apply both the concepts namely ‘don’t care condition’ [29] and

‘minimal cut-sets’ [30] from graph theoretical domain. Therefore,

with a minimal number of crossovers, the agent bypasses and

reaches the next successive hubs. Finally, the agent will update its

knowledge base about each visited hub with reference to G

covering the distance from S to T or T’. Below we present the

proposed algorithm for text-line segmentation using .

Algorithm: Finding text-line segmentation in G using tunneling

approach

Input: Compressed representation G of a document image,

Terminal points – Source Nodes (Sn) at ever line terminals.

Vertical neighboring search threshold t.

Output: Text-line segmentation in G=TS

1. For-each Source Node (S) from Sn, with the position G(y’,x’),
where, x’=1;

CurrentSum=0;
Maximum=0;
GridY=y’

While j=G(y’-t,x’) to G(y’+t,x’) the agent vertical search range is

between y’-t to y’+t (both inclusive), where j>=1 and j<=high of G.

a. Calculate: Cumulative Sum (Initialize Csum=0) for each j or

Use Dynamic Programming. Use Memoize to check data in

Knowledge base (KB)

a. Find Maximum and update coordinate position:

2. Update and coordinate position of :

 The positions chosen in the grid is update

in

 Goto Step 2 until

3. Stop: When the agent covers the distance .

4.1. Time Complexity for Text-line Segmentation

The following provides the time complexity estimated for the

proposed algorithm to identify the text-line segmentation

positions in compressed representation of a document image. The

worst-case scenario is calculated as where and

represent the number of rows and number of columns of the grid

respectively.

Usage of memoize technique [28] in dynamic programming

strategy has reduced to the complexity from

, that is which is a non-

deterministic polynomial.

For comparative study, the time complexity is also estimated for

a document image in its uncompressed format. For this, the

worst-case scenario is where and represent the

height and width of an uncompressed image respectively. It is

noted that is equal to whereas is lesser than .

Time complexity of spotting the line terminal points mentioned in

the literature [13] is estimated as in the worst-case

scenario. Therefore, the complexity for the proposed algorithm is

computed by cascading the two algorithms which result in

. Finally, the proposed method

takes .

The overall computation is tabulated (Table 2).

Table 2. Time Complexity

Complexity

Worst Case

Compressed

Domain

Uncompressed

Domain

Spotting Line Separators

Text-line Segmentation

without dynamic

programming

Text-line Segmentation

(Proposed method)

Overall Efficacy

The efficacy of the proposed algorithm for both compressed and

uncompressed versions is shown in Figure 6. The compressed

version requires less time, when compared to that of

uncompressed images for text line segmentation.

Fig. 6. Comparative analysis of both uncompressed and compressed

version of document images (Ref: ICDAR’13 test datasets)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 251–261 | 256

4.2. Illustration

In this section, we illustrate the working principle of Tunneling

algorithm using an example. The coordinate positions are tracked

by the agent (or robot) for text line segmentation with respect to

 is shown in Table 3.

Table 3. RLE coordinate positions (Reference: A portion of ICDAR13

test image – 320.tif – text-lines 21 and 22)

Hubs

(Stations)
Y-Coordinate X-Coordinate

Distance From

Source Node

Source 1977 1 767

Hub 1 1984 1 1058

Hub 2 2000 9 1295

Hub 3 2020 59 1325

Hub 4 2014 53 1626

Hub 5 2029 67 1901

Hub 6 2049 77 2085

For better understanding, an experimental result is shown in the

uncompressed version as well. Figure 7 shows segmentation of

two text-lines of a document image. Figure 8 illustrates the text-

line segmentation depicting transition hubs and a path tunneled

by an agent.

Fig. 7. Segmentation of two text lines depicted in uncompressed

documents (Reference: A portion of ICDAR13 test image – 320.tif – text-

lines 21 and 22)

Fig. 8. Segmentation of two text lines depicted in uncompressed

documents (Reference: A portion of ICDAR13 test image – 320.tif – text-

lines 21 and 22)

From the example, the agent starts from the Source Node () and

reaches the Target Node () visiting six intermediate hubs such

as Hub 1, Hub 2, Hub 3, Hub 4, Hub 5 and Hub 6. Here, the

source node is identified in a position, say . The agent

predicts that the Hub 1 in the position could be an

effective source node than the initial source [13] as articulated in

corollary . This is because the weight (distance) of Hub 1 is

larger when compared to the initial source as illustrated in table 3.

The total distance covered by the agent is 2085 units. The

threshold is chosen as 20 units and the total computation to

cover the distance along coordinates in both the direction by the

agent ranges from to

, i.e., to

 respectively. We employ memoization technique to

reduce the complexity. Therefore, we make use of a knowledge

base () which would be empty initially. Once we compute the

distances for both Source and Hub 1, we feed all the weights

(distances) ranging from to ,

i.e., to respectively into the KB. The size

of the KB would be a column size of . The triggers the agent

to choose next hub as Hub 2 as a successor of the Hub 1 which

covers the distance of 1295 units and perhaps the distance is

greater than the distance of current hub, that is the Hub 1 possess

1058 units. Next, agent archives the information from the KB to

avoid the total computation.

4.3. Choosing of Source Node

In this section, we introduce a mechanism to find the start node.

Figures 9 (a) and 9(b) show a sample image and its compressed

representation in respectively. Here, the source node is

not an optimal start point as mentioned in corollary . If we

consider the threshold for illustration purpose, then the

search scope will be of range covering from to

. Though the position is extended beyond the

grid boundary as described in the algorithm in step 2, we re-

define the search range starting from . Because of , the

two positions such as and are identified as the

largest among the search range. In this case, we take the source

node that is in the position than latter, because

 is nearer or closer to the initial source node which is

. Finally, we choose as a start node, and thus the

distance covered by the agent would be 7 units and holding a

largest weight covering maximum distance and naturally

precedes or .

(a) (b)

Fig 9. Visualization of a search space predicting the actual source node.

Fig (a) represents the spatial coordinate of an image and Fig (b) represents

its RLE format. The green tile is the initial start node and the blue tile is

the actual start node. A red line represents the distance from source node

to the hub.

4.4. Handling Obstacles

(a)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 251–261 | 257

(b)

Fig. 10. Visualization of a search space tunneling an obstacle. Fig (a)

represents the spatial coordinate of an image and Fig (b) represents its

RLE format. The green tile is the initial start node and the blue tile is the

actual start node. Blue tiles represent the intermediate hub and red tiles

represents obstacle. A red line represents the distance from source node to

the hub.

This section provides the working principle of handling obstacles.

We encountered two types of obstacles while tunneling path as

mentioned in corollary e. Generally, an obstacle occurs due to

unconstrained writing style especially while scribing on an un-

ruled paper. One of the possibilities is when two adjacent lines

are touching one another at some positions. The other possibility

would be when the ascenders or desceders of the characters

extended beyond the search limit or range of the given threshold

(). For illustration purpose, we have considered an example

which is shown in Figure 10(a) and Figure 10(b) representing

spatial domain and its compressed version of a document image.

We have chosen the threshold () for demonstration. In this

example, an initial source node is assumed, and it holds a

position, . Previous section detailed about choosing

appropriate starting node and applying that concept results in a

new position, say as a new Start Node. The new source

node has a maximum weight or distance (say 7 units)

and falls within the range of , which is closer to the initial source

node . Further, the first successor hub is chosen as

 which carries a weight of 6 units and covers the distance

of 11 units from the left margin. It is chosen based on fact that the

distance, say 11 units, is greater than the distance (weight) of

source node that covers the distance of 7 units. The other facts

include the search space (calculated distance) between the range

 and is either lesser or equal to the

current position and this node aligns closer to its predecessor

node along axis. Further, next hopping hub is complicated

because we encounter an obstacle along the coordinate. Further,

the chosen threshold value () is restricted within the search

space. In this situation, we can crossover the hurdle by choosing

the next hub as which is identified as a successor hub.

4.5. Finding Correspondence between Source and Target

Identification of correspondence between the terminal points

residing at opposite margins is one of the challenging aspects as

mentioned in the study [13]. In this article, actual source node is

chosen based on the weight (distance) which is distributed across

its neighbors. The destination is based on the search space of the

proposed model. The agent may start at a new source position and

would reach the probable destination, and this articulates the

correspondence between these two nodes present at extreme ends

of the document. This is applicable for all the source nodes and

target nodes. Figure 11 shows the correspondence between the

source and terminal nodes and the text-line segmentation. In

section 3 we have described the correspondence of the nodes

notably having one-to-one relation and strictly no onto

relationship and additionally no crossovers are allowed between

the terminal points. This could be related to the bi-partite graph

theoretical approach and thus maintaining the order or position.

Fig. 11. Line Terminals S and T at both ends of a document in

uncompressed documents (Reference: A portion of ICDAR13 test image -

309.tif)

The problem of over separation mentioned in the study [13]

highlights the aspect of spotting two or more separator points

within two adjacent text-lines. This occurs when a text line is

identified as a non-text (white space) region. One of the reasons

for over separation is because of concavity of the character. The

other affecting factor could be multiple disjoint fractions or

components which compose a character. Figure 12 depicts the

problem of over separation where source nodes and start

between two adjacent text-lines.

Fig. 12. Line Terminals S and T at both ends of a document in

uncompressed documents (Reference: A portion of ICDAR13 test image -

309.tif)

Taking an average distance between the separator points may not

produce the expected result as experimented in the research [13].

Our proposed method tackles this problem by understanding

correlation between the adjacent paths. In this example, we have

two source points such as s1 and s2 and the paths traced by the

agent reaches the terminal points and respectively. It is

evident that the terminal points and are very much closer to

one another. Even both the paths traced are aligned together

along coordinates most of the time. To resolve this issue, we

need to ignore the path(s) which relate to more hubs (nodes). In

other words, it is to retain the path which holds less intermediate

hubs. It is also necessary to retain a path which is relatively

parallel to both of its predecessor and successor paths.

Sometimes, this analogy may fail when a text line occupies less

space when compared to its predecessors as shown in figure 13.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 251–261 | 258

Fig. 13. Line Terminals S and T at both ends of a document in

uncompressed documents (Reference: A portion of ICDAR13 test image -

309.tif)

This occurs mostly with a last text-line of a paragraph having less

number of words. However, this situation is addressed by

understanding the average distance between the two adjacent

paths as mentioned above. It is computed by

We illustrate the distance between the adjacent paths with an

example. Figure 14 shows the paths traced along the two text-line

gaps.

Table 4 shows the coordinate positions of paths traced along

axis. We assume as 500 for illustration purpose. For every

interval , we take the coordinate positions for both paths.

Table 5 shows coordinate positions for the paths with an

interval gap of . The distance calculated for the paths (path 1

and path 2) is given under.

Fig. 14. Two paths traced along the text-lines

Table 4. RLE coordinate positions for two adjacent paths.

 Path 1 Path 2

Hubs Y-Coordinates
Distance

covered from

left margin

Y-Coordinates
Distance

covered from

left margin

Source 1977 767 2079 186

Hub 1 1984 1058 2059 367

Hub 2 2000 1295 2073 682

Hub 3 2020 1325 2087 1132

Hub 4 2014 1626 2105 1389

Hub 5 2029 1901 2123 1665

Hub 6 2049 2085 2132 1870

Hub 7 - - 2124 2085

Table 5. RLE coordinate positions for two adjacent paths.

Hubs t’
Y-Coordinates

(Path 1), u

Y-Coordinates

(Path 2), v

Source 1-500 1977 2059

Hub 1 501-1000 1977 2073

Hub 2 1001-1500 2020 2105

Hub 3 1500-2000 2029 2132

Hub 4 2001-2500 2049 2124

5. Experimental Evaluation

5.1. Datasets

Our proposed method is evaluated on various benchmark

handwritten datasets such as ICDAR’13 [31] and others [17]

comprising of Kannada, Oriya, Persian and Bangla documents.

For experimental purpose, the compression standards for these

datasets are preserved as discussed in one of the studies [16].

5.2. Results

Our proposed method is evaluated based on two factors that we

came across in a study [31] - (i) Detection Rate () and (ii)

Recognition Accuracy (). and are defined as follows:

The DR in spotting the separator points at both the left side and

the right side of the document is provided in literature [13] and

also been tabulated (Table 6).

Table 6. Detection Rate

Datasets

(Handwritten)

Total

Lines
(N)

Detected

o2o Rate (%)

Left Right Left Right

ICDAR13 [31] 2649 2578 2502 97.31 94.45

Kannada [20] 4298 4173 4082 97.09 94.97

Oriya [20] 3108 3012 2911 96.91 93.66

Bangla [20] 4850 4650 4598 95.87 94.80

Persia [20] 1787 1690 1723 94.57 96.41

Table 7 shows the result of the proposed model applied on the

benchmark datasets. Our method focuses only on a terminal point

that is spotted on the left side of the document, so the RA for

segmenting the text line, entirely depends upon the separator

points spotted along left margin of the document. Figure 15

shows the comparative performance analyses of both DR and RA

for various benchmark datasets. It is evident that the algorithm

works better in the case of ICDAR datasets. We also witness that

the RA for the dataset of Persian script is lower when compared

to other datasets. This is because of the reason that the Persian

writing style starts from right end of the document and precedes

towards left direction unlike most of the other scripts. The other

reasons include more concavity and disjoints in the composition

of the character.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 251–261 | 259

Table 7. Accuracy Rate

Datasets Total Lines

(N)

o2o (Left) Recognition Rate in

% (Segmentation)

ICDAR13 2649 2578 89.2

Kannada 4298 4173 87.21

Oriya 3108 3012 85.00

Bangla 4850 4650 84.91

Persian 1787 1690 82.08

The algorithmic modeling deals with choosing a common

threshold value () for every search space to handle the

obstacle is based on experimentation conducted on the datasets.

Figure 16 shows the RA for different threshold values with

respect to various datasets. The threshold value with 20 units

provides better accuracy rate with respect to ICDAR13, Kannada,

Oriya and Bangla. Whereas the threshold value possesses a unit

value of 28 which elevates the accuracy rate in case of Persian

script. In this research work, we have chosen the threshold value

 as 20 units which is common to all the datasets.

Fig. 15. Performance evaluation with respect to different datasets

Fig. 16. Selection of threshold based for efficacy of the proposed model.

Real-time performance is measured employing the algorithm on

various benchmark datasets to understand the working principle

of the model. Figure 17 shows the comparative study of both (i)

compressed and (i) uncompressed versions of dataset. Here, we

witness that the processing time of compressed version of

document takes lesser time unit (milliseconds) when compared to

uncompressed version of documents. We also observe that there

is an invariable exponential increase in the amount of time for

performing text-line segmentation in case of uncompressed

documents with increase in the number of images.

(a)

(b)

(c)

(d)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 251–261 | 260

(e)

Fig. 17. Measurement of comparative real-time performance of both

compressed and uncompressed versions of the images. Time Unit is given

in milliseconds along y axis and x axis represents the sequence of images

of each dataset.

Finding correspondence between and is a challenging task.

However, we have attempted to find the correspondence based on

the correlation between the adjacent paths as illustrated in Section

4.5. The first of the document starts from the very first terminal

point identified in the first column of . is presumed as a

reference line. Now, the correlation is calculated between a new

path and the reference line with an interval of . The same is

repeated for the following paths with reference to source nodes.

Figure 18 shows the RA because of the model.

Fig. 18. RA after identifying the correspondence between the adjacent

text-lines with an interval of t’.

6. Conclusion

In this paper, we have proposed an algorithm that segments the

text-line of a document image by operating directly in its

compressed representation. We make use of current state-of-the-

art technology that identifies the terminal positions at every text-

lines in the compressed representation. We have shown the

working principle of the algorithm with an illustration. An agent

(or robot) has been involved to tunnel the path between the

terminal points spotted at the opposite extreme ends of the

document representation. We have discussed the search space for

tunneling the path when it encounters obstacles because of

oscillation, tilt, touching and curvy text-lines. We have advocated

the reasons for using the threshold values with respect to search

space by experimental results. Comparative study of processing

uncompressed and compressed versions for text-line

segmentation is also been detailed. Further, a significant

reduction in time complexity when compared to processing

uncompressed image for segmentation is showcased. Some of the

interesting observations are addressed to overcome the limitations

[13] such as finding the correspondence between the terminal

points. Interestingly, the tunnel or path traced that results in

segmenting two adjacent text lines are entirely based on the

terminal points. The source terminal points are predicted based on

the search space, SS, whereas the corresponding target points are

identified by the agent.

Though working directly on an uncompressed version of the

document is very challenging, we have designed a model that

operates directly on compressed representation of the document

images for text-line segmentation. We could achieve the

recognition accuracy of 89.2% using the benchmark dataset

(ICDAR13). The confidence level in achieving 89.2% with

respect to this dataset is 100%.

The proposed model has some of the limitations such as working

with invariable skew or tilt levels. The accuracy rate depends

upon the detection rate observed from the extensive literature and

a common threshold value t for entire datasets. Other limitation

includes calculating the correlation between the paths based on

reference line. One of the future avenues include working on bi-

directional search where we employ two agents starting

simultaneously from opposite terminal points and meets at a

junction. Employing multi-agents leads to parallel processing

which would improve the performance of the system. We have

followed unguided medium to tunnel the path by adapting various

algorithmic strategies including greedy and dynamic

programming with AI techniques. We could possibly avoid

wrong segmentation by using guided medium [4] along with the

strategy which would be one of the future direction of this

research work.

References

[1] Ahmed R, Al-Khatib WG, Mahmoud S (2017) A survey on
handwritten documents word spotting. Int J Multimed Inf Retr

6(1):31–47

[2] Rath TM, Manmatha R (2007) Word spotting for historical
documents. IJDAR 9(2–4):139–152

[3] Wshah S, Kumar G, Govindaraju V (2012a). Multilingual word

spotting in offline handwritten documents. In: ICPR, pp 310–313

[4] Wshah S, Kumar G, Govindaraju V(2012b) Script independent

word spotting in offline handwritten documents based on hidden

markov models. In: ICFHR, pp 14–19
[5] Yong X, Guangri Q, Yongdong X, Yushan S (2010) Keyword

spotting in degraded document using mixed ocr and word shape

coding. In: IEEE international conference on intelligent computing
and intelligent systems, pp 411–414

[6] Kia O (1997) Document compression and analysis. PhD thesis,
Institute for Advanced Computer Studies, University of Maryland

[7] Sayood K (2012) Introduction to data compression, 4th edn.

Morgan Kaufmann, Burlington
[8] Salomon D, Motta G, Bryant D (2010) Handbook of data

compression. Springer, London

[9] T.4-Recommedation (1985) Standardization of group 3 facsimile
apparatus for document transmission, terminal equipments and

protocols for telematic services, vol. vii, fascicle, vii. 3, Geneva.

Technical report
[10] T.6-Recommendation (1985) Standardization of group 4 facsimile

apparatus for document transmission, terminal equipments and

protocols for telematic services, vol. vii, fascicle, vii. 3, Geneva.

Technical report

[11] Miano J (1999) Compressed image file formats: JPEG, PNG, GIF,

XBM, BMP. ACM Press, New York
[12] Mohammed Javed, P. Nagabhushan & Bidyut B. Chaudhuri.

(2017). A review on document image analysis techniques directly

in the compressed domain. Artif Intell Rev. s10462-017-9551-9.
Springer Science+Business Media Dordrecht 2017.

[13] Amarnath R & P. Nagabhushan. (2017). Spotting Separator points

at Line terminals in Compressed Document Images for Text-line
Segmentation, International Journal of Computer Applications,

Volume 172 – Number 4

[14] Mukhopadhyay J (2011) Image and video processing in
compressed domain. Chapman and Hall/CRC, Boca Raton

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 251–261 | 261

[15] Adjeroh D, Bell T, Mukherjee A (2013) Pattern matching in

compressed texts and images. Now Publishers.
[16] Mohammed Javed, Krishnanand S.H, P. Nagabhushan, & B. B.

Chaudhuri. (2016). Visualizing CCITT Group 3 and Group 4 TIFF

Documents and Transforming to Run-Length Compressed Format
Enabling Direct Processing in Compressed Domain International

Conference on Computational Modeling and Security (CMS 2016)

Procedia Computer Science 85 (2016) 213 – 221. Elsevier.
[17] Alireza Alaei, P. Nagabhushan, Umapada Pal, Fumitaka Kimura,

"An Effcient Skew Estimation Technique for Scanned

Documents:An Application of Piece-wise Painting Algorithm",
Journal of Pattern Recognition Research (JPRR), Vol 11, No 1

doi:10.13176/11.635 (2016).

[18] Amarnath R, P. Nagabhushan and Mohammed Javed, (2018) Line
Detection in Run-Length Encoded Document Images using

Monotonically Increasing Graph Model, Accepted in 2018

International Conference on Advances in Computing,
Communications and Informatics (ICACCI), September 19-22,

2018, Bangalore.

[19] Amarnath R, P. Nagabhushan and Mohammed Javed, (2018)
Enabling Text-line Segmentation in Run-Length Encoded

Handwritten Document Image using Entropy Driven Incremental

Learning”, Third International Conference on Computer Vision &
Image Processing (Accepted in CVIP-2018) September 29-October

01, 2018, IIIT Jabalpur, MP, India.

[20] N. Arvanitopoulos Darginis and S. Süsstrunk. Seam Carving for
Text Line Extraction on Color and Grayscale Historical

Manuscripts. 14th International Conference on Frontiers in

Handwriting Recognition (ICFHR), Crete, Greece, 2014.
[21] Zeyad Abd Algfoor, Mohd Shahrizal Sunar, & Afnizanfaizal

Abdullah. (2017). A new weighted pathfinding algorithm to reduce

the search time on grid maps. Expert Systems with Applications:
An International Journal Archive Volume 71 Issue C, April 2017.

Pages 319-331

[22] Ronse C, Devijver P (1984) Connected components in binary
images: the detection problem. Research Studies Press, Letchworth

[23] Breuel TM (2008) Binary morphology and related operations on

run-length representations. In: International conference on
computer vision theory and applications - VISAPP, pp 159–166

[24] Hinds S, Fisher J, D’Amato D (1990) A document skew detection
method using run-length encoding and the hough transform. In:

Proceedings of 10th international conference on pattern

recognition, vol 1, pp 464–468
[25] Shima Y, Kashioka S, Higashino J (1989) A high-speed

rotationmethod for binary images based on coordinate operation of

run data. Syst Comput Jpn 20(6):91–102
[26] ShimaY, Kashioka S, Higashino J (1990) A high-speed algorithm

for propagation-type labeling based on block sorting of runs in

binary images. In: Proceedings of 10th international conference on
pattern recognition (ICPR), vol 1, pp 655–658

[27] Andrés Cano, Manuel Gómez-Olmedo, Serafín Moral, Joaquín

Abellán: Hill-climbing and branch-and-bound algorithms for exact
and approximate inference in credal networks. Int. J. Approx.

Reasoning 44(3): 261-280 (2007)

[28] Peter Norvig. Paradigms of Artificial Intelligence Programming 1st
Edition. Case Studies in Common Lisp.28th June 2014

[29] Nazih Ouwayed, Abdel Bela¨ıd. Multi-Oriented Text Line

Extraction from Handwritten Arabic Documents. 8th IAPR
International Workshop on Document Analysis Systems - DAS’08,

Sep 2008, Nara, Japan. pp.339-346, 2008.

[30] Zhayida Simayijiang & Stefanie Grimm “Segmentation Graph-
Cut”.

[31] Nikolaos Stamatopoulos, Basilis Gatos, Georgios Louloudis,

Umapada Pal, & Alireza Alaei Proceeding. (2013). ICDAR '13
Proceedings of the 2013 12th International Conference on

Document Analysis and Recognition Pages 1402-1406

