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Abstract: In this research work, we perform text line segmentation directly in compressed representation of an unconstraint handwritten 

document image using tunneling algorithm. In this relation, we make use of text line terminal point which is the current state-of-the-art 

that enables text line segmentation. The terminal points spotted along both margins (left and right) of a document image for every text 

line are considered as source and target respectively. The effort in spotting the terminal positions is performed directly in the compressed 

domain. The tunneling algorithm uses a single agent (or robot) to identify the coordinate positions in the compressed representation to 

perform text-line segmentation of the document. The agent starts at a source point and progressively tunnels a path routing in between 

two adjacent text lines and reaches the probable target. The agent’s navigation path from source to the target bypassing obstacles, if any, 

results in segregating the two adjacent text lines. However, the target point would be known only when the agent reaches destination; this 

is applicable for all source points and henceforth we could analyze the correspondence between source and target nodes. In compressed 

representation of a document image, the continuous pixel values in a spatial domain are available in the form of batches known as white-

runs (background) and black-runs (foreground). These batches are considered as features of a document image represented in a Grid. 

Performing text-line segmentation using these features makes the system inexpensive when compared to spatial domain processing. 

Artificial Intelligence in Expert systems, dynamic programming and greedy strategies are employed for every search space while 

tunneling. An exhaustive experimentation is carried out on various benchmark datasets including ICDAR13 and the performances are 

reported. 

Keywords: Compressed Representation, Handwritten Document Image, Text-Line Terminal Point, Text-Line Segmentation, Search 

Space, Grid. 

1. Introduction

Technological advances of storage and transfer have made it 

possible to maintain many documents in the digital format. It is 

also necessary to preserve these documents in digital image 

format only, particularly in case of handwritten documents for 

verification and authentication purposes [1, 2, 3, 4, 5]. 

Maintaining these document images in the digital form would 

require huge storage space and network bandwidth. Therefore, an 

efficient compressed representation would be an effective 

solution to the storage and transfer issues [6, 7, 8] particularly 

arising from document image. Generally, the document image 

compression format follows the guidelines of CCITT Standards 

[9, 10] which is a part of the ITU (International Telegraph 

Union). These standards were specifically targeted towards 

document images stored in digital libraries. On the other hand, if 

document images, audios and videos are to be archived and 

communicated in the compressed form itself, then it would be 

considered as a third advantage in addition to storage and 

transmission. 

The digital libraries with document images in their compressed 

formats could imply a solution to a big data problem arising from 

the document images, particularly about storage and transmission 

[11]. The compressed image file formats such as TIFF, JPEG, 

and PNG, strictly follow CCITT standards [7, 8, 9, 10, 11, 12]. 

For any digital document analysis (DDA), the image in its 

compressed format must undergo the decompression stage. 

However, performing operations on decompressed documents 

would unwarrantedly suppress the advantages of both the time 

and buffer space [6, 13, 14, 15]. If DDA could be achieved in the 

compressed version of the document image without 

decompression, then the document image compression could be 

viewed as an effective solution to the immense data problems 

arising from document images [13]. 

The idea of operating and analysing directly in the compressed 

version of the document image without decompression is known 

as Compressed Domain Processing (CDP) [6, 13, 14, 15). A 

recent literature [12] on CDP shows the strategies to perform 

document image analysis in its compressed representation. 

However, the model is subjected to the printed documents only. 

The challenging job is to perform DDA in compressed 

representation of handwritten document image. Performing DDA 

on uncompressed handwritten document could be a difficult task 

because of oscillatory variations, inclined orientation and 

frequent touching of text lines while scribing on un-ruled paper 

[13]. An initial attempt [13] to spot the separator points at every 

line terminals in compressed unconstrained handwritten 

document images using run-length features (Run Length 

Encoding or RLE) is the state-of-the-art technology. This 

motivates to carryout text-line segmentation in compressed 

document image. In this research, we have attempted to segment 

the text lines in the compressed representation with the help of 

these spotted terminal points. In this context, a research [16] 
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shows a method of extracting run-length features from the 

compressed image format supported by CCITT group 3 and 

CCITT group 4 standards. These protocols use run-length 

encoding, which is widely accepted for binary document image 

compression. Our paper aims to segment the text lines of the 

document image using the run-length data which is represented in 

a grid. The detailed explanation about the RLE format of the 

document image is provided in Section 3.  

The current state-of-the-art uses a single column (first column) of 

the grid to find the separator points at every line terminal along 

left margin of the document image. But the last column of RLE 

does not infer the depth of right margin of the document for 

spotting separator points. To work on the right margin of the 

document image, the final non-zero entry of every row in RLE 

data was observed for creating a virtual column and thus 

separator points are spotted. Now, these identified separator 

points at both the margins are considered as source (separator 

points along left margin) and target (separator points along right 

margin) nodes. In this paper, we make use of single agent (or 

robot) for text-line segmentation. The agent’s job is to tunnel or 

trace the path by navigating between the two-adjacent text-lines 

starting from a source point at one end of a document and 

reaching the destination point present at the other end of the 

document. This process is applied to all the source nodes 

resulting in segmentation of all text-lines. Some interesting 

observations inculcated includes analysing the correspondence 

between the source nodes and terminal nodes. We also addressed 

some of the issues related to wrong segmentation that is when 

two or more paths converge to one destination traced by the 

agent. Corrective measurements are taken to tackle this issue by 

understanding the correlation between two adjacent paths. 

Our approach identifies the text line positions operating directly 

in the RLE representation of the document images which results 

in text-line segmentation. The rest of the paper is organized as 

follows. A survey of related research is presented in section 2. In 

section 3, we have explained the RLE representation of a 

document image. Further, we provide the terminologies and 

corollaries used in this paper. Section 4 describes the algorithmic 

modelling along with comparative time complexity with respect 

to both RLE and uncompressed document versions. Further, 

experimental results conducted on benchmark handwritten 

datasets such as ICDAR 13 and other databases [17] are 

described in Section 5. Section 6 summarizes the research work 

with future avenues. 

2. Related Works

In the recent past, we could trace few related works on CDP, but 

restricted to printed document images. A literature [15] on CDP 

provides a detailed study on document image analysis techniques 

from the perspectives of image processing, image compression 

and compressed domain processing. This enabled various 

operations carried out in the field of skew detection / correction, 

document matching, document archival.  

Recent article [18], demonstrates straight line detection in RLE 

representation of the handwritten document image. Incremental 

learning-based text-line segmentation in compressed handwritten 

document images are reported in literature [19]. Further, there 

was a technical article [13] that discusses about performing direct 

operations on the compressed representation of handwritten 

document. The effort is to spot the separator points at every text 

lines in both margins of the document image enabling text line 

segmentation. For better understanding, the identified line 

terminal points applied over an uncompressed document image is 

shown in Figure 1. 

Fig. 1. Line Separators at both borders of a document in uncompressed 

documents (Reference: A portion of ICDAR13 test image - 320.tif) 

One of the significant models [20] uses seam carving approach to 

segment the text-line that works on historical documents of 

uncompressed images. Another recent study [21] discusses 

various path finding algorithms which are a class of heuristic 

algorithms based on Artificial Intelligent. These techniques are 

domain specific that works on uncompressed document images. 

However, the ideas of path finding approaches are inculcated in 

our proposed model, that is to operate on compressed version for 

decision-making in every search space. Further, an effort was 

made to carry out the text-line segmentation directly in 

compressed handwritten document images to avoid 

decompression [13] which is the main objective of this paper. 

3. Compressed Image Representation and
Corollaries 

The Modified Huffman (MH) [7, 8] is the most common 

encoding technique following CCITT compression standards 

which is supported by all the facsimiles. The improved 

compression versions are Modified Read (MR) [7, 8, 9, 10] and 

Modified Modified Read (MMR) [7, 8, 9, 10]. A comparative 

study on encoding / decoding techniques of these compression 

standards are tabulated (Table 1). MH uses RLE for an efficient 

coding, whereas MR and MMR exploit the correlation between 

successive lines of a document image.  

Table 1. Compression standards 

Characteristics MH MR MMR 

CCITT Standard T.4 T.4 T.6

Dimension 1-D 2-D 2-D (Extended)

Algorithm 
Huffman and 

RLE 

Similarity 

between two 
successive lines 

Extended MR 

Figures 2, 3 and 4 show a sample binary image, its corresponding 

hexadecimal image viewer and the RLE representation of the 

image respectively. The RLE representation of an image is 

defined as Grid (G) in this paper. 
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Fig. 2. A sample image of size 18X10 (WidthXHeight) 

 

Fig. 3. Hexadecimal visualization of the image from Fig. 2 

 

Fig. 4. RLE data inferred as Grid of the image from Fig 2 

The odd and even columns of the RLE data represent the count of 

white-runs and the black-runs of an uncompressed document 

image. The number of continuous pixel value, say ‘0’ 

(background), is called as white-runs [22, 23, 24, 25, 26]. 

Similarly, the number of continuous pixel value, say ‘1’ 

(foreground) is called as black-runs [22, 23, 24, 25, 26]. If a row 

in an image starts directly with foreground, then the value in the 

first column of the corresponding row in RLE has an entry zero 

(‘0’). This infers that odd columns and even columns in the grid 

contain count of white-runs and black-runs respectively. The 

white-runs represent background whereas the black-runs 

represent foreground as text-content. 

Some of the corollaries used in this article are listed here: 

a. Each separator points spotted in the first column of the Grid 

( ) is considered as Source Node ( ).   

b. Each separator points spotted in the virtual column is 

considered as Target Node ( ). Final non-zero entry in 

every row of G makes this virtual column.   

c. A path ( ) is defined as segmentation of adjacent text lines; 

an agent (or robot) navigates along blank space (white-

runs) available between two adjacent text-lines from  to  

with reference to . 

d. Edges ( ) are defined as sequences of white-runs that exist or 

tunneled between two adjacent text-lines. These sequence 

of  formulates . 

e. An obstacle ( ) appears because of touching characters 

between two adjacent text-lines, which is a hurdle while 

tracing  from  to . This may also occur due to ascenders 

and descenders of characters, which appears larger in length 

when compared to a given threshold ( ). 

f. t is the length covered by an agent tracing both the direction 

vertically up  and down ( ) from the current 

position , where arguments  and  refer to the 

position in  along  (columns) and  (rows) axis 

respectively; this search space is induced whenever there is 

an .  is chosen empirically based on experiments 

conducted on the datasets. 

g. For every , there is a . The relationship between  and  is 

one-to-one function defined as  and strictly 

follows the ascending order. The correspondence of  and 

 is not defined in the literature [13]. However, in this 

paper, we could find the probable correspondence between 

 and  with help of an agent (or robot) and algorithmic 

strategies. 

h. When relationship between  and  is onto function or 

crossover, then it is observed as wrong segmentation. Even 

though  and  hold a relation one-to-one and there exist 

crossovers, then it is considered as wrong segmentation. 

i. The distance ( ) calculated between  and  denotes the 

shortest  covering longest distance (weights), which is 

defined by a function, .  depends on the number of 

edges ( ) used in  by an agent to cover  between  and 

. 

j. The terminal points  and  does not necessarily possess 

larger white-runs because, they are heuristically chosen as 

mid-points of the bands corresponding to the two-adjacent 

text-lines along  axis (columns) of . Therefore,  may 

not be an actual start point, in the given situation, whereas 

the weight of the  is longer than . So, the actual start 

point would be  and it would be within the search space of 

 from . 

k. The distance  between two intermediate hubs such as 

 and  must be equal or greater than a given threshold ( ). 

 is calculated by finding a maximum number of bins 

observed from the histogram of  with respect to odd 

columns (white-runs) only. 

Some of the assumptions concerning the state space search 

(tunnel or traversal or ) are given below: 

a.  and  are finite. 

b. There must be at-least one  between  and  

c. One agent (or robot) is employed at a time for tracing 

. 

d. There is no self-loop in  (a cycle of length one). 

e. Tunnel (Move to next state) if  exist on .  

Figure 5 shows the terminal points of  and  in an 

uncompressed version for better understanding. It depicts 10 
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source nodes and 10 target nodes. The one-to-one function for the 

figure 5 is defined below: 

  

 

 

 

 

 

 
 

Based on the observation, the source  does not have a 

corresponding target . Therefore, an agent starting from  may 

reach  or , where  is presumed as a new  (correspondence) 

or . This infers that the agent may reach closer or nearer to  

but not exactly the target , which is illustrated in the following 

section.  

 
Fig. 5. Line Separators displaying S and T at both ends of a document in 

uncompressed documents. (Reference: A portion of ICDAR13 test image 

- 320.tif) 

4. Text-line Segmentation 

Grid ( ) of a document image starts with a column of white-

run(s). The starting column of  is referred [13] as a white space 

that exists at the beginning of a text document. A larger depth 

(white-runs) in this column indicates the text-line separation gap 

(bands) along left margin of the document image between the 

corresponding adjacent text-lines. Mid points are chosen as 

terminal points (Source nodes) from the constructed bands 

(corollary ) as shown in the figure 5. In this context, these points 

do not necessarily possess larger white-runs. Therefore, the agent 

needs to choose the starting point S among its vertical neighbors 

having largest white-runs among its vertical neighbors within the 

range  from its current position. Now, assuming that the agent’s 

start position S is fixed based on the corollary  and this state is 

at an initial search state . Next, the agent reaches at a 

station or hub ( ) starting from  resulting in a new search state 

. An edge  connecting between these two stations  and  

is the shortest path travelled by the agent to cover maximum 

distance and obviously heading towards the probable target. The 

distance or weight,  from  to an intermediate hub  is 

computed directly from the position, say , then it is 

inferred in the first column of . The search process continues 

until the agent reaches the corresponding  or new target 

(probable destination).  

The basic idea is that for every , the agent needs to choose the 

next hub which is nearer to  or  by selecting the white-runs 

from the current position in  and thus ensures that a direct edge 

 exists between the two stations (hubs). In other words, the 

agent selects the largest white-runs from  to adhoc, to navigate 

to the next hub closer to  or . At every , greedy strategy is 

employed to identify the next successive hub h’ by choosing 

largest white-runs (or largest weight) from the current  and 

henceforth the agent reaches  or  using a minimum number of 

 with respect to the hubs visited. The agent hopping hubs 

starting from  to  or  results in creating a path .  is based 

on the edges connected between the intermediate hubs starting 

from  to  or  and this indicates a progressive segmentation of 

the two-adjacent text-lines in a document image, starting from the 

left margin and precedes towards the right direction. If the total 

search space for a given  is one, then this indicates that the 

agent has visited only two hubs and those are  and  

respectively; this articulates direct segmentation without much 

variations exist because of skew, curvy and touching lines in the 

handwritten document image. This situation sometimes would be 

pronounced in-between two paragraphs in the document image 

holding a large horizontal space between them and may occur in 

the top and bottom of the documents which is entitled to have an 

adequate margin spaces. However, the whole operation is carried 

out with reference to . 

Consider that the agent reaches an intermediate hub which is at 

, then we perform local search by employing corollary  to 

reach to the next hub ( ). This situation is related to Hill-

Climbing [27] technique in Artificial Intelligence. If the hubs h 

and h’ visited by the agent are located in the positions say 

 and  respectively, then the search space (local 

maxima) is written as. 

 

 

 
The selection of each successive hub is based on the distance d 

computed by summing up the entries from successive columns in 

 along  axis starting from the first column with respect to the y 

coordinate position. The distance computation is carried out for 

every  coordinate position which varies within the range of  

from either side of position, , as given in the above equation. 

The job of the agent is to select the largest weight (distance) 

among these computed cumulative values which crosses the 

current hub (intermediate hub). However, measuring the 

distances for every SS ranging between  to  (both 

inclusive) along  axis is computationally expensive. In 

computing, memoization [28] or memorize [28] is an 

optimization technique used primarily to speed up computer 

programs by storing the results of expensive function calls and 

returning the cached result when the same inputs occur again. To 

avoid this re-computation for every , we use memoization or 

memoize technique in dynamic programming strategy to 

remember the last computed  of previous  which in-turn 

reduces the computational complexity. The gap or distance 

 between two successive hubs must be within a minimum 

distance of a given threshold .  is chosen heuristically based on 

the experiments conducted on the benchmark datasets.  

A common issue encountered as mentioned in the corollary  is 

when two adjacent text-lines are touching one another. In this 

case, we just bypass or crossover the lines [29]. Algorithmically, 

we choose next successive column (black-runs) with respect to 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 251–261  |  255 

the current position. In other case, the same strategy is extended 

when the ascenders and descenders appear to be greater than the 

given threshold value , where the agent would not be able to go 

beyond the search limit, say . One of the important issues 

mentioned in corollary  is when a distance  between 

hubs is greater than .  is given below. 

t’= maximum(histogram(values in odd colums of G)) 

where values in odd columns of G represents white runs 

In this case, we calculate t’ by considering the largest bin from 

the histogram of G with respect to the counts of white runs (odd 

columns). If the distance is found to be larger than t’, then we 

apply both the concepts namely ‘don’t care condition’ [29] and 

‘minimal cut-sets’ [30] from graph theoretical domain. Therefore, 

with a minimal number of crossovers, the agent bypasses and 

reaches the next successive hubs. Finally, the agent will update its 

knowledge base about each visited hub with reference to G 

covering the distance from S to T or T’. Below we present the 

proposed algorithm for text-line segmentation using . 

 

Algorithm: Finding text-line segmentation in G using tunneling 

approach 

Input: Compressed representation G of a document image, 

Terminal points – Source Nodes (Sn) at ever line terminals. 

Vertical neighboring search threshold t. 

Output: Text-line segmentation in G=TS 

1. For-each Source Node (S) from Sn, with the position G(y’,x’), 
where, x’=1; 

CurrentSum=0; 
Maximum=0; 
GridY=y’ 

While j=G(y’-t,x’) to G(y’+t,x’) the agent vertical search range is 

between y’-t to y’+t (both inclusive), where j>=1 and j<=high of G. 

a. Calculate: Cumulative Sum (Initialize Csum=0) for each j or 

Use Dynamic Programming. Use Memoize to check data in 

Knowledge base (KB) 

 

         

         

          

 

 

 

               

a. Find Maximum and update  coordinate position: 

          

             

             

             

         

2. Update  and  coordinate position of : 

 

 

        The positions chosen in the grid is update 

in  

        Goto Step 2 until  

3. Stop: When the agent covers the distance . 

4.1. Time Complexity for Text-line Segmentation 

The following provides the time complexity estimated for the 

proposed algorithm to identify the text-line segmentation 

positions in compressed representation of a document image. The 

worst-case scenario is calculated as  where  and  

represent the number of rows and number of columns of the grid 

respectively.  

Usage of memoize technique [28] in dynamic programming 

strategy has reduced to the complexity  from 

, that is  which is a non-

deterministic polynomial. 

 

For comparative study, the time complexity is also estimated for 

a document image in its uncompressed format. For this, the 

worst-case scenario is  where  and  represent the 

height and width of an uncompressed image respectively. It is 

noted that  is equal to  whereas  is lesser than . 

Time complexity of spotting the line terminal points mentioned in 

the literature [13] is estimated as  in the worst-case 

scenario. Therefore, the complexity for the proposed algorithm is 

computed by cascading the two algorithms which result in 

. Finally, the proposed method 

takes .  

The overall computation is tabulated (Table 2).  

Table 2. Time Complexity 

Complexity 

Worst Case 

Compressed  

Domain 

Uncompressed 

Domain 

Spotting Line Separators 
  

Text-line Segmentation 

without dynamic 

programming   

Text-line Segmentation 

(Proposed method)   
  

Overall Efficacy 
  

 

The efficacy of the proposed algorithm for both compressed and 

uncompressed versions is shown in Figure 6. The compressed 

version requires less time, when compared to that of 

uncompressed images for text line segmentation. 

 
Fig. 6. Comparative analysis of both uncompressed and compressed 

version of document images (Ref: ICDAR’13 test datasets) 
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4.2. Illustration 

In this section, we illustrate the working principle of Tunneling 

algorithm using an example. The coordinate positions are tracked 

by the agent (or robot) for text line segmentation with respect to 

 is shown in Table 3.  

Table 3. RLE coordinate positions (Reference: A portion of ICDAR13 

test image – 320.tif – text-lines 21 and 22) 

Hubs 

(Stations) 
Y-Coordinate X-Coordinate 

Distance From  

Source Node 

Source 1977 1 767 

Hub 1  1984 1 1058 

Hub 2 2000 9 1295 

Hub 3 2020 59 1325 

Hub 4 2014 53 1626 

Hub 5 2029 67 1901 

Hub 6 2049 77 2085 

 

For better understanding, an experimental result is shown in the 

uncompressed version as well. Figure 7 shows segmentation of 

two text-lines of a document image. Figure 8 illustrates the text-

line segmentation depicting transition hubs and a path tunneled 

by an agent.  

 

 

Fig. 7. Segmentation of two text lines depicted in uncompressed 

documents (Reference: A portion of ICDAR13 test image – 320.tif – text-

lines 21 and 22) 

 

Fig. 8. Segmentation of two text lines depicted in uncompressed 

documents (Reference: A portion of ICDAR13 test image – 320.tif – text-

lines 21 and 22) 

From the example, the agent starts from the Source Node ( ) and 

reaches the Target Node ( ) visiting six intermediate hubs such 

as Hub 1, Hub 2, Hub 3, Hub 4, Hub 5 and Hub 6. Here, the 

source node is identified in a position, say . The agent 

predicts that the Hub 1 in the position  could be an 

effective source node than the initial source [13] as articulated in 

corollary . This is because the weight (distance) of Hub 1 is 

larger when compared to the initial source as illustrated in table 3. 

The total distance covered by the agent is 2085 units. The 

threshold  is chosen as 20 units and the total computation to 

cover the distance along  coordinates in both the direction by the 

agent ranges from  to 

, i.e.,  to 

 respectively. We employ memoization technique to 

reduce the complexity. Therefore, we make use of a knowledge 

base ( ) which would be empty initially. Once we compute the 

distances for both Source and Hub 1, we feed all the weights 

(distances) ranging from  to , 

i.e.,  to  respectively into the KB. The size 

of the KB would be a column size of . The  triggers the agent 

to choose next hub as Hub 2 as a successor of the Hub 1 which 

covers the distance of 1295 units and perhaps the distance is 

greater than the distance of current hub, that is the Hub 1 possess 

1058 units. Next, agent archives the information from the KB to 

avoid the total computation. 

 

4.3. Choosing of Source Node 

In this section, we introduce a mechanism to find the start node. 

Figures 9 (a) and 9(b) show a sample image and its compressed 

representation in  respectively. Here, the source node  is 

not an optimal start point as mentioned in corollary . If we 

consider the threshold  for illustration purpose, then the 

search scope will be of range covering from  to 

. Though the position  is extended beyond the 

grid boundary as described in the algorithm in step 2, we re-

define the search range starting from . Because of , the 

two positions such as  and  are identified as the 

largest among the search range. In this case, we take the source 

node  that is in the position  than latter, because 

 is nearer or closer to the initial source node which is 

. Finally, we choose  as a start node, and thus the 

distance covered by the agent would be 7 units and holding a 

largest weight covering maximum distance and naturally 

precedes  or . 

                 
(a)                                           (b) 

Fig 9. Visualization of a search space predicting the actual source node. 

Fig (a) represents the spatial coordinate of an image and Fig (b) represents 

its RLE format. The green tile is the initial start node and the blue tile is 

the actual start node. A red line represents the distance from source node 

to the hub. 

4.4. Handling Obstacles 

(a) 
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(b) 

Fig. 10. Visualization of a search space tunneling an obstacle. Fig (a) 

represents the spatial coordinate of an image and Fig (b) represents its 

RLE format. The green tile is the initial start node and the blue tile is the 

actual start node. Blue tiles represent the intermediate hub and red tiles 

represents obstacle. A red line represents the distance from source node to 

the hub. 

This section provides the working principle of handling obstacles. 

We encountered two types of obstacles while tunneling path as 

mentioned in corollary e. Generally, an obstacle occurs due to 

unconstrained writing style especially while scribing on an un-

ruled paper. One of the possibilities is when two adjacent lines 

are touching one another at some positions. The other possibility 

would be when the ascenders or desceders of the characters 

extended beyond the search limit or range of the given threshold 

( ). For illustration purpose, we have considered an example 

which is shown in Figure 10(a) and Figure 10(b) representing 

spatial domain and its compressed version of a document image. 

We have chosen the threshold ( ) for demonstration. In this 

example, an initial source node is assumed, and it holds a 

position, . Previous section detailed about choosing 

appropriate starting node and applying that concept results in a 

new position, say  as a new Start Node. The new source 

node  has a maximum weight or distance (say 7 units) 

and falls within the range of , which is closer to the initial source 

node . Further, the first successor hub is chosen as 

 which carries a weight of 6 units and covers the distance 

of 11 units from the left margin. It is chosen based on fact that the 

distance, say 11 units, is greater than the distance (weight) of 

source node that covers the distance of 7 units. The other facts 

include the search space (calculated distance) between the range 

 and  is either lesser or equal to the 

current position and this node aligns closer to its predecessor 

node along  axis. Further, next hopping hub is complicated 

because we encounter an obstacle along the  coordinate. Further, 

the chosen threshold value ( ) is restricted within the search 

space. In this situation, we can crossover the hurdle by choosing 

the next hub as  which is identified as a successor hub.  

4.5. Finding Correspondence between Source and Target 

Identification of correspondence between the terminal points 

residing at opposite margins is one of the challenging aspects as 

mentioned in the study [13]. In this article, actual source node is 

chosen based on the weight (distance) which is distributed across 

its neighbors. The destination is based on the search space of the 

proposed model. The agent may start at a new source position and 

would reach the probable destination, and this articulates the 

correspondence between these two nodes present at extreme ends 

of the document. This is applicable for all the source nodes and 

target nodes. Figure 11 shows the correspondence between the 

source and terminal nodes and the text-line segmentation. In 

section 3 we have described the correspondence of the nodes 

notably having one-to-one relation and strictly no onto 

relationship and additionally no crossovers are allowed between 

the terminal points. This could be related to the bi-partite graph 

theoretical approach and thus maintaining the order or position. 

 

 

Fig. 11. Line Terminals S and T at both ends of a document in 

uncompressed documents (Reference: A portion of ICDAR13 test image - 

309.tif) 

The problem of over separation mentioned in the study [13] 

highlights the aspect of spotting two or more separator points 

within two adjacent text-lines. This occurs when a text line is 

identified as a non-text (white space) region. One of the reasons 

for over separation is because of concavity of the character. The 

other affecting factor could be multiple disjoint fractions or 

components which compose a character. Figure 12 depicts the 

problem of over separation where source nodes  and  start 

between two adjacent text-lines.  

 

 

Fig. 12. Line Terminals S and T at both ends of a document in 

uncompressed documents (Reference: A portion of ICDAR13 test image - 

309.tif) 

Taking an average distance between the separator points may not 

produce the expected result as experimented in the research [13]. 

Our proposed method tackles this problem by understanding 

correlation between the adjacent paths. In this example, we have 

two source points such as s1 and s2 and the paths traced by the 

agent reaches the terminal points  and  respectively. It is 

evident that the terminal points  and  are very much closer to 

one another. Even both the paths traced are aligned together 

along  coordinates most of the time. To resolve this issue, we 

need to ignore the path(s) which relate to more hubs (nodes). In 

other words, it is to retain the path which holds less intermediate 

hubs. It is also necessary to retain a path which is relatively 

parallel to both of its predecessor and successor paths. 

Sometimes, this analogy may fail when a text line occupies less 

space when compared to its predecessors as shown in figure 13.  
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Fig. 13. Line Terminals S and T at both ends of a document in 

uncompressed documents (Reference: A portion of ICDAR13 test image - 

309.tif) 

This occurs mostly with a last text-line of a paragraph having less 

number of words. However, this situation is addressed by 

understanding the average distance between the two adjacent 

paths as mentioned above. It is computed by 
 

 

 

 

 

 

 
 

We illustrate the distance between the adjacent paths with an 

example. Figure 14 shows the paths traced along the two text-line 

gaps.  

Table 4 shows the coordinate positions of paths traced along  

axis. We assume  as 500 for illustration purpose. For every 

interval , we take the  coordinate positions for both paths. 

Table 5 shows  coordinate positions for the paths with an 

interval gap of . The distance calculated for the paths (path 1 

and path 2) is given under. 

 

 

 

Fig. 14. Two paths traced along the text-lines 

Table 4. RLE coordinate positions for two adjacent paths. 

 Path 1 Path 2 

Hubs  Y-Coordinates 
Distance 

covered from 

left margin 

Y-Coordinates 
Distance 

covered from 

left margin 

Source 1977 767 2079 186 

Hub 1 1984 1058 2059 367 

Hub 2 2000 1295 2073 682 

Hub 3 2020 1325 2087 1132 

Hub 4 2014 1626 2105 1389 

Hub 5 2029 1901 2123 1665 

Hub 6 2049 2085 2132 1870 

Hub 7 - - 2124 2085 

 

Table 5. RLE coordinate positions for two adjacent paths. 

Hubs  t’ 
Y-Coordinates 

(Path 1), u 

Y-Coordinates 

(Path 2), v 

Source 1-500 1977 2059 

Hub 1 501-1000 1977 2073 

Hub 2 1001-1500 2020 2105 

Hub 3 1500-2000 2029 2132 

Hub 4 2001-2500 2049 2124 

 

5. Experimental Evaluation 

5.1. Datasets 

Our proposed method is evaluated on various benchmark 

handwritten datasets such as ICDAR’13 [31] and others [17] 

comprising of Kannada, Oriya, Persian and Bangla documents. 

For experimental purpose, the compression standards for these 

datasets are preserved as discussed in one of the studies [16].  

5.2. Results 

Our proposed method is evaluated based on two factors that we 

came across in a study [31] - (i) Detection Rate ( ) and (ii) 

Recognition Accuracy ( ).  and  are defined as follows: 

 
 

 

 

 

 
The DR in spotting the separator points at both the left side and 

the right side of the document is provided in literature [13] and 

also been tabulated (Table 6).  

Table 6. Detection Rate 

Datasets 

(Handwritten) 

Total 

Lines 
(N) 

Detected 

o2o Rate (%) 

Left Right Left Right 

ICDAR13 [31] 2649 2578 2502 97.31 94.45 

Kannada [20] 4298 4173 4082 97.09 94.97 

Oriya [20] 3108 3012 2911 96.91 93.66 

Bangla [20] 4850 4650 4598 95.87 94.80 

Persia [20] 1787 1690 1723 94.57 96.41 

 
Table 7 shows the result of the proposed model applied on the 

benchmark datasets. Our method focuses only on a terminal point 

that is spotted on the left side of the document, so the RA for 

segmenting the text line, entirely depends upon the separator 

points spotted along left margin of the document. Figure 15 

shows the comparative performance analyses of both DR and RA 

for various benchmark datasets. It is evident that the algorithm 

works better in the case of ICDAR datasets. We also witness that 

the RA for the dataset of Persian script is lower when compared 

to other datasets. This is because of the reason that the Persian 

writing style starts from right end of the document and precedes 

towards left direction unlike most of the other scripts. The other 

reasons include more concavity and disjoints in the composition 

of the character.  
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Table 7. Accuracy Rate 

Datasets Total Lines 

(N) 

o2o (Left) Recognition Rate in 

% (Segmentation) 

ICDAR13 2649 2578 89.2 

Kannada 4298 4173 87.21 

Oriya 3108 3012 85.00 

Bangla 4850 4650 84.91 

Persian 1787 1690 82.08 

 
The algorithmic modeling deals with choosing a common 

threshold value ( ) for every search space  to handle the 

obstacle  is based on experimentation conducted on the datasets. 

Figure 16 shows the RA for different threshold values with 

respect to various datasets. The threshold value  with 20 units 

provides better accuracy rate with respect to ICDAR13, Kannada, 

Oriya and Bangla. Whereas the threshold value  possesses a unit 

value of 28 which elevates the accuracy rate in case of Persian 

script. In this research work, we have chosen the threshold value 

 as 20 units which is common to all the datasets.   

 

Fig. 15. Performance evaluation with respect to different datasets 

 

Fig. 16. Selection of threshold based for efficacy of the proposed model. 

Real-time performance is measured employing the algorithm on 

various benchmark datasets to understand the working principle 

of the model. Figure 17 shows the comparative study of both (i) 

compressed and (i) uncompressed versions of dataset. Here, we 

witness that the processing time of compressed version of 

document takes lesser time unit (milliseconds) when compared to 

uncompressed version of documents. We also observe that there 

is an invariable exponential increase in the amount of time for 

performing text-line segmentation in case of uncompressed 

documents with increase in the number of images. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Fig. 17. Measurement of comparative real-time performance of both 

compressed and uncompressed versions of the images. Time Unit is given 

in milliseconds along y axis and x axis represents the sequence of images 

of each dataset. 

Finding correspondence between  and  is a challenging task. 

However, we have attempted to find the correspondence based on 

the correlation between the adjacent paths as illustrated in Section 

4.5. The first  of the document starts from the very first terminal 

point identified in the first column of .  is presumed as a 

reference line. Now, the correlation is calculated between a new 

path and the reference line with an interval of . The same is 

repeated for the following paths with reference to source nodes. 

Figure 18 shows the RA because of the model. 

 

Fig. 18. RA after identifying the correspondence between the adjacent 

text-lines with an interval of t’. 

6. Conclusion 

In this paper, we have proposed an algorithm that segments the 

text-line of a document image by operating directly in its 

compressed representation. We make use of current state-of-the-

art technology that identifies the terminal positions at every text-

lines in the compressed representation. We have shown the 

working principle of the algorithm with an illustration. An agent 

(or robot) has been involved to tunnel the path between the 

terminal points spotted at the opposite extreme ends of the 

document representation. We have discussed the search space for 

tunneling the path when it encounters obstacles because of 

oscillation, tilt, touching and curvy text-lines. We have advocated 

the reasons for using the threshold values with respect to search 

space by experimental results. Comparative study of processing 

uncompressed and compressed versions for text-line 

segmentation is also been detailed. Further, a significant 

reduction in time complexity when compared to processing 

uncompressed image for segmentation is showcased. Some of the 

interesting observations are addressed to overcome the limitations 

[13] such as finding the correspondence between the terminal 

points. Interestingly, the tunnel or path traced that results in 

segmenting two adjacent text lines are entirely based on the 

terminal points. The source terminal points are predicted based on 

the search space, SS, whereas the corresponding target points are 

identified by the agent. 

Though working directly on an uncompressed version of the 

document is very challenging, we have designed a model that 

operates directly on compressed representation of the document 

images for text-line segmentation. We could achieve the 

recognition accuracy of 89.2% using the benchmark dataset 

(ICDAR13). The confidence level in achieving 89.2% with 

respect to this dataset is 100%.  

The proposed model has some of the limitations such as working 

with invariable skew or tilt levels. The accuracy rate depends 

upon the detection rate observed from the extensive literature and 

a common threshold value t for entire datasets. Other limitation 

includes calculating the correlation between the paths based on 

reference line. One of the future avenues include working on bi-

directional search where we employ two agents starting 

simultaneously from opposite terminal points and meets at a 

junction. Employing multi-agents leads to parallel processing 

which would improve the performance of the system. We have 

followed unguided medium to tunnel the path by adapting various 

algorithmic strategies including greedy and dynamic 

programming with AI techniques. We could possibly avoid 

wrong segmentation by using guided medium [4] along with the 

strategy which would be one of the future direction of this 

research work. 
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