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Abstract: In this paper, two-mass drive system is modelled and speed control of the two-mass system is presented. The speed control of 

the system offers the challenge due to handle torsional vibrations. In the control structure, Particle Swarm Optimization (PSO) based 

conventional Proportional-Integral-Derivative (PID) controller and single-layer, feed-forward Neural Network (NN) controller with back-

propagation learning algorithm are proposed. NN controller is investigated to show the effectiveness of the control performance compared 

with PSO based PID controller. In order to realize a fair comparison, PSO method is used to determine the optimum gain parameters of 

PID controller and NN controller is designed with online learning algorithm. In the NN learning, back-propagation, which is the most 

preferred method, is adapted. Simulation studies are performed in different two parts to examine the performance of the proposed controller. 

In the first part, the controllers are tested for different step references and comparative results of the optimized PID and NN controllers are 

illustrated. In the second part, the effect of load torque is explored with proposed NN control method. According to the obtained simulation 

results, it can be seen that the designed NN controller provides better performances without and with load speeds. 
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1. Introduction 

In most of the industrial applications, like rolling mill, wind 

turbines, automotive industry, servo drives or robot arms drive 

systems, very low mechanical resonance is occurred because of a 

long shaft between the motor and the load machine. The 

mechanical resonance results in the mechanical coupling shaft 

stresses, especially in the high performance speed and torque 

regulation. Therefore, this stress in the shaft can cause some 

undesirable situation on the mechanical coupling and also it can 

decrease the quality of the system. Also, some different modes 

affect the drive performance and may lead to the failure of the 

whole drive system in these cases. In order to handle torsional 

vibrations, various control methods have been proposed to control 

two-mass drive system such as Proportional-Integral-Derivative 

(PID) with feedback loop, sliding mode, robust, adaptive, 

predictive and intelligent control, etc. [1-6]. 

A conventional PID speed controller is proposed for two-inertia 

system by Zhang [1]. Three types of pole assignments which 

should be considered for different inertia ratios are applied to the 

control system. In [2], two types of speed controllers are designed 

for the two-mass Direct Current (DC) drive systems. The 

comparatively simulation results of the nonlinear fuzzy logic and 

classical PI control systems are presented and much better 

performance and robustness against parameter variations are 

ensured by the fuzzy logic control. Also, Erenturk presents a fuzzy 

speed controller for two-mass system with a gray estimator [5]. In 

the other study, an adaptive neuro-fuzzy controller is designed for 

one and two-mass systems. Abilities of fuzzy reasoning and neural 

networks learning are combined with the proposed controller [3]. 

These studies aimed to decrease the torsional vibrations both motor 

and load sides with different control methods. 

Soft computing methods such Neural Networks (NNs) play an 

important role on the industrial applications due to their 

generalization capabilities to predict complex relationship between 

system parameters. The increasing interest of NNs have attracted 

the attention of researchers with the learning ability of a nonlinear 

function used for identification and control [7,8]. Several 

structures of NN systems are studied in the literature. The training 

of NN is basically achieved by using back-propagation algorithm 

developed by Rumelhart et al. [9]. The back-propagation algorithm 

is the most preferred method for neural networks training for 

resolving various problems of real life [10,11]. 

In the conventional control methods, PID control is still preferred 

to control different systems by tuning the control parameters with 

different optimization methods [12,13]. In the solution of 

optimization problems, mathematical methods have some 

disadvantages such as the lack of flexibility and the need to define 

them with mathematical functions. This leads scientists to heuristic 

methods inspired by events in nature. The widely used heuristic 

optimization methods are Genetic, Differential Evolution, Particle 

Swarm Optimization (PSO) algorithms and etc. [13-15]. PSO is a 

widely preferred method motivated by swarm behaviours. It is 

highly promising for tuning PID control parameters with its 

simplicity, low calculation cost and good performance [16]. 

In this paper, a two-mass drive system is modelled and it is aimed 

to performed to realize motor and load speed control in order to 

achieve a robust control with decreasing the torsional vibrations.  

In the control system, PSO based PID controller and NN based 

intelligent controller are implemented. PSO algorithm is used to 

tune the PID control parameters and NN controller is designed with 

online back-propagation learning algorithm. The NN control 

method is investigated with comparing the optimized PID control 

to validate the robust control structure. Simulation studies are also 

performed without and with load torque. 

This paper is organized as follows: in Section 2, mathematical 

equation of two-mass mechanical drive system is given. The 

designs of control methods are presented in Section 3. Then, 

simulation results are illustrated in Section 4 in order to show the 
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performance of the proposed neural controller. Finally, 

conclusions of the proposed controller for two-mass drive system 

are summarized in Section 5. 

2. Two-Mass Drive System Dynamics 

The considered mechanical two-mass drive system and block 

diagram are given in Fig. 1. Motor and load are coupled by a long 

shaft of finite stiffness Ks in the two-mass system. JM , JL are denote 

motor and load inertias and Te , TL , Ts are denote motor driving, 

load and shaft torques, respectively. Similarly, the angular motor 

speed is ωM and angular load speed is ωL. 
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Fig. 1.  System representation: (a) Mechanical model of the two-mass 

drive system. (b) Block diagram of the two-mass drive system. 

According to the mechanical structure, considered the two-mass 

drive system is described by the following state equations: 

 
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 s s M LT K    . (3) 

The damping losses, nonlinear frictions and backlash are 

considered to be comparatively low and neglected in studies [17-

19]. 

3. Control of the Two-Mass Drive System 

3.1. Optimized PID Control with PSO 

PSO is a population-based optimization method that provides 

robust control performances in nonlinear optimization problems 

that are motivated by swarm behaviors. It is a highly promising 

method for tuning parameters of PID. PSO is considering as an 

effective method due to its simplicity, low calculation cost and 

good performance [12]. 

Let the current position of hth particle of the swarm is denoted with 

Ph which is considered in the search space of SD. The best position 

of the particle and the best position of the swarm can be also 

denoted with Pbest and Gbest, respectively. At step k, the hth particle 

velocity can be described with Vh(k) as; 
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     

   
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Where c1 and c2 are positive acceleration coefficients and rand1, 

rand2 are random values between [0-1]. The Equation (4) is used 

to adjust the velocity of the particles. The position of the particle 

is also adjusted with the following equation; 

     1h h hP k P k V k   . (5) 

In this study, the PID control parameters are tuned by using PSO 

method for two-mass drive system. 

3.2. NN Control 

In this part, back-propagation algorithm for NN training is 

presented and then the proposed control model is implemented to 

the two-mass drive system in order to ensure more effective 

performance than optimized PID control system. 

NN framework has the ability to learn a nonlinear function, recall 

and generalize from training data. The general structure of NN is 

chosen as a feed-forward network with input layer, hidden layer 

and output layer. Fig. 2 shows a simple NN structure. The output 

of the NN, considering a single-layer network in order to simplify 

the equations, can be expressed as; 

    2 1 1U I w f w I b  . (6) 

Where I is the input vector augmented by the bias term, U is the 

network output vector, w1 and w2 are weights for input and output 

layer, respectively, and f(.), ε(.) are the hidden layer and the output 

layer activation functions, respectively. 
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Fig. 2.  The structure of a simple single-layer NN. 

In order to update weights of NN, standard back-propagation 

algorithm is the most widely used technique [20]. It is a supervised 

learning method, and is a generalization of the delta rule which is 

a gradient descent learning rule for updating the weights of the 

artificial neurons in a single-layer perceptron. The update rule of 

the weights can be given for the output layer by; 

     1 . .ji ji j iw k w k H k    . (7) 

Here wji is the weight which represents the strength of the output 

node j and hidden node i, α is the learning constant and Hi is the 

output of hidden node i. δi is the local gradient and can be 

expressed as; 

    .j j j je k U k   . (8) 

Here, ej is the output node error, ɛ′j(.) is the derivative of output 

node j activation function and Uj is the linear output of the output 

node j. 
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Similarly, the update rule of the weights for the hidden layer can 

be given by; 

     1 . .ih ih i hw k w k V k    , (9) 

where wih is the weight, which represents the strength of the hidden 

node i and input node h, Vh is the output of input node h.  δj is the 

local gradient and can be expressed as; 

         . . .i i h j i jif V k e k f Z k w k    . (10) 

Equation (7) and (9) show the update rules for the output and 

hidden layer, respectively. It can be seen from the equation (7) that 

the update rule for the output layer is obtained from the gradient of 

the error. However, the update rule for the hidden layer is not 

directly discovered from the gradient of the error due to the output 

values of the hidden layers are not known and it can be found by 

propagating back the output error to the inputs. 

Weight updates of the NN learning algorithm can be defined as; 

        . . .sgnji j i jw k e k H k e k  , (11) 

        . . .sgnih i h iw k e k V k e k  . (12) 

In these equations, η and σ are learning constants. ei and ej for 

nodes i and j can be given by; 

    ( ).j dj j j je k Y Y U k   , (13) 
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Similarly, optimum NN model biases can be obtained with the 

same propagation method. Finally, back-propagation learning 

algorithm is used for the proposed NN control structure of two-

mass drive system in this study. 

4. Results 

In order to validate the accuracy of the proposed controller, the 

simulation studies are realized in Matlab/Simulink environment. 

As shown in Fig. 3, the closed loop system is simulated for the PID 

control of two-mass drive system.  
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Fig. 3.  Block diagram of the closed loop PSO based PID control system. 

In order to enhance performance of PID control model, PSO 

algorithm is adapted to optimize control parameters for the system. 

The specifications of the mechanical properties of the considered 

drive system is given in Table 1 and Table 2 shows the proposed 

PSO algorithm parameters. 

 

Table 1. Mechanical system parameters.  

Parameter Value 

JM 0.1 kgm2 

JL 0.001 kgm2 

Ks 20 Nm/rad 

 

Table 2. PSO parameters. 

Number of particles 21 

Acceleration coefficients (c1, c2) 2 

Number of maximum iteration 35 

 

The closed loop system for NN control model is also shown in Fig. 

4. For learning of the NN controller, one needs the virtual error eu 

and it can be expressed for discrete time as; 

 
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However, due to the system dynamics and sampling, equation (15) 

is not real. Therefore, the sign of the numerical derivative is taken 

into account, which is known as reflection of the error through the 

system. 
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Fig. 4.  Block diagram of the closed loop NN control system with 

learning algorithm. 

The model parameters of NN controller is also given in Table 3.  

Table 3. NN parameters. 

Learning rate 0.001 

Number of hidden layer 20 

Number of inputs 3 

Number of outputs 1 

Hidden Layer Activation Function Tangent Sigmoid 

Output Activation Function Linear 

Learning Algorithm Back-Propagation 

 

Learning rate is set to 0.001 which is very low value for the NN 

controller to be applicable in experimental studies. It is noted that 

online NN controller is designed as a single-hidden-layer, feed-

forward framework. The performance of the proposed controller is 

investigated in different two parts. In the first part of the simulation 

studies, controllers are tested in different speed regions in order to 

see the system behaviors with the NN controller which is based on 
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standard back-propagation algorithm, and PID controller based on 

PSO algorithm. In the other part of the study, the effect of load 

torque is explored with proposed NN controller in order to see how 

the controller is robust against load torque. It is noted that the 

performance of both controllers are evaluated in terms of settling 

time and overshoot criteria. 

4.1. The Performance of Controllers in Different Speed 
Regions 

In this part of the simulation studies, the designed controllers are 

tested in different speed regions. In Fig. 5 and Fig. 6, angular motor 

and load speeds in the various step references are illustrated at 130s 

for both control algorithms, respectively. In these figures, two 

different regions are also presented by zooming in order to show 

the variations in detail. 

As shown in Region 1 and 2 of Fig. 5 that the settling time of PSO 

based PID control system is more than NN control. Settling time 

of the PID and NN controllers are 7.5s and 1.8s, respectively. Also, 

PID control response have nearly %1 overshoot while NN control 

response does not have any overshoot. 

Region 1 and 2 of Fig. 6 show the angular load speed response 

details. PID control response has angular load speed fluctuations 

in the transient state and this fluctuation is nearly %1 while NN 

control does not cause any fluctuations. The settling time of PID 

and NN control systems are the same and equal to 0.95s. It can be 

clearly seen that NN control performance is better than PSO based 

PID control for both speeds. 

The angular motor and load speed errors are given in Fig. 7 and 8 

for above reference responses, respectively. In these figures, 

different regions are also presented in order to show the error 

variations in detail. 

It can be seen from Region 1 and 2 of Fig. 7 that NN controller has 

more oscillation errors occurring in the reference transition values, 

but settling time of the NN is faster. Therefore, error of the NN 

control response reaches to zero, rapidly. The zoomed region of 

Fig. 8 shows the detailed angular load speed error. PID controller 

causes the bigger oscillation error due to angular load speed 

fluctuations in the transient state. 

In Fig. 9, motor torques generated with PID and NN controllers are 

given. As seen from Fig. 9, NN controller generates much smaller 

torques than PID controller. 

 

Fig. 5.  Angular motor speed response. 

 

 

Fig. 6.  Angular load speed response.
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Fig. 7.  Angular motor speed error. 

 

 

Fig. 8.  Angular load speed error. 

 

 

Fig. 9.  Motor torques generated with both controllers. 
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Fig. 10 shows the PID parameter tuning process based on PSO 

algorithm. In this algorithm, 21 particles are randomly distributed 

and maximum iteration is determined as 35. After the tuning 

process, optimum proportional gain (Kp), integral gain (Ki) and 

derivative gain (Kd) are obtained in 20 iterations as follows: 

Kp=8.6587, Ki=4.81.71, Kd=4.8780. 

 

Fig. 10.  PID parameter tuning process with PSO algorithm. 

According to the online learning process of the proposed NN 

controller, Fig. 11 and 12 indicates the chancing of input layer and 

output layer weights. NN controller has a number of 3 input and 

20 neurons in the hidden layer and these conditions occurs the 

input layer weight matrix as 3x20. During the learning process, 

input and output weights changes and adapt in order to control the 

two-mass system. 

 

Fig. 11.  Input layer weights during reference speed variations. 

In the same way, learning process of the input layer and output 

layer biases are given in Fig. 13 and 14, respectively. According to 

the designed NN controller, input layer bias matrix is equal to 1x20 

and output layer bias is 1x1. During the network learning, input 

and output biases also changes and adapt in order to control the 

two-mass system. It can be clearly seen from the weight and bias 

changes, the learning process in the different reference inputs are 

fairly rapid and these parameter changes are quite smooth. 

Consequently, success of the NN learning algorithm is validated 

with given results. 

 

Fig. 12.  Output layer weights during reference speed variations. 

 

Fig. 13.  Input layer biases during reference speed variations. 

 

Fig. 14.  Output bias during reference speed variations. 

4.2. The Performance of the Controller Against Load Torque 

The second part of the simulation studies includes the investigation 

of the robustness of the proposed NN controller against load 

torque. As shown in Fig. 15, load torque is applied to the two-mass 

drive system at 5s. The step reference of the angular load speed is 

set to 20rad/s. 
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Fig. 15.  Load speed response against load torque. 

Two-mass drive system is unloaded in the initial state and 1rad/s 

step load torque is applied during 0.1s. In this case, load speed 

exhibits decreasing amplitude oscillations from 26.73rad/s to 

13.35rad/s and load speed of the system follows the reference after 

1.32s. This result also validates the success of the NN control 

response against the disturbances in the two-mass drive system. 

5. Conclusion 

The speed control of two-mass drive system offers the challenge 

due to handle torsional vibrations. NN with back-propagation 

learning algorithm is an effective nonlinear control method for 

two-mass drive system control. In this paper, NN control is 

investigated for two-mass drive system to show effectiveness of 

the method compared with conventional PID control. In order to 

have a fair comparison, control parameters of PID are obtained by 

updating with an effective PSO method. 

Simulation studies are carried out in different two parts to 

investigate the performance of the proposed controller. In the first 

part of the simulation studies, the controllers are tested for different 

speed regions. Comparatively results of the back-propagation 

learning algorithm of NN controller and PSO tuning based PID 

controller are illustrated. The proposed NN control method is also 

analyzed for the case of applying load torque in the second part of 

the simulations. Simulations confirm that the proposed NN control 

algorithm not only provides better performance in different speed 

regions but it is also more robust against applying load torque. 
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