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Abstract: In the recent years, the probabilistic path planning is an emerging area in the field of navigation. The navigation applications 

increases day by day which helps the society to solve the real world problems. The major challenge in this path planning is to deal with 

the dynamics in the environment. The dynamicity refers with the ability of an obstacle to move around the working environment and able 

to change their possessions frequently. There are many solutions were available to deal with the challenges in the dynamic environment 

and support the robot to navigate over the environment to move from source to a destination. Sampling based algorithms are the one 

which are most suitable for the path planning where the dynamic obstacles are present in the working environment. Rapidly Exploring 

Random Tree (RRT) and their variants like RRT*, F-RRT*, PQ-RRT*, etc. are the algorithms, have been shown significant 

improvement over predicted path and the time to navigate over predicted path. These variants of RRT* algorithms are analyzing over the 

asymptotic behaviour and the cost of the generated path is also analyzed. In this work we have proposed a dynamic RRT* algorithm 

which is critically analyzed in terms of optimality and the asymptotic behaviour is cortically analyzed to present a dynamic RRT* 

planner, which can be effectively used for the path planning over dynamic environment. However these algorithms were not analyzed in 

terms of dynamicity of the environment and make the approach dynamic which can adapt the environment features to be work 

dynamically to generate a path. The presented simulation results shows that the presented dynamic RRT* algorithm work significantly 

better in terms of path length and the navigation time during the actual run from source to a destination. The study of path planners 

developed over the years by the research community has been discussed and presented here in this work. Moreover the proposed 

dynamic RRT* approach shows that the computational cost of the algorithm makes it to a probabilistically complete solution to work 

with the dynamic environment. 

Keywords: Dynamic, Path Planning, RRT*, Environment, algorithm. 

1. Introduction 

There are a variety of real-world applications for mobile 

robots or other intelligent devices today, including those 

in the domains of medicine, agriculture, science, 

business, engineering, industries, defense, transportation, 

and others. Due to the increasing usage of mobile robots 

in both industrial and everyday life, motion planning for 

robots has been a hot topic, particularly in the last few 

years. Also the path finding techniques and obstacle 

avoidance is key point while discussing the various 

navigational applications. With the need of next 

generation devices and application there is a need of 

continuous improvement in the existing state of art path 

planning techniques to meet the need of current and 

future requirements with the help of currently available 

techniques. A robot motion planning is complex task, 

which needs significant knowledge of robot dynamics 

and a mathematical model to predict the path for the 

navigation of mobile robot. There are several issues in 

Robotic path planning, some of them like Representation 

and presentation of working environment; Design of 

working environment and placement of obstacles in the 

environment;  Identification of static and the dynamic 

environment; Motion identification of the obstacles; 

Trajectory computation of the obstacles; design collision 

detection mechanism; design collision avoidance 

mechanism; integrate collision detection and avoidance 

mechanism with probabilistic path planner. The research 

community has presented various solutions for the 

mobile robot path planning. In which the most popular 

ne is the sampling based approach due to its dynamic 

behavior and the adaptation to the constrains of the 

environment which is likely to be as a dynamic behavior 

of the environment. The most common sampling based 

approach is the Rapidly exploring random tree (RRT) 

which works well for the path generation for the mobile 

robot in the dynamic environment. So, now a days most 

of the path planning solution is presented using RRT as a 
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base algorithm and the computation cost, path length, 

time to navigate and the asymptotic behavior is 

challenged by the research community and the best 

possible results and the solutions is get communicated 

and presented by the researchers. However design a 

system to estimate future location of obstacle based on 

its trajectory information, supported by the function for 

trajectory prediction, collision detection to generate a 

probabilistic path for the navigation from source to 

destination in order to reduce the navigation time is 

expected from the path planning solutions. 

2. Literature Survey 

The artificial potential field (E. Rimon E. et al., 1992) 

and fuctional neural network based architecture 

(Panagiotopoulos D. et al., 1999) is one the oldest 

technique for mobile robot path planning, which is most 

suitable for static environment. The static environment 

has a least constraints to deal with as all the obstacles are 

static in nature.  The New potential fields (Ge S. et al., 

2000), sampling based approaches (Plaku E. et al., 2004), 

are the approaches which are suitable for path planning 

in the dynamic environment. These approaches are 

providing a probabilistic path for the mobile robot 

navigation with significantly higher navigation time due 

to some amount of collision in the real run and the length 

of path of longer than the desired. The most popular 

method used in this approach graph, known as 

probabilistic road maps (Al-Hmouz R., 2004) and 

(Baumann M. et al., 2010), is constructed by randomly 

choosing a pedestrian going through traffic with their 

random current state. This algorithm and a derivative of 

it have been used to create graphs that resemble road 

maps and depict collision-free paths. They also compute 

the shortest path between various connecting nodes in 

the graph, from source to destination, by using a 

multiple-query approach. It was noticed that while 

multiple samples had been developed using various 

roadmaps and that it was probabilistically finished with 

zero delay error, it had the drawback of only working on 

electronic robots and not performing as well in real-

world situations. In order to reduce the navigation time, 

the EET planner (Rickert M. et al., 2014) and Effective 

motion planner (Ma L. et al., 2015) has been proposed 

with significant improvement in the path length and the 

navigation time. These planners are affected by the 

signal artifacts, and disturbances and having Inaccurate 

terminal state, and the slow exploration, that makes the 

scope of improvement in this planner. The Particle Filter 

Based method (Zhao B. et al., 2014) and (Wang B. et al., 

2016), which can diagnose faults effectively, and can 

provide good state estimation and it is easily 

implemented. But, the approach is Affected by signal 

artifacts, and disturbances which may affect the 

predicted path length. To improve the accuracy of path 

planning Rapidly Exploring Random Tree (RRT) (Ju T. 

et al., 2014) Algorithm and a improved version Rapidly 

Exploring Random Tree (RRT*) Algorithm (Pharpatara 

P. et al., 2017) is introduce to provide efficient motion 

planning. These Rapidly Exploring Random Tree’s are 

effective in providing collision free path but the path 

look weird and disturbed it will take longer distance from 

initial point to the goal point. To overcome the 

challenges of Rapidly Exploring Random Tree’s, the 

improved versions has been presented by the may 

researcher’s which are Parellel-RRT* (Ichnowski J. et 

al., 2018), Multidimensional-RRT* (R. Cui R. et al., 

2018), RL-RRT* (Chiang H. et al., 2019),etc. but these 

algorithms can be challenged in terms of Path length, No. 

of collision during the navigation, navigation time, time 

complexity and space complexity.  

Sr. 

No 
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E. et al., 

1992 

Artificial 

Potential 

Field 
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implement, 
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over static 

environme

nt 
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effective 

over 

dynamic 

environm

ent 

2 

Panagiot

opoulos 

D. et al., 
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Function

al Neural 

Network 

Architect

ure 

Works on 

interactive 

environme
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for 

autonomou

s mobile 

robots 

Need 

security 

mechanis

m 
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Ge S. et 
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New 
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dynamic 
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M. et al., 

2014 
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nt 
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e 
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10 
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2014 
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Filter 

Based 
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to 
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ces 
11 

Wang B. 
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implement 

12 
Ju T. et 

al., 2014 

Rapidly 

Explorin

g 
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Tree 
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m 
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Designed 

to solve 
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Random 

Selection 

give more 
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structure. 

Random 

Data 
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. 

13 

Véras L. 

et al., 

2019 

14 

Kleinbor
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al., 2019 

15 

Yuan C. 

et al., 

2020 

16 
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al., 2017 RRT*(R

apidly-

exploring 

Random 
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Probabilist

ic  delay of 
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result 
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was on 
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cs 
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17 
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free path 

predictio

n. 

21 

Chiang 

H. et al., 

2019 

RL-

RTT* 

Effective 

to find 

shortest 

path with 

minimum 

time 

Need 

more 

iteration 

to 

converge 

22 

Luo M. 

et al., 

2019 

Bioinspir

ed 

Neural 

Network 

Algorith

m 

Highly 

scalable, 

effective to 

find 

optimal 

path, Less 

complex 

than NN. 
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Higher 

dimensio
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environm

ent, 

Requires 

real time 

data 

processin

g, 

Response 

time is 

little 

high. 
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 J. Yuan 

J. et al., 

2019 
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RNN 

Network 

Model 

It is very 

simple and 

easy to 

understand

, Less 

complexiti

es 
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change 

the 

output 

(predicti
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24 

J. Liang 

J. et al., 

2020 

RNN-
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Network  

It can 

manage 

real-time 

physical 

constraints 

and 
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avoidance. 

Redesign

ing is not 

easy, Not 

effective 

for path 

re-

planning, 

Static 

planner. 

25 

Ladosz 

P. et al., 

2020 

Obstacle 

Trajector

y 

Planning 

for Path 

Predictio

n 

(OBTPP)

-Based 

on 

Gaussian 

-process 

Easy to 

understand 

and 

implement, 

Uses 

Clustering 

techniques 

that 

provides 

good 

network. 

Needs 

more 

space for 

storing 

cluster 

data. 

model to 

generate 

clusters 

for path 

predictio

n. 

26 

Jeong Y. 

et al., 

2020 

Social-

LSTM- It 

uses 

pedestria

n current 

hidden 

states for 

predictin

g future 

position 

of target. 

 

It has more 

secure 

framework

, 

Experimen

tal result is 

more 

accurate. 

Needs 

network  

security, 

As social 

pedestria

n is 

included 

in 

network 

hence 

much 

prone to 

attack. 

27 

Jeong Y. 

et al., 

2020 

Table. 1. Comparison of existing path planning 

techniques/methodologies. 

 

3. Proposed Methodology 

Dynamic RRT* is proposed having good convergence 

rate for the prediction of final path. It is also optimal in 

terms of generated path. The proposed planner is 

presented in this section that takes initial position 

(Xstart) and the final destination position as (XGoal) as a 

input and produces a Graph that make a path from source 

to a destination using the proposed Dynamic RRT* 

algorithm. The proposed planner extend the path from a 

give source based on the Near and a steer function that 

consider nearest point to travel along the path and a 

mininmum distance approach towards the destination. 

The major objective of this dynamic planner is to 

generate obstacle free path. 

Given a path planning problem (Xfree, Xinit, Xgoal), 

find a feasible path G : [0, 1] → Xfree such that G(0) = 

Xinit and G(1) = near(Xgoal), if one exists else report 

failure. 

Dynamic RRT* algorithm: 

 

Input: Rstart, RGoal 

Output: G(V,E) 

 

1. V ←  {Rinit} 

2. E ← ϕ 
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3. Rrand ←  Samplefree(i) 

4. Rnearest ←  Nearest ((V, E),  Rrand ) 

5. Rnew ←  steer (Rnearest ,  Rrand ) 

a. if obstaclefree (Rnearest,  Rnew ) 

: 

6. Rnear ← Near ((V, E),  Rnew , rn ) 

7. V ←  V ∪  { Rnew } 

8. Rmin ←  Rnearest 

9. cmin ←  Cost (xnearest) +  c ( Line (Rnearest ,  Rnew)) 

10. for each Rnear ϵ Rnear 

11. if CollisionFree(Rnear ,  Rnew) 

12. if Cost(Rnear) +   c ( Line (Rnear ,  Rnew)) <  cmin 

13.      Rmin ←  Rnear 

14.      cmin ←

Cost(xnear) +   c ( Line (Rnear ,  Rnew)) 

15. E ← E ∪  {(Rmin ,  Rnew} 

16. for each Rnear ϵ Rnear 

17. if CollisionFree(Rnew ,  Rnear) 

18. t ←  Cost(Rnew) +   c ( Line (Rnew ,  Rnear)) 

19. if t <  𝐶𝑜𝑠𝑡(Rnear) 

20. Rparent ← Parent ( Rnear) 

21. E ←

(E \ {(Rparent ,  Rnear)}) ∪  {(Rnew ,  Rnear)}) 

22. return (V, E) 

 

 

4. Results 

The simulation results of proposed algorithm are 

presented in the Figure. 1, shows the convergence of 

Dynamic RRT* Algorithm during the iterations and the 

states of generated path can be observed in the results. 

The proposed algorithm after the convergence is also 

been analysed and the graphs based on path length and 

the navigation time over generated path is presented in 

this section. 

 

(a) Iteration-1 

 

Iteration-2 

 

Iteration-3 

Iteration-4 
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 Final Iteration 

Fig.1 iteration-1 to final iteration during convergence of 

Dynamic RRT* Algorithm 

 

Fig.2. The length of the path without a collision as 

determined by simulation 

 

Fig. 3. Navigation Time Simulation Results with No 

Collisions 

Figure 4 to 6, shows the simulation results obtained after 

the implementation of RRT*, P-RRT*, M-RRT* and 

Dynamic RRT* algorithm. The simulation results are 

also analysed base on error in the path prediction and 

number of collision found during navigation of the 

various approaches with respect to the proposed 

approach. The analysis and results obtained shows that 

the dynamic RRT* algorithm works better than some of 

the approaches but it shows some laggings in the path 

generation and the slight error is been reported in the 

proposed approach. However the approach can be work 

better if we apply some local as well as global 

optimization to the proposed approach. 

 

Fig.4. Path generated by the RRT*, P-RRT*, M-RRT* 

and Dynamic RRT* 
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RRT*
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RRT*

M-

RRT*
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c RRT*

Min

Displacement

Error
1.2 1 0.76 0.95

Max

Displacement
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2.4 2.28 2.06 2.16

Average
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1.8 1.75 1.2 1.62

0
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3

Displacement Error

 

Fig. 5. Displacement Error comparison of Proposed 

system with existing methods. 

 

 

Fig. 6. Displacement Error comparison of Proposed 

system with existing methods. 

5. Conclusion. 

The paper presented the idea of dynamic path planner 

approaches that are used in the recent years for the 

motion planning of mobile robot. The sampling based 

approach, Rapidly exploring Random Tree (RRT) is one 

of the popular path planning approach has been 

discussed and it has been considered as base to the 

proposed dynamic RRT* algorithm which is presented 

and systematically described in one of the section of this 

work. The simulation results are also been presented in 

this work and the analysis has been done in terms of 

predicted path length, number of nodes in the path, time 

to navigate over a predicted path and the displacement 

error in the path prediction . The result analysis shows 

that the proposed dynamic RRT* approach for path 

planning in the dynamic environment can work better if 

we apply some optimization at local as well as global 

parameter settings to the approach that that makes 

proposed planner robust and works more efficiently.  
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