

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 01–07 | 1

Detecting Malware on the Android Phones Based on Golden Jackal

Optimized Support Vector Machine

1Rupal Gupta, 2Brijraj Singh Solanki, 3Manish Kumar, 4Murugan R.

Submitted:15/04/2023 Revised:05/06/2023 Accepted:20/06/2023

Abstract: The Android smartphone's growth may be attributed to the phone's open-source design and high performance. Malware has

been created partially because of Android's widespread use. When it comes to smartphones, Android is the most popular OS. That's why

there's so much malicious software aimed at this system. Malicious software may be identified as such by analyzing its permission

attributes. But this is a complex issue to solve. In this research, we use a golden jackal optimized support vector machine (GJOSVM) to

classify software and evaluate whether or not it presents a threat. To achieve this goal, a dataset including 2850 sections of malicious

software and 2866 sections of benign software was generated. Each piece of software in the dataset has 112 permission characteristics,

and there is also a class feature that indicates whether or not the program is harmful. Each phase of the training and testing procedures

used 10-fold cross-validation. The effectiveness of the models was measured using accuracy, F-1 Score, precision, and recall.

Keywords: android mobiles, detecting malware, golden jackal optimized support vector machine (GJOSVM), Android Package files

(APK)

1. Introduction

Malware is a significant danger to the cyber security of our

nation's critical infrastructure, our service industries, and

our entire civilization. Smartphones and tablets have

exploded in popularity in recent years, and now they're

powerful enough to replace many desktop computers'

functions. Applications for usage on such gadgets have

been developed by a wide range of entities, such as

government and banking institutions [1]. Most of our most

private and essential documents are now saved on the

cloud, and we can view them from anywhere with a mobile

device. Malware developers have taken note of this trend.

Droid Dream, an aspect of Android malware found in over

50 apps on the official Android market, is only one

example of many established incidents of Android

malware. The built-in security measures of Android are

essentially inadequate, and data may be leaked by even

benign apps. Smartphones often serve as a repository for

sensitive information, including photographs, text

messages, and login passwords [2]. This makes them an

easy target for bad actors. Smartphones using Google's

Android OS are the market leaders. Android devices,

however, account for roughly 97% of malware. The fact

that practically every transaction that can be completed on

a computer can now be completed on a mobile device is

the driving force behind these advancements, and it is also

the fundamental reason why they have occurred. At the

very beginning of choice for mobile devices are the

dimensions, as well as the benefits that come with the

measurements at the point where transportation is

concerned [3]. As processing capabilities have increased

and as interest in gadgets has grown, it has gained a lot of

traction among attackers. Attackers will almost always

target sites that are of very high interest to a large number

of people. In the digital age, if a specific person or

organization is not targeted, the objective is to spread the

malware to the most significant number of users possible.

When looking at the mobile OSs that are used all over the

globe, the two that stand out as the most popular are

Android and iOS [4]. Other OSs have a consumption rate

that is just 1.7% of the total, in contrast to these two OSs,

which account for 98.3% of the entire usage in the globe.

The number one spot goes to the Android OS, which has a

use rate of 70 percent, while the number two spot goes to

the iOS OS, which has a rate of 28.3 percent. Machine

learning algorithms have become particularly significant in

areas where antivirus software is inadequate to guarantee

that mobile platforms, which can run software that is

becoming more complicated, may become better protected

against harmful software [5]. This is because mobile

1Assistant Professor, College of Computing Science and Information

Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India, Email id: r4rupal@yahoo.com

2Assistant professor, School of Computer Science & System, JAIPUR

NAITONAL UNIVERSITY, JAIPUR, India, Email Id:

brijraj.solanki@jnujaipur.ac.in

3Assistant Professor, School of Engineering and Computer, Dev Bhoomi

Uttarakhand University, Uttarakhand, India, Email Id:

ce.manish@dbuu.ac.in

4Associate Professor, Department of Computer Science and IT,

Jain(Deemed-to-be University), Bangalore-27, India, Email Id:

murugan@jainuniversity.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 01–07 | 2

platforms can run software that is becoming increasingly

complex. Based on authorizations and API requests, and

even though these methods gather conversations between

applications on smartphones and Android systems, any

interaction that occurs within the applicable limitations

isn't considered in the assessment. As a result, it is not

enough to detect malicious software that is not asking for

suspicious resources. Malware assaults have so spread to

mobile devices, making it imperative that we take

measures to secure our mobile infrastructure [6]. In this

work, a golden jackal-optimized support vector machine is

employed to find malicious Android phone attacks. The

results of our experiments prove that our technique

successfully identifies Android malware.

The rest of the sections of the paper are structured as

follows. In Section 2, we give a literature review on similar

efforts in Android malware detection. Our detection

system, including the feature extraction method, is

described fully in Section 3. In Section 4, we detail the

experiment and its findings. Finally, we conclude the task

in Section 5.

2. Related work

They build the link between the permission and API using

a machine learning technique to detect malware by mining

the patterns of approval and API function calls obtained

and utilized by Android applications. Despite this, the

harmful samples they have gathered are not sufficient [7].

A framework for feature-based learning that focuses on the

behaviors of requested permissions and API requests and

that applies the SVM, Decision Tree, and Bagging

algorithms. However, they only extract authorization and

API as features, which leads to a poor level of accuracy

since they only remove a few different kinds of

characteristics [8]. Despite this, research on mobile

malware is still in its infant stage. The methods that are

now available to identify mobile malware and other flaws

in security have varied degrees of both strengths and

drawbacks [9]. The random forest algorithm uses three

distinct feature selection methods. The effects of

implementing three alternative feature selection methods

effective, high weight and effective group feature selection

are evaluated. Applying feature selection approaches

improves accuracy regarding metrics and needed time,

according to experiments on the Drebin dataset [10]. They

employed an evolutionary algorithm to find Android

smartphone malware. They contrasted our system with

several cutting-edge algorithms to assess it. Finally, their

suggested strategy can detect zero-day malware [11].

Numerous ML-based methods for detecting malware on

Android have been presented. Multiple difficulties arise

from ignorance of the technologies available for detecting

malware on Android devices [12]. Additionally, to ensure

device compatibility, authorization, and hardware

characteristics are simultaneously stated in the manifest

file of an application (app). To characterize applications,

we extract permissions, API requests, and hardware

characteristics [13]. The TANMAD algorithm, a two-step

Android malware detection method, first narrows the

potential malware families to be detected before using sub-

graph isomorphism matching. The modeling of object

reference information by creating directed graphs, or

ORGB, is the main innovation of their study [14].

3. Methodology

The main goal is to create a classifier that, for the most

part, classifies training data as positive and only labels

training or testing data as negative when it sufficiently

deviates from training data. Given that innocuous Android

apps are far simpler to find than malicious ones, it will be

the perfect choice for our purposes. The antivirus software

business known as Zeman gave us the files that are

included in the dataset so that we may do this research. To

extract functionality from pre-packaged Android apps

(APKs), we use an open-source project known as

Androguard. Our study's suggested flow is shown in figure

1.

Fig. 1. Flow of GJOSVM

3.1 Data Acquisition and Dataset

There are 2870 legitimate apps and 2854 malicious ones in

the newly produced dataset. Virus Total and Virus Share

have verified the presence of harmful and non-malicious

Android apps in this dataset [15]. This information cannot

be downloaded by any user, which defeats the purpose of

the infection. Due to the sensitive nature of the work that

will be performed via the use of the corporate e-mail

account, specific authorization for harmful software has

been secured by corresponding with the proprietors of this

website through e-mail. The whole collection consists

entirely of binary information. A value of 0 for any of the

117 characteristics implies that the program does not seek

authorization for the feature in question, whereas a value

of 1 indicates that it does. A value of 0 for this class

attribute implies that the program is safe, whereas a value

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 01–07 | 3

of one indicates that it is malicious. The apps' access controls are shown in Table 1.

Table 1. Features of Android APK authorization

3.2 Feature Extraction

To successfully implement any kernel, we must first isolate

the most crucial aspects of the application. APK files, the

standard format for Android application packaging, are

quite similar to ordinary Java jar files. To process these

files and extract features, we use the open-source software

Androguard. Androguard has a user interface that is not

too complicated and may be used to do analysis and

reverse engineering on Android apps.

Every APK requires a manifest file that, among other

things, requests authorization to access specific protected

components of the Android OS. Accessibility for various

hardware devices, sensitive aspects of the OS, and specific

sensitive features of other programs are all included in

these pieces. For instance, the

"android.permission.INTERNET" permission demands the

ability to access the Internet, but the

"android.permission.READ CONTACTS" permission

desires the ability to read the mobile contacts database of

the user.

After we have obtained the list of rights that are being

sought, we split it into two categories: built-in permissions

that are considered standard and permissions that are not

regarded as standard. We build a binary vector for legal

permissions, and each item corresponds to a built-in

permission. The entry is given a value of 1 if the program

wants that permission and a value of 0 if it does not seek

that permission. In the case of non-standard permissions,

we break the strings up into three sections: the prefix

(which is often "com" or "org"), the portion containing the

organization and product, and the permission name itself.

We don't pay attention to any instances of the phrases

"android" or "permission" since they are so common.

3.3 k-Fold Cross-validation

The technique for segmenting the data set that is utilized

for training the model through executing the calculation

procedures of the models in classification processes is

called k-fold cross-validation. In addition to these

assessments, cross-validation is an additional method that

may be used to evaluate learning algorithms. This method

involves segmenting the data and comparing the segments

to one another. In the process of cross-validation, the

training set and the validation set are repeatedly combined

so that each data point gets the opportunity to be verified.

The k-fold cross-validation method is the fundamental kind

of cross-validation. K-fold cross-validation is the popular

technique for model selection and error estimates of

classifiers. This is mainly attributable to the fact that it is

both versatile and useful when used in data mining

applications. The k-fold cross-validation approach utilized

in this work is shown essentially in figure 2. Figure 2

shows the results of a k value is 10 cross-validation. The

dataset is partitioned into k pieces in this approach.

Iteratively, models are trained on k-1 parts and tested on a

single sample. When k iterations are performed, k outputs

are generated. Simply averaging the gathered findings will

give you the average metrics of the models' performance.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 01–07 | 4

Fig. 2. k-fold cross validation

3.4 Classification using GJOSVM

Inspired by the strategies used by golden jackals, a type of

canid found in many regions of the globe, Golden Jackal

Optimization (GJO) is a natural-based optimization

method. Metaheuristic algorithms, like GJO, are problem-

solving techniques that take natural cues. The GJO

algorithm is based on many behaviors seen in the golden

jackal. Jackals, for instance, have earned a reputation for

versatility because of their capacity to thrive in habitats as

varied as deserts and woodlands. In addition to being

formidable foes, they use shrewd methods of hunting.

Define the viral detection challenge by considering the

viruses' properties, the data at hand, and the processes

already in use. It's up to you to figure out what goes into it

and how you'll judge success. Produce an initial set of

solutions representing possible detection procedures.

Several factors, including genetic markers, machine

learning algorithms, and feature extraction methods, may

affect the accuracy of a detection system. Therefore there

are many possible solutions. Evaluate the viability and

performance of each option in the population. Here, we put

the parameters and characteristics we've chosen for viral

detection through their paces and assess how well they

function by calculating metrics like detection accuracy,

sensitivity, specificity, and false positive rate. Explore

possible solutions by simulating the hunting behavior of

golden jackals. Solutions, which stand in for detection

strategies, may be improved by adjusting their parameters

or characteristics in light of the collective knowledge

gathered from other solutions. This may need trying out

different feature sets, tweaking algorithm settings, or

changing which genetic markers are used. The fitness

measurements and convergence criteria used to evaluate

the performance of GJO and other algorithms are just as

important as the quality and variety of the original

population.

For detecting purposes, we use the SVM algorithm, whose

defining characteristic is its foundation in structural risk

reduction. Optimize learning's generalizability or the extent

to which a small training set can ensure a sizeable

independent test set that maintains a small error. Little

sequences determined by regular access to the unusually

short series in the sample might include normal

intermittent, causing the SVM classifier to produce

classification error; thus, the implementation of a detection

module, which provided follows the level of risk using

malware to make decisions. Taking into mind the fact that

the impact of malicious software on a smartphone's

operating system and its user is distinct from the damages

brought about by the introduction of a risk factor (also

known as RF or Risk Factor), RF is applied to every one of

the system's brief sequences. Act of malice committed with

the intention of providing a weight, the correct basis. If the

behavior of the system and user poses a more significant

security danger, which results in an RF that is more than 1,

the value is set to 1. The introduction of risk (also known

as Risk Rank or RR) is a program that serves as a measure

of the quantitative detection of malware. The RR is defined

as follows:

𝑅𝑅 = ∑ 𝑛𝑐𝑠𝑖 × 𝑅𝐹𝑛𝑐𝑠𝑖
𝑛
𝑖=1 (1)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 01–07 | 5

Establish a malware detection threshold known as D,

whose value will be based on the experiment's findings.

Based on our findings, a D value of 17 will serve as the

most effective detection threshold. When the RR is found

to be more than the D that was computed, the program is

finally identified as malicious software.

4. Result and Discussion

Classifications have been carried out using the Android

Malware Dataset's 112 characteristics to determine if apps

are malicious or not. Experiments used a computer that had

an Intel® i5® 10200H CPU operating at 2.40 GHz, an

NVIDIA GTX1650Ti GPU, and 24 GB of RAM. In the

approach of cross-validation used for training, the

classification models were decided to have a value of k

equal to 10. While training the models, each of the 116

inputs and the single class feature was used, together with

all of the characteristics included in the dataset.

Performance metrics are used to analyze and compare the

performance of various suggested models. Metrics like

“accuracy, precision, recall, and the F-1 Score” were used

in this investigation. While training the proposed model,

the kernel function was analyzed and found to be an RBF

(Radial Basis Function) with a numerical tolerance of

0.0010 and an iteration of 100.

Fig.3. Accuracy

Figure 3 shows the accuracy of the proposed system. The

accuracy of malware detection systems can vary depending

on various factors, including the techniques and algorithms

used, the quality and diversity of the dataset, and the

sophistication of the malware samples. Achieving high

accuracy is an ongoing challenge due to the constantly

evolving nature of malware. DL has attained 82 %, FL-

BDE has acquired 91 %, DBN-GRU has reached 93 %,

and the proposed system achieves 96 % accuracy. It shows

that the proposed approach has more effective than the

existing one. The Equation (2) for determining accuracy is

as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) /

 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +

 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

(2)

Fig. 4. Precision

Figure 4 shows the precision of the proposed system. The

accuracy of a malware detection system is measured by

how many malicious samples out of a whole set are really

malicious. It is a test of how well positive malware

predictions can be made. The equation (3) for determining

precision is as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +

 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) (3)

Accurately recognizing malware while not incorrectly

labeling safe files as harmful is only possible with a system

that has a low false positive rate, which is shown by high

precision. In security-sensitive contexts, where false

positives may have dire repercussions, accuracy in

malware detection systems is a crucial parameter. DL has

attained 72 %, FL-BDE has acquired 77 %, and DBN-

GRU has reached 86 %, whereas the proposed method

achieves 92 % of precision. It shows that the proposed

approach has more effective than the existing one.

Fig. 5. Recall

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 01–07 | 6

Figure 5 shows the recall of the proposed system. The

recall metric calculates the percentage of malware samples

properly recognized relative to the overall malware

samples in the dataset. This metric is also known as

sensitivity or actual positive rate. It measures how well a

malware detection system can detect malware samples.

The Equation (4) for the recall is as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 /(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +

 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

(4)

It measures how well a system can detect malware in a

dataset. DL has attained 88 %, FL-BDE has acquired 92 %,

DBN-GRU has reached 90 %, whereas the proposed

method achieves 94 % of recall. It demonstrates that the

suggested technique is more successful than the existing

one.

Fig. 6. F1-Score

A balanced evaluation of a malware detection system's

performance is presented by the F1-score, a statistic that

combines accuracy and recalls into a single number. It

takes into account both the accuracy with which malware

samples may be detected as well as the capacity to detect

all instances of malware. The F1-score calculation

equation (5) is as follows:

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙) /

 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

(5)

The F1-score ranges from 0 to 1, with 0 denoting subpar

performance and 1 signifying flawless accuracy and recall.

DL has attained 78 %, FL-BDE has acquired 82 %, and

DBN-GRU has reached 85 %, whereas the proposed

system attains 91 % of the f1-score. It shows that the

proposed approach has more effective than the existing

one.

5. Conclusion

In this work, classification procedures were carried out

utilizing GJOSVM techniques utilizing the data of 2850

harmful apps and 2866 non-malicious applications used in

the Android OS. To conduct in-depth performance

assessments, 10-fold cross-validation was used. The

suggested model has values of 96% for accuracy, 92% for

precision, 94% for recall, and 91% for F-1 Score. These

values are all much higher than the average. It is feasible

to create antivirus software that is more effective by using

the models that are advised for the identification of

malware. In subsequent investigations, the dataset will be

enlarged, and various machine-learning approaches will be

used to identify malware.

References

[1] Mbunge, E., Muchemwa, B., Batani, J. and Mbuyisa,

N., 2023. A review of deep learning models to detect

malware in Android applications. Cyber Security and

Applications, p.100014.

[2] Mijwil, M.M., 2020. Malware Detection in Android

OS Using Machine Learning Techniques. Data

Science and Applications, 3(2), pp.5-9.

[3] Awais, M., Tariq, M.A., Iqbal, J. and Masood, Y.,

2023, February. Anti-Ant Framework for Android

Malware Detection and Prevention Using Supervised

Learning. In 2023 4th International Conference on

Advancements in Computational Sciences (ICACS)

(pp. 1-5). IEEE.

[4] Wang, Z., Liu, Q. and Chi, Y., 2020. Review of

Android malware detection based on deep learning.

IEEE Access, 8, pp.181102-181126.

[5] Bayazit, E.C., Sahingoz, O.K. and Dogan, B., 2020,

June. Malware detection in Android systems with

traditional machine learning models: a survey. In 2020

International Congress on Human-Computer

Interaction, Optimization and Robotic Applications

(HORA) (pp. 1-8). IEEE.

[6] Ehsan, A., Catal, C. and Mishra, A., 2022. Detecting

Malware by Analyzing App Permissions on Android

Platform: A Systematic Literature Review. Sensors,

22(20), p.7928.

[7] Yanamadni, V. R. ., Seetha, J. ., Kumar, T. S. .,

Kannaiah, S. K. ., J, B. ., & Brahmaiah, M. . (2023).

Computer-Aided Detection of Skin Cancer Detection

from Lesion Images via Deep-Learning Techniques.

International Journal on Recent and Innovation Trends

in Computing and Communication, 11(2s), 293–302.

https://doi.org/10.17762/ijritcc.v11i2s.6158

[8] Wang, X. and Li, C., 2021. Android malware

detection through machine learning on kernel task

structures. Neurocomputing, 435, pp.126-150.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 01–07 | 7

[9] Muzaffar, A., Hassen, H.R., Lones, M.A. and Zantout,

H., 2022. An in-depth review of machine learning

based android malware detection. Computers &

Security, p.102833.

[10] Niveditha, V.R. and Ananthan, T.V., 2019. Detection

of Malware attacks in smart phones using Machine

Learning. International Journal of Innovative

Technology and Exploring Engineering, 9(1).

[11] Keyvanpour, M.R., Barani Shirzad, M. and Heydarian,

F., 2023. Android malware detection applying feature

selection techniques and machine learning.

Multimedia Tools and Applications, 82(6), pp.9517-

9531.

[12] Dhabliya, P. D. . (2020). Multispectral Image Analysis

Using Feature Extraction with Classification for

Agricultural Crop Cultivation Based On 4G Wireless

IOT Networks. Research Journal of Computer

Systems and Engineering, 1(1), 01–05. Retrieved from

https://technicaljournals.org/RJCSE/index.php/journal/

article/view/10

[13] Waheed, W.F. and Alyasiri, H., 2023. Evolving trees

for detecting android malware using evolutionary

learning. International Journal of Nonlinear Analysis

and Applications, 14(1), pp.753-761.

[14] Shimpi, P.M. and Pise, N.N., 2023, March. An

Empirical Study of Efficient Malware Detection

Analysis on Android Mobile Phones using Machine

Learning. In 2023 International Conference on

Sustainable Computing and Data Communication

Systems (ICSCDS) (pp. 1520-1526). IEEE.

[15] Zhu, H.J., Gu, W., Wang, L.M., Xu, Z.C. and Sheng,

V.S., 2023. Android malware detection based on

multi-head squeeze-and-excitation residual network.

Expert Systems with Applications, 212, p.118705.

[16] Zhang, W., Wang, H., He, H. and Liu, P., 2020.

DAMBA: Detecting android malware by ORGB

analysis. IEEE Transactions on Reliability, 69(1),

pp.55-69.

[17] Yilmaz, A.B., Taspinar, Y.S. and Koklu, M., 2022.

Classification of Malicious Android Applications

Using Naive Bayes and Support Vector Machine

Algorithms. International Journal of Intelligent

Systems and Applications in Engineering, 10(2),

pp.269-274.

[18] Almomani, I., Alkhayer, A. and El-Shafai, W., 2022.

An automated vision-based deep learning model for

efficient detection of android malware attacks. IEEE

Access, 10, pp.2700-2720.

[19] Atacak, İ., 2023. An Ensemble Approach Based on

Fuzzy Logic Using Machine Learning Classifiers for

Android Malware Detection. Applied Sciences, 13(3),

p.1484.

[20] Lu, T., Du, Y., Ouyang, L., Chen, Q. and Wang, X.,

2020. Android malware detection based on a hybrid

deep learning model. Security and Communication

Networks, 2020, pp.1-11.

