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Abstract: The Android smartphone's growth may be attributed to the phone's open-source design and high performance. Malware has 

been created partially because of Android's widespread use. When it comes to smartphones, Android is the most popular OS. That's why 

there's so much malicious software aimed at this system. Malicious software may be identified as such by analyzing its permission 

attributes. But this is a complex issue to solve. In this research, we use a golden jackal optimized support vector machine (GJOSVM) to 

classify software and evaluate whether or not it presents a threat. To achieve this goal, a dataset including 2850 sections of malicious 

software and 2866 sections of benign software was generated. Each piece of software in the dataset has 112 permission characteristics, 

and there is also a class feature that indicates whether or not the program is harmful.  Each phase of the training and testing procedures 

used 10-fold cross-validation. The effectiveness of the models was measured using accuracy, F-1 Score, precision, and recall. 

Keywords: android mobiles, detecting malware, golden jackal optimized support vector machine (GJOSVM), Android Package files 

(APK) 

1. Introduction 

Malware is a significant danger to the cyber security of our 

nation's critical infrastructure, our service industries, and 

our entire civilization. Smartphones and tablets have 

exploded in popularity in recent years, and now they're 

powerful enough to replace many desktop computers' 

functions. Applications for usage on such gadgets have 

been developed by a wide range of entities, such as 

government and banking institutions [1]. Most of our most 

private and essential documents are now saved on the 

cloud, and we can view them from anywhere with a mobile 

device. Malware developers have taken note of this trend. 

Droid Dream, an aspect of Android malware found in over 

50 apps on the official Android market, is only one 

example of many established incidents of Android 

malware. The built-in security measures of Android are 

essentially inadequate, and data may be leaked by even 

benign apps. Smartphones often serve as a repository for 

sensitive information, including photographs, text 

messages, and login passwords [2]. This makes them an 

easy target for bad actors.  Smartphones using Google's 

Android OS are the market leaders. Android devices, 

however, account for roughly 97% of malware. The fact 

that practically every transaction that can be completed on 

a computer can now be completed on a mobile device is 

the driving force behind these advancements, and it is also 

the fundamental reason why they have occurred. At the 

very beginning of choice for mobile devices are the 

dimensions, as well as the benefits that come with the 

measurements at the point where transportation is 

concerned [3]. As processing capabilities have increased 

and as interest in gadgets has grown, it has gained a lot of 

traction among attackers. Attackers will almost always 

target sites that are of very high interest to a large number 

of people. In the digital age, if a specific person or 

organization is not targeted, the objective is to spread the 

malware to the most significant number of users possible. 

When looking at the mobile OSs that are used all over the 

globe, the two that stand out as the most popular are 

Android and iOS [4]. Other OSs have a consumption rate 

that is just 1.7% of the total, in contrast to these two OSs, 

which account for 98.3% of the entire usage in the globe. 

The number one spot goes to the Android OS, which has a 

use rate of 70 percent, while the number two spot goes to 

the iOS OS, which has a rate of 28.3 percent. Machine 

learning algorithms have become particularly significant in 

areas where antivirus software is inadequate to guarantee 

that mobile platforms, which can run software that is 

becoming more complicated, may become better protected 

against harmful software [5]. This is because mobile 
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platforms can run software that is becoming increasingly 

complex. Based on authorizations and API requests, and 

even though these methods gather conversations between 

applications on smartphones and Android systems, any 

interaction that occurs within the applicable limitations 

isn't considered in the assessment. As a result, it is not 

enough to detect malicious software that is not asking for 

suspicious resources. Malware assaults have so spread to 

mobile devices, making it imperative that we take 

measures to secure our mobile infrastructure [6]. In this 

work, a golden jackal-optimized support vector machine is 

employed to find malicious Android phone attacks. The 

results of our experiments prove that our technique 

successfully identifies Android malware. 

The rest of the sections of the paper are structured as 

follows. In Section 2, we give a literature review on similar 

efforts in Android malware detection. Our detection 

system, including the feature extraction method, is 

described fully in Section 3. In Section 4, we detail the 

experiment and its findings. Finally, we conclude the task 

in Section 5. 

2. Related work 

They build the link between the permission and API using 

a machine learning technique to detect malware by mining 

the patterns of approval and API function calls obtained 

and utilized by Android applications. Despite this, the 

harmful samples they have gathered are not sufficient [7]. 

A framework for feature-based learning that focuses on the 

behaviors of requested permissions and API requests and 

that applies the SVM, Decision Tree, and Bagging 

algorithms. However, they only extract authorization and 

API as features, which leads to a poor level of accuracy 

since they only remove a few different kinds of 

characteristics [8]. Despite this, research on mobile 

malware is still in its infant stage. The methods that are 

now available to identify mobile malware and other flaws 

in security have varied degrees of both strengths and 

drawbacks [9]. The random forest algorithm uses three 

distinct feature selection methods. The effects of 

implementing three alternative feature selection methods 

effective, high weight and effective group feature selection 

are evaluated. Applying feature selection approaches 

improves accuracy regarding metrics and needed time, 

according to experiments on the Drebin dataset [10]. They 

employed an evolutionary algorithm to find Android 

smartphone malware. They contrasted our system with 

several cutting-edge algorithms to assess it. Finally, their 

suggested strategy can detect zero-day malware [11]. 

Numerous ML-based methods for detecting malware on 

Android have been presented. Multiple difficulties arise 

from ignorance of the technologies available for detecting 

malware on Android devices [12]. Additionally, to ensure 

device compatibility, authorization, and hardware 

characteristics are simultaneously stated in the manifest 

file of an application (app). To characterize applications, 

we extract permissions, API requests, and hardware 

characteristics [13]. The TANMAD algorithm, a two-step 

Android malware detection method, first narrows the 

potential malware families to be detected before using sub-

graph isomorphism matching. The modeling of object 

reference information by creating directed graphs, or 

ORGB, is the main innovation of their study [14]. 

3. Methodology 

The main goal is to create a classifier that, for the most 

part, classifies training data as positive and only labels 

training or testing data as negative when it sufficiently 

deviates from training data. Given that innocuous Android 

apps are far simpler to find than malicious ones, it will be 

the perfect choice for our purposes. The antivirus software 

business known as Zeman gave us the files that are 

included in the dataset so that we may do this research. To 

extract functionality from pre-packaged Android apps 

(APKs), we use an open-source project known as 

Androguard. Our study's suggested flow is shown in figure 

1. 

 

Fig. 1. Flow of GJOSVM 

3.1 Data Acquisition and Dataset 

There are 2870 legitimate apps and 2854 malicious ones in 

the newly produced dataset. Virus Total and Virus Share 

have verified the presence of harmful and non-malicious 

Android apps in this dataset [15]. This information cannot 

be downloaded by any user, which defeats the purpose of 

the infection. Due to the sensitive nature of the work that 

will be performed via the use of the corporate e-mail 

account, specific authorization for harmful software has 

been secured by corresponding with the proprietors of this 

website through e-mail. The whole collection consists 

entirely of binary information. A value of 0 for any of the 

117 characteristics implies that the program does not seek 

authorization for the feature in question, whereas a value 

of 1 indicates that it does. A value of 0 for this class 

attribute implies that the program is safe, whereas a value 
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of one indicates that it is malicious. The apps' access controls are shown in Table 1. 

Table 1. Features of Android APK authorization 

 

3.2 Feature Extraction 

To successfully implement any kernel, we must first isolate 

the most crucial aspects of the application. APK files, the 

standard format for Android application packaging, are 

quite similar to ordinary Java jar files. To process these 

files and extract features, we use the open-source software 

Androguard. Androguard has a user interface that is not 

too complicated and may be used to do analysis and 

reverse engineering on Android apps. 

Every APK requires a manifest file that, among other 

things, requests authorization to access specific protected 

components of the Android OS. Accessibility for various 

hardware devices, sensitive aspects of the OS, and specific 

sensitive features of other programs are all included in 

these pieces. For instance, the 

"android.permission.INTERNET" permission demands the 

ability to access the Internet, but the 

"android.permission.READ CONTACTS" permission 

desires the ability to read the mobile contacts database of 

the user. 

After we have obtained the list of rights that are being 

sought, we split it into two categories: built-in permissions 

that are considered standard and permissions that are not 

regarded as standard. We build a binary vector for legal 

permissions, and each item corresponds to a built-in 

permission. The entry is given a value of 1 if the program 

wants that permission and a value of 0 if it does not seek 

that permission. In the case of non-standard permissions, 

we break the strings up into three sections: the prefix 

(which is often "com" or "org"), the portion containing the 

organization and product, and the permission name itself. 

We don't pay attention to any instances of the phrases 

"android" or "permission" since they are so common. 

3.3 k-Fold Cross-validation 

The technique for segmenting the data set that is utilized 

for training the model through executing the calculation 

procedures of the models in classification processes is 

called k-fold cross-validation. In addition to these 

assessments, cross-validation is an additional method that 

may be used to evaluate learning algorithms. This method 

involves segmenting the data and comparing the segments 

to one another. In the process of cross-validation, the 

training set and the validation set are repeatedly combined 

so that each data point gets the opportunity to be verified. 

The k-fold cross-validation method is the fundamental kind 

of cross-validation. K-fold cross-validation is the popular 

technique for model selection and error estimates of 

classifiers. This is mainly attributable to the fact that it is 

both versatile and useful when used in data mining 

applications. The k-fold cross-validation approach utilized 

in this work is shown essentially in figure 2. Figure 2 

shows the results of a k value is 10 cross-validation. The 

dataset is partitioned into k pieces in this approach. 

Iteratively, models are trained on k-1 parts and tested on a 

single sample. When k iterations are performed, k outputs 

are generated. Simply averaging the gathered findings will 

give you the average metrics of the models' performance. 
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Fig. 2. k-fold cross validation

3.4 Classification using GJOSVM 

Inspired by the strategies used by golden jackals, a type of 

canid found in many regions of the globe, Golden Jackal 

Optimization (GJO) is a natural-based optimization 

method. Metaheuristic algorithms, like GJO, are problem-

solving techniques that take natural cues. The GJO 

algorithm is based on many behaviors seen in the golden 

jackal. Jackals, for instance, have earned a reputation for 

versatility because of their capacity to thrive in habitats as 

varied as deserts and woodlands. In addition to being 

formidable foes, they use shrewd methods of hunting. 

Define the viral detection challenge by considering the 

viruses' properties, the data at hand, and the processes 

already in use. It's up to you to figure out what goes into it 

and how you'll judge success. Produce an initial set of 

solutions representing possible detection procedures. 

Several factors, including genetic markers, machine 

learning algorithms, and feature extraction methods, may 

affect the accuracy of a detection system. Therefore there 

are many possible solutions. Evaluate the viability and 

performance of each option in the population. Here, we put 

the parameters and characteristics we've chosen for viral 

detection through their paces and assess how well they 

function by calculating metrics like detection accuracy, 

sensitivity, specificity, and false positive rate. Explore 

possible solutions by simulating the hunting behavior of 

golden jackals. Solutions, which stand in for detection 

strategies, may be improved by adjusting their parameters 

or characteristics in light of the collective knowledge 

gathered from other solutions. This may need trying out 

different feature sets, tweaking algorithm settings, or 

changing which genetic markers are used. The fitness 

measurements and convergence criteria used to evaluate 

the performance of GJO and other algorithms are just as 

important as the quality and variety of the original 

population. 

For detecting purposes, we use the SVM algorithm, whose 

defining characteristic is its foundation in structural risk 

reduction. Optimize learning's generalizability or the extent 

to which a small training set can ensure a sizeable 

independent test set that maintains a small error. Little 

sequences determined by regular access to the unusually 

short series in the sample might include normal 

intermittent, causing the SVM classifier to produce 

classification error; thus, the implementation of a detection 

module, which provided follows the level of risk using 

malware to make decisions. Taking into mind the fact that 

the impact of malicious software on a smartphone's 

operating system and its user is distinct from the damages 

brought about by the introduction of a risk factor (also 

known as RF or Risk Factor), RF is applied to every one of 

the system's brief sequences. Act of malice committed with 

the intention of providing a weight, the correct basis. If the 

behavior of the system and user poses a more significant 

security danger, which results in an RF that is more than 1, 

the value is set to 1. The introduction of risk (also known 

as Risk Rank or RR) is a program that serves as a measure 

of the quantitative detection of malware. The RR is defined 

as follows: 

𝑅𝑅 = ∑ 𝑛𝑐𝑠𝑖 × 𝑅𝐹𝑛𝑐𝑠𝑖
𝑛
𝑖=1       (1) 
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Establish a malware detection threshold known as D, 

whose value will be based on the experiment's findings. 

Based on our findings, a D value of 17 will serve as the 

most effective detection threshold. When the RR is found 

to be more than the D that was computed, the program is 

finally identified as malicious software. 

4. Result and Discussion 

Classifications have been carried out using the Android 

Malware Dataset's 112 characteristics to determine if apps 

are malicious or not. Experiments used a computer that had 

an Intel® i5® 10200H CPU operating at 2.40 GHz, an 

NVIDIA GTX1650Ti GPU, and 24 GB of RAM. In the 

approach of cross-validation used for training, the 

classification models were decided to have a value of k 

equal to 10. While training the models, each of the 116 

inputs and the single class feature was used, together with 

all of the characteristics included in the dataset. 

Performance metrics are used to analyze and compare the 

performance of various suggested models. Metrics like 

“accuracy, precision, recall, and the F-1 Score” were used 

in this investigation. While training the proposed model, 

the kernel function was analyzed and found to be an RBF 

(Radial Basis Function) with a numerical tolerance of 

0.0010 and an iteration of 100. 

 

Fig.3. Accuracy 

Figure 3 shows the accuracy of the proposed system. The 

accuracy of malware detection systems can vary depending 

on various factors, including the techniques and algorithms 

used, the quality and diversity of the dataset, and the 

sophistication of the malware samples. Achieving high 

accuracy is an ongoing challenge due to the constantly 

evolving nature of malware. DL has attained 82 %, FL-

BDE has acquired 91 %, DBN-GRU has reached 93 %, 

and the proposed system achieves 96 % accuracy.  It shows 

that the proposed approach has more effective than the 

existing one. The Equation (2) for determining accuracy is 

as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) /

 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +

 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)                        

(2) 

 

Fig. 4. Precision 

Figure 4 shows the precision of the proposed system. The 

accuracy of a malware detection system is measured by 

how many malicious samples out of a whole set are really 

malicious. It is a test of how well positive malware 

predictions can be made. The equation (3) for determining 

precision is as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +

 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)                                 (3) 

Accurately recognizing malware while not incorrectly 

labeling safe files as harmful is only possible with a system 

that has a low false positive rate, which is shown by high 

precision. In security-sensitive contexts, where false 

positives may have dire repercussions, accuracy in 

malware detection systems is a crucial parameter. DL has 

attained 72 %, FL-BDE has acquired 77 %, and DBN-

GRU has reached 86 %, whereas the proposed method 

achieves 92 % of precision.  It shows that the proposed 

approach has more effective than the existing one. 

 

Fig. 5. Recall 
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Figure 5 shows the recall of the proposed system. The 

recall metric calculates the percentage of malware samples 

properly recognized relative to the overall malware 

samples in the dataset. This metric is also known as 

sensitivity or actual positive rate. It measures how well a 

malware detection system can detect malware samples. 

The Equation (4) for the recall is as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 /(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +

 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)                              

(4) 

It measures how well a system can detect malware in a 

dataset. DL has attained 88 %, FL-BDE has acquired 92 %, 

DBN-GRU has reached 90 %, whereas the proposed 

method achieves 94 % of recall. It demonstrates that the 

suggested technique is more successful than the existing 

one. 

 

Fig. 6. F1-Score 

A balanced evaluation of a malware detection system's 

performance is presented by the F1-score, a statistic that 

combines accuracy and recalls into a single number. It 

takes into account both the accuracy with which malware 

samples may be detected as well as the capacity to detect 

all instances of malware. The F1-score calculation 

equation (5) is as follows: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙) /

 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)                                                       

(5) 

The F1-score ranges from 0 to 1, with 0 denoting subpar 

performance and 1 signifying flawless accuracy and recall. 

DL has attained 78 %, FL-BDE has acquired 82 %, and 

DBN-GRU has reached 85 %, whereas the proposed 

system attains 91 % of the f1-score.  It shows that the 

proposed approach has more effective than the existing 

one. 

5. Conclusion 

In this work, classification procedures were carried out 

utilizing GJOSVM techniques utilizing the data of 2850 

harmful apps and 2866 non-malicious applications used in 

the Android OS. To conduct in-depth performance 

assessments, 10-fold cross-validation was used. The 

suggested model has values of 96% for accuracy, 92% for 

precision, 94% for recall, and 91% for F-1 Score. These 

values are all much higher than the average.  It is feasible 

to create antivirus software that is more effective by using 

the models that are advised for the identification of 

malware. In subsequent investigations, the dataset will be 

enlarged, and various machine-learning approaches will be 

used to identify malware. 
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