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Abstract: Signal processing applications rely on pre-processing, context-based data selection, representation of data into 

features & their selection of input datasets. These operations enhance the effectiveness of classification, prediction, and other 

data-dependent applications. Researchers have proposed a variety of machine learning models to perform this task, each with 

its own nuances, advantages, limitations, and future research directions. However, these models are either application-specific 

or employ a black-box approach, limiting their scalability and context-specific performance across a variety of applications. 

This text proposes a novel bio-inspired model that combines high-efficiency multipurpose data compression and representation 

through adaptive signal analysis in order to circumvent this limitation. The proposed model combines two distinct bio-inspired 

methods for the parametric tuning of compression and feature extraction models, respectively. Initially, a Particle Swarm 

Optimizer (PSO) Model is used to determine the optimal compression model parameters. This compression can be lossy or 

lossless, and it can be altered according to the needs of the deployed applications. This text makes use of an ensemble 

compression layer that combines Huffman, Run Length Encoding (RLE), Wavelet, ZLib, BZ2, and LZMA, which aided in 

high-density compression and dataset aggregation. These compressed and aggregated signals are subjected to a feature 

extraction process that is controlled by a Multiple objective Genetic Algorithm (MGA) Model, which aids in the selection of 

window sizes, stride sizes, padding sizes, etc. of the feature extraction model. For large-scale feature extraction, this model 

employs a combination of statistical, convolutional, Fourier, and Cosine transformation techniques. Multiple objective GA 

models also perform the selection of these features. The fused MGA PSO Model was applied to a wide range of applications, 

such as electrocardiogram (ECG) classification, plant disease detection, stock market prediction, and credit card fraud 

detection using various test signals. It was observed that the proposed model could improve classification accuracy by 3.5 

percent, classification precision by 4.1 percent, and classification recall by 3.8 percent, while it could also improve prediction 

accuracy by 5.4 percent, precision by 3.9 percent, and recall by 4.5 percent when averaged across different test sequences. Due 

to the use of compression layer, the model was also able to reduce the processing delay by 8.5% compared to other 

contemporary methods. 

Keywords: Feature, Extraction, Compression, Selection, Fusion, Bioinspired, MGA, PSO 

 

1. Introduction 

Adaptive signal processing is a multidisciplinary field 

that involves data compression, representation, 

classification, post-processing, and other complex 

signal-based operations. A typical adaptive signal 

processing model is depicted in figure 1, wherein data 

collection, adaptive cancellation for denoising & 

compression, Cross Ambiguity Function (CAF) & 

Constant False Alarm Rate (CFAR) detection for 

continuous tuning, target feature variance detection, 

harmonic detection, & feature selection models are 

depicted [1]. 

 

Fig 1. A typical Adaptive Signal Processing Model 
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This model yields multidimensional features that are 

applicable to a wide range of application deployments. 

Researchers propose similar models by altering their 

internal characteristics. The following section of this 

text provides an overview of these models [2, 3, 4, 5, 

6] in terms of their nuances, advantages, limitations, 

and future research scopes. On the basis of this 

discussion, it was determined that existing models are 

either application-specific, which enables high-

accuracy operation but has limited scalability, or use 

a black-box framework for high-density but low-

accuracy feature extraction, which limits their 

deployment capabilities. In order to overcome this 

limitation, Section 3 proposes the design of a novel 

bio-inspired model for high-efficiency multipurpose 

data compression and representation by means of 

adaptive signal analysis. The model combines 

Multiple objective Genetic Algorithm (MGA) and 

Particle Swarm Optimization (PSO) for feature 

extraction & selection and data compression 

optimizations, respectively. The fusion of both models 

facilitates the extraction of high-density features, 

which can be utilized in multiple applications. 

Different test datasets were used to evaluate the 

performance of this model for electrocardiogram 

(ECG) classification, plant disease detection, stock 

market prediction, and credit card fraud detection. In 

section 4, the performance of the model for these 

applications is evaluated in terms of accuracy, 

precision, recall, and delay metrics. On the basis of 

this evaluation, readers will be able to determine the 

performance enhancement percentage after 

implementing the proposed model. This text 

concludes with some insightful observations 

regarding the proposed model, as well as suggestions 

for improving its performance. 

2. Literature Review 

Feature extraction & data representation models allow 

researchers and system designers to easily identify 

patterns between different sets of data sources. For 

instance, work in [1, 2, 3] proposes methods for ECG 

classification via use of kernelized fuzzy rough 

sets (KFR), Genetic Algorithm (GA) with Support 

Vector Machine (SVM), and Slope Variation 

Measurement for better feature representation of these 

signals. The performance of these models is further 

extended via the work in [4, 5, 6], wherein researchers 

have used CNN with SVM, Multiple Leads-based 

Branch Fusion Network (MLBF-Net), and Multiple 

Feature Sparse Representations Learning with 

Collective Matrix Factorization for improving 

classification performance under different datasets.  

Methods that utilize plant diseases via feature variance 

estimation are discussed in [7], wherein multiple sets 

of features are extracted via different deep learning 

methods, and their performance is compared in terms 

of accuracy, precision and recall metrics. Specific 

models that perform similar tasks are discussed in [8, 

9, 10], which propose use of Long Short-Term 

Memory (LSTM), Texture Features with CNN (TF 

CNN), and Multiple Task learning with Attention 

Features (MTL AF) showcase that extracting 

multimodal feature sets improves accuracy of 

classification for different applications. Similar 

observations are done in [11, 12], which propose that 

depth=wise separable convolution features with CNN 

(DSCNN), and extreme learning machine (ELM) with 

Kuan filtering (KF) has better performance when 

compared with linear feature extraction methods for 

the same datasets.  

When considering credit card fraud detection 

applications, work in [13, 14, 15] proposes use of 

Temporal Transaction Scraping with Autoencoder 

Based Feature Engineering (TTS ABF), Neural 

Feature Aggregation Framework (NFAG), LSTM 

with Adaboost is used for improving classification 

performance under different datasets. Extensions to 

these models are discussed in [16, 17, 18], which 

propose use of Transfer Learning Strategies (TLS), 

topological features via Node2Vec, and Sparse 

Feature Selection with Overlap Minimization (SFS 

OM), methods for better performance under different 

input datasets. These methods utilize feature variance 

to reduce redundancies during classification & 

prediction phases. Another application which was 

considered for evaluation uses stock value features, 

for prediction of different inter-day and intra-day 

stock prices. Work in [19, 20, 21] propose use of 

Extreme Gradient Boosting (XGBoost) with Deep 

Neural Network (DNN) regression model, Hybrid Red 

Deer Grey Algorithm (HRDGA), and Candlestick 

Charting with Novelty Feature Engineering Scheme 

(CC NFES) in order to extract high-density stock 

indices, which can be used for low-complexity 

classification scenarios. Similarly, models proposed 

in [22, 23, 24] also discuss use of novel feature 

extraction & classification methods including, GA 

with LSTM, LSTM features with Multimodal 

augmentation process, and Spatial-Temporal Deep 

Neural Network (ST DNN) for improved prediction 

performance under different stock market types. 
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These models showcase low redundancy, and high 

efficiency feature extraction & classification methods, 

which are used for evaluation by this text. But these 

models have limited scalability due to their 

application-specific characteristics, which can be 

improved via use of the proposed MGA & PSO Model 

described in the next section of this text, and can be 

applied to varying application scenarios. 

3. Proposed MGA & PSO Model for 

high-efficiency feature representation 

Based on the literature survey it was observed a wide 

variety of feature extraction, and data representation 

models are proposed by researchers, and each of them 

have their own context-specific or application 

independent characteristics. But these models either 

use a customised method for individual applications, 

or utilize a general-purpose black-box method for 

higher scalability. In both cases, either performance is 

compromised, or scalability is reduced, which limits 

their application to a small sub-set of data sources. To 

overcome this limitation, a novel bioinspired model 

for high-efficiency multipurpose data compression & 

representation via adaptive signal analysis is 

discussed in this text. The proposed model initially 

uses a combination of parameter tuned Huffman, Run 

Length Encoding (RLE), Wavelet, ZLib, BZ2, and 

LZMA methods for high-density compression & data 

aggregation processes. This operation is followed by 

another bioinspired model that combines statistical, 

convolutional, Fourier, and Cosine transformation 

methods for high-density feature extraction, that can 

be used by multiple applications. Overall flow of the 

proposed model is depicted in figure 2, wherein data 

compression, feature extraction, and application-

specific control models are visualized, which can be 

applied to multiple deployment scenarios. 

The model design is divided into multiple sub 

modules, and each of these modules are discussed in 

different sub-sections of this text. Based on this 

discussion, readers will be able to implement these 

modules in part(s) or as whole, depending upon their 

application requirements on different types datasets. 

3.1. Design of the PSO based data compression 

layer 

The dataset of different applications is directly 

processed via a compression layer, which assists in 

dimensionality reduction for improving 

computational speed of underlying application 

deployments. 

 

Fig 2. Overall flow of the proposed model for feature 

compression, extraction & selection process 

This layer uses a combination of lossless compression 

models including, Huffman, Run Length Encoding 

(RLE), ZLib, BZ2, & LZMA, and lossy data 

compression via different Wavelet methods to design 

a novel high efficiency compression & aggregation 

layer. Table 1 summarizes different parameters for 

these models, which are used by PSO for application-

specific optimizations. 

Method Parameters Reason for 

selection 

Huffman Maximum 

length of code 

𝑀𝑎𝑥𝐿(𝐻) 

Produces highly 

compact codes for 

input dataset, and 

has good 

representation 

efficiency 

RLE None Simple to encode 

and decode, has 

faster performance 
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ZLib Compression 

Level 𝐶𝐿(𝑍) 

Provides better 

compression 

performance when 

compared with RLE 

& Huffman 

BZ2 Compression 

Level 𝐶𝐿(𝐵) 

Has higher 

compression ratio 

that ZLib 

LZMA Compression 

Level 𝐶𝐿(𝐿) 

Dictionary 

Size 𝐷𝐿(𝐿) 

Highly customizable 

lossless compression 

with good 

compression ratio 

under different 

datasets 

Wavelet Wavelet type 

𝑊𝑇 

Guarantees 75% 

compression with 

minimum distortion 

in data samples 

Table 1. Methods & their parameters 

Based on these methods, a PSO based Model is 

deployed, which assists in dataset specific 

compression for improving efficiency during 

application deployments. This PSO Model works via 

the following process, 

• Initialize following PSO parameters, 

o Iterations needed for optimization (𝑁𝑖) 

o Particles needed for optimization (𝑁𝑝) 

o Cognitive Rate of Learning (𝐿𝑐) 

o Social Learning Rate (𝐿𝑠) 

o Application compression requirements 

(Lossy or Lossless) 

• Based on these parameters, initial population 

is generated via the following process, 

o For each particle in 1 to 𝑁𝑝 perform the 

following process, 

▪ If the compression type is lossy, then 

stochastically select different wavelet types from 

Haar, Daubechies, Bior, Coiflet, Symlet, Morlet, 

Meyer, and Reverse Bior 

▪ If the compression type is lossless, then 

evaluate values of compression models via equation 1, 

𝐶𝑃𝑖 = 𝑆𝑇𝑂𝐶𝐻(𝑀𝑖𝑛(𝑃𝑖), 𝑀𝑎𝑥(𝑃𝑖)) … (1) 

Where, 𝑆𝑇𝑂𝐶𝐻 represents a stochastic process, while 

𝑃𝑖  represents tuneable parameter for the 𝑖𝑡ℎ 

compression model which is lossless. 

• Perform cascaded compression via these 

methods, and evaluate particle fitness via equation 2 

as follows, 

𝑓𝑝 =
𝑂𝑈𝑇(𝐿)

𝐼𝑁(𝐿)
… (2) 

Where, 𝑂𝑈𝑇(𝐿), 𝐼𝑁(𝐿) represents length of the output 

data, and length of the input data respectively, while 

𝑓𝑝 represents particle fitness, and it initially marked as 

particle best (𝑃𝐵𝑒𝑠𝑡) value 

• Maximum value of this fitness is marked as 

Global Best (𝐺𝐵𝑒𝑠𝑡) via equation 3 as follows, 

𝐺𝐵𝑒𝑠𝑡 = 𝑀𝑎𝑥 [⋃ 𝑃𝐵𝑒𝑠𝑡𝑖

𝑁𝑝

𝑖=1

] … (3) 

• Based on these values, new particle values 

are estimated by iterating the following process 𝑁𝑖 

times, 

o Evaluate new value of particle position via 

equation 4, 

𝑁𝑒𝑤(𝑃) = 𝑂𝑙𝑑(𝑃) ∗ 𝑟 + 𝐿𝑐[𝑂𝑙𝑑(𝑃) − 𝑃𝐵𝑒𝑠𝑡]

+ 𝐿𝑠[𝑂𝑙𝑑(𝑃) − 𝐺𝐵𝑒𝑠𝑡] … (4) 

Where, 𝑁𝑒𝑤(𝑃), & 𝑂𝑙𝑑(𝑃) represents new particle 

fitness, and old particle fitness respectively, while 𝑟 

represents a stochastic number between (0,1), which 

is evaluated via a Gold Code Stochastic Number 

Generator process. 

o Update 𝑃𝐵𝑒𝑠𝑡, if 𝑁𝑒𝑤(𝑃) > 𝑃𝐵𝑒𝑠𝑡, else go 

to the next iteration 

o If 𝑃𝐵𝑒𝑠𝑡 is updated, then modify the 

compression parameters stochastically to obtain the 

𝑃𝐵𝑒𝑠𝑡 value 

• At the end of 𝑁𝑖 iterations, select the solution 

with maximum fitness value, and use its parameters 

for final data compression & aggregation process. 

Based on this optimization model, the data is 

compressed with highest compression ratio, and can 

be used for feature extraction process. The feature 

optimization process is described in the next sub-

section of this text. 

3.2. Discussion about MGA based feature 

processing operations 

The compressed features have higher density when 

compared with their non-compressed form, this is 

because compression aims at reducing redundancies 

in the datasets, which assists in improving its 

compression ratio for different input types. This 

compressed data is processed via a Multiple objective 
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Genetic Algorithm (MGA) Model, that combines 

convolutional, Fourier, Cosine, Wavelet and 

Statistical feature vectors for improving its data 

representation capabilities. The model also optimizes 

feature variance, which assists in improving its 

representation capabilities. It requires extracted 

features for optimization, which are evaluated via 

different Mathematical identities. For instance, 

Convolutional features are extracted via equation 5 as 

follows, 

𝐶𝑜𝑛𝑣𝑜𝑢𝑡𝑖,𝑗
= ∑ ∑ 𝐷𝑎𝑡𝑎(𝑖 − 𝑎, 𝑗 − 𝑏)

𝑛

2

𝑏=−
𝑛

2

𝑚

2

𝑎=−
𝑚

2

∗ 𝑅𝑒𝐿𝑈 (
𝑚

2
+ 𝑎,

𝑛

2
+ 𝑏) … (5) 

Where, 𝑚, 𝑛 represents dimensions of window for the 

input 𝐷𝑎𝑡𝑎, while 𝑎, 𝑏 represents stride sizes for the 

convolution process, and 𝑅𝑒𝐿𝑈 represents a 

Rectilinear Unit, which is used for activation of 

features. These features can be evaluated for any 

dimension of input data, and thus contain some 

redundancies which must be removed via variance 

maximization process. These features are extended via 

use of Fourier transform on compressed data via 

equation 6, 

𝐹𝑜𝑢𝑡 = ∑ 𝐷𝑎𝑡𝑎(𝑖) ∗ exp [−𝑗 ∗ 2 ∗ 𝜋 ∗ 𝑤 ∗
𝑖

𝑁
] … (6)

𝑁−1

𝑖=0

 

Where, 𝑤 represents window size for the Fourier 

transform, while 𝑁 represents number of compressed 

data samples. These features are further extended via 

use of Cosine transform features which are evaluated 

via equation 7 as follows, 

𝐷𝑜𝑢𝑡𝑤
=

1

√2𝑁
∗ 𝐷𝑎𝑡𝑎𝑤

∗ ∑ 𝐷𝑎𝑡𝑎𝑖

𝑁−1

𝑖=0

∗ cos [(2 ∗ 𝑖 + 1) ∗ 𝑗

∗
𝜋

2 ∗ 𝑁
] … (7) 

Where, 𝑤 represents size of window for the Cosine 

transform, and can be tuned via optimization 

processes. These features are combined with statistical 

features, that include variance, standard deviation, 

minimum value, maximum value, and mean value, 

which are evaluated via equations 8, 9, and 10 

respectively as follows, 

𝑆𝑡𝑑 = √∑
[𝐷𝑎𝑡𝑎𝑖 − ∑

𝐷𝑎𝑡𝑎𝑗

𝑁

𝑁
𝑗=1 ]

2

𝑁 − 1

𝑁

𝑖=1

… (8) 

𝑉𝑎𝑟 = 𝑆𝑡𝑑2 … (9) 

𝑀𝑒𝑎𝑛 = ∑
𝐷𝑎𝑡𝑎𝑗

𝑁

𝑁

𝑗=1

… (10) 

Similarly, approximate and diagonal wavelet features 

are evaluated via equations 11 and 12 as follows, 

𝐴(𝑊)𝑖 =
𝐷𝑎𝑡𝑎𝑖 + 𝐷𝑎𝑡𝑎𝑖+1

2
… (11) 

𝐷(𝑊)𝑖 =
𝐷𝑎𝑡𝑎𝑖 − 𝐷𝑎𝑡𝑎𝑖+1

2
… (12) 

All the features are combined to form a super feature 

vector (SFV), which is processed via the MGA Model 

for improving feature representation efficiency, and 

variance levels. The MGA Model works via the 

following process, 

• Initialize MGA parameters as follows, 

o Iterations needed for optimization (𝑁𝑖) 

o Solutions needed for optimization (𝑁𝑠) 

o Rate for solution learning (𝐿𝑟) 

• To start the process, mark every solution as 

‘should be modified’ 

• Go to individual iterations between 1 to 𝑁𝑖 

o Go to individual solutions between 1 to 𝑁𝑠 

▪ Modify all ‘should be modified’ solutions via 

the following process, 

• Generate stochastic values for convolution 

window size, convolution padding size, Fourier 

window size, and Cosine transform window size 

• Based on these sizes, evaluate the SFV, and 

estimate its fitness via equation 13 as follows, 

𝑓𝑖 = ∑
[𝑆𝐹𝑉𝑖 − ∑

𝑆𝐹𝑉𝑗

𝑁

𝑁
𝑗=1 ]

2

𝑁 − 1

𝑁

𝑖=1

∗ 𝐴𝑝𝑝𝑀𝑖(𝑆𝐹𝑉) … (13) 

Where, 𝐴𝑝𝑝𝑀 represents the application specific 

metric which requires optimization (maximization), 

and can be accuracy, precision, recall, fMeasure, Area 

Under the Curve (AUC), etc. This metric is evaluated 

via the selected feature vectors, and used for 

continuous performance improvements. 

▪ Estimate solution fitness via equation 14,  

𝑓𝑡ℎ = ∑ 𝑓𝑖 ∗
𝐿𝑟

𝑁𝑠

… (14)

𝑁𝑠

𝑖=1
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o Solutions are termed as ‘should be modified’, 

where 𝑓𝑖 ≤ 𝑓𝑡ℎ, else they are mark as ‘should not be 

modified’ 

• Repeat this process for all iterations, and 

select the feature configuration with maximum fitness 

values. 

Based on this process, a SFV is evaluated via selection 

of most variant, and highly efficient feature vectors. 

The feature vectors are further tuned via a feedback 

layer, which assists in continuous tuning of the model 

as per the deployed application characteristics. 

3.3. Design of the feedback layer for continuous 

performance optimizations 

Once features are extracted via the MGA model, they 

are further optimized via a continuous learning 

process. This process uses a combination of 

correlation-based matching, along with continuous 

parameter update for achieving better application-

specific performance under different input conditions. 

To perform this task, every new input entry from 

dataset is given to compression & feature extraction 

layers to generate a SFV, which is correlated with all 

training samples via equation 15 as follows, 

𝐶𝑜𝑟𝑟𝑗

=
∑ 𝑆𝐹𝑉(𝑇𝑟𝑎𝑖𝑛𝑖) − 𝑆𝐹𝑉(𝑁𝑒𝑤)𝑁

𝑖=1

√∑ [𝑆𝐹𝑉(𝑇𝑟𝑎𝑖𝑛𝑖) − 𝑆𝐹𝑉(𝑁𝑒𝑤)]2𝑁
𝑖=1

… (15) 

If the value of correlation with any training sample is 

higher than 0.999, then the sample is added to the 

training set, and optimization models are reevaluated 

with these new samples. Based on these optimizations, 

model variance is improved, and a continuous 

improvement in classification accuracy & prediction 

performance is observed. The proposed model was 

evaluated under different datasets, and its efficiency 

was compared with various state-of-the-art methods in 

the next section of this text. 

4. Results & Comparison 

Combining feature compression, feature extraction, 

and variance-based feature selection, the proposed 

model enhances the performance of various signal 

processing applications. To evaluate this 

performance, applications for electrocardiogram 

(ECG) classification, plant disease detection, stock 

market prediction, and credit card fraud detection 

were deployed and their accuracy, precision, recall, 

and delay were measured. The ECG data was 

extracted from the standard MITBIH dataset, the plant 

disease data from the Plant Pathology dataset, the 

stock market data from the Yahoo Finance dataset, 

and the credit card fraud detection data from the 

Kaggle datasets. All of these datasets were 

categorized using an Artificial Neural Network 

(ANN) model, and the model's performance was 

assessed using various test signal sets. Each set was 

divided into a 70:30 ratio, with 70% of the entries used 

for training and the remaining 30% for evaluating the 

deployed application scenarios. The accuracy of ECG 

classification for various datasets when compared to 

GA SVM [2], CNN SVM [4], and MLBF [5] can be 

viewed in table 2 as follows, 

Test 

Entries 

A (%) 

GA 

SVM 

[2] 

A (%) 

CNN 

SVM 

[4] 

A (%) 

MLBF 

[5] 

A (%) 

BMHM 

CRAS 

500 79.50 85.30 86.74 94.92 

1000 79.80 85.60 87.05 95.27 

1500 79.90 85.90 87.26 95.50 

2000 80.20 86.20 87.58 95.84 

2500 80.40 86.50 87.84 96.13 

3000 80.62 86.80 88.12 96.43 

3500 80.84 87.10 88.39 96.73 

4000 81.06 87.40 88.66 97.03 

4500 81.28 87.70 88.94 97.33 

5000 81.50 88.00 89.21 97.63 

6000 81.72 88.30 89.48 97.93 

7000 81.94 88.60 89.76 98.23 

8000 82.16 88.90 90.03 98.53 

9000 82.38 89.20 90.31 98.82 

10000 82.60 89.50 90.58 99.12 

Table 2. Accuracy for ECG Classification 

In terms of accuracy performance, it can be seen that 

the proposed model is 16.1% more accurate than GA 

SVM [2], 9.3% more accurate than CNN SVM [4, and 

8.5% more accurate than MLBF [5]. Similarly, the 

precision performance for the same application can be 

observed in the following table 3, 
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Test 

Entries 

P (%) 

GA 

SVM 

[2] 

P (%) 

CNN 

SVM 

[4] 

P (%) 

MLBF 

[5] 

P (%) 

BMHM 

CRAS 

500 75.86 81.38 82.76 90.56 

1000 76.05 81.67 83.01 90.84 

1500 76.24 81.95 83.26 91.11 

2000 76.48 82.24 83.53 91.41 

2500 76.68 82.52 83.79 91.69 

3000 76.89 82.81 84.05 91.98 

3500 77.10 83.10 84.31 92.26 

4000 77.30 83.38 84.57 92.55 

4500 77.51 83.67 84.83 92.84 

5000 77.72 83.95 85.09 93.12 

6000 77.93 84.24 85.35 93.41 

7000 78.14 84.52 85.61 93.69 

8000 78.35 84.81 85.87 93.98 

9000 78.56 85.10 86.14 94.26 

10000 78.77 85.38 86.40 94.55 

Table 3. Precision for ECG Classification 

In terms of precision performance, it can be observed 

that the proposed model is 15.5% superior to GA 

SVM [2], 8.3% superior to CNN SVM [4], and 7.9% 

superior to MLBF [5]. Similarly, the recall 

performance for the same application can be observed 

in the following table 4, 

Test 

Entries 

R (%) 

GA 

SVM 

[2] 

R (%) 

CNN 

SVM 

[4] 

R (%) 

MLBF 

[5] 

R (%) 

BMHM 

CRAS 

500 79.88 85.70 87.14 95.36 

1000 80.13 86.00 87.43 95.68 

1500 80.28 86.30 87.67 95.94 

2000 80.55 86.60 87.98 96.28 

2500 80.76 86.90 88.24 96.57 

3000 80.98 87.20 88.52 96.87 

3500 81.20 87.50 88.79 97.17 

4000 81.42 87.81 89.07 97.47 

4500 81.64 88.11 89.34 97.77 

5000 81.86 88.41 89.62 98.07 

6000 82.08 88.71 89.89 98.37 

7000 82.30 89.01 90.17 98.67 

8000 82.53 89.31 90.44 98.97 

9000 82.75 89.61 90.71 99.27 

10000 82.97 89.91 90.99 99.57 

Table 4. Recall for ECG Classification 

In terms of recall performance, it can be observed that 

the proposed model is 14.8% superior to GA SVM [2], 

10.3% superior to CNN SVM [4], and 9.4% superior 

to MLBF [5]. Similarly, the delay performance for the 

same application can be observed in the following 

table 5, 

Test 

Entries 

D (ms) 

GA 

SVM 

[2] 

D (ms) 

CNN 

SVM 

[4] 

D (ms) 

MLBF 

[5] 

D (ms) 

BMHM 

CRAS 

500 64.77 47.62 43.36 19.15 

1000 64.03 46.74 42.51 18.21 

1500 63.59 45.85 41.81 17.45 

2000 62.77 44.96 40.91 16.47 

2500 62.16 44.07 40.13 15.61 

3000 61.51 43.19 39.32 14.72 

3500 60.86 42.30 38.51 13.84 

4000 60.21 41.41 37.70 12.95 

4500 59.56 40.53 36.89 12.07 

5000 58.91 39.64 36.08 11.18 

6000 58.26 38.75 35.27 10.30 

7000 57.61 37.87 34.46 9.41 

8000 56.96 36.98 33.65 8.53 

9000 56.31 36.09 32.84 7.64 

10000 55.66 35.21 32.04 6.76 

Table 5. Delay for ECG Classification 

On the basis of this performance, it can be seen that 

the proposed model is 31.5% better than GA SVM [2], 

26.8% better than CNN SVM [4], and 25.5% better 

than MLBF [5], in terms of delay performance due to 

the use of compression models, making it useful for 
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high efficiency and high-speed ECG classification 

applications. Similarly, the accuracy of plant disease 

classification for various datasets when compared 

with TF CNN [9], MTL AF [10], and ELM KF [12] 

can be observed in table 6 as follows, 

Test 

Images 

A (%) 

TF 

CNN 

[9] 

A (%) 

MTL 

AF 

[10] 

A (%) 

ELM 

KF 

[12] 

A (%) 

BMHM 

CRAS 

200 65.40 83.20 78.21 85.59 

400 65.90 83.50 78.63 86.05 

600 66.50 83.90 79.16 86.63 

800 67.90 85.10 80.53 88.12 

1000 68.50 85.40 81.00 88.64 

1200 69.30 85.60 81.53 89.22 

1400 70.12 86.34 82.35 90.12 

1600 70.94 86.88 83.06 90.90 

1800 71.76 87.42 83.78 91.68 

2000 72.58 87.96 84.49 92.47 

2200 73.40 88.50 85.21 93.25 

2400 74.22 89.04 85.93 94.03 

2600 75.04 89.58 86.64 94.82 

2800 75.86 90.12 87.36 95.60 

3000 76.68 90.66 88.07 96.38 

Table 6. Accuracy for Plant Disease Classification 

In terms of accuracy performance, it can be seen that 

the proposed model is 19.4% more accurate than TF 

CNN [9], 4.9% more accurate than MTL AF [10], and 

7.4% more accurate than ELM KF [12]. Similarly, the 

precision performance for the same application can be 

seen in table 7, 

 

Test 

Images 

P (%) 

TF 

CNN 

[9] 

P (%) 

MTL 

AF 

[10] 

P (%) 

ELM 

KF 

[12] 

P (%) 

BMHM 

CRAS 

200 62.52 79.38 74.69 81.73 

400 63.05 79.71 75.14 82.23 

600 64.00 80.48 76.04 83.21 

800 64.95 81.19 76.92 84.17 

1000 65.62 81.43 77.39 84.69 

1200 66.39 81.88 78.04 85.40 

1400 67.17 82.49 78.77 86.20 

1600 67.95 83.00 79.45 86.94 

1800 68.73 83.51 80.13 87.69 

2000 69.51 84.03 80.81 88.44 

2200 70.30 84.54 81.49 89.18 

2400 71.08 85.06 82.18 89.93 

2600 71.86 85.57 82.86 90.67 

2800 72.64 86.09 83.54 91.42 

3000 73.42 86.60 84.22 92.17 

Table 7. Precision for Plant Disease Classification 

In terms of precision performance, it can be observed 

that the proposed model is 18.5% superior to TF CNN 

[9], 3.6% superior to MTL AF [10], and 8.3% superior 

to ELM KF [12]. Similarly, recall performance for the 

same application can be observed in the following 

table 8, 

Test 

Images 

R (%) 

TF 

CNN 

[9] 

R (%) 

MTL 

AF 

[10] 

R (%) 

ELM 

KF 

[12] 

R (%) 

BMHM 

CRAS 

200 65.77 83.59 78.61 86.03 

400 66.30 83.91 79.06 86.52 

600 67.10 84.51 79.79 87.32 

800 68.30 85.50 80.95 88.58 

1000 68.96 85.77 81.44 89.12 

1200 69.76 86.11 82.04 89.78 

1400 70.59 86.80 82.84 90.65 

1600 71.41 87.34 83.55 91.44 

1800 72.23 87.88 84.27 92.22 

2000 73.06 88.43 84.99 93.01 

2200 73.88 88.97 85.71 93.79 

2400 74.70 89.51 86.43 94.58 

2600 75.53 90.05 87.15 95.37 

2800 76.35 90.59 87.86 96.15 

3000 77.17 91.14 88.58 96.94 

Table 8. Recall for Plant Disease Classification 
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In terms of recall performance, it can be observed that 

the proposed model is 16.5% superior to TF CNN [9], 

4.9% superior to MTL AF [10], and 6.5% superior to 

ELM KF [12]. Similarly, the delay performance for 

the same application can be observed in the following 

table 9, 

Test 

Images 

D (ms) 

TF 

CNN 

[9] 

D (ms) 

MTL 

AF 

[10] 

D (ms) 

ELM 

KF 

[12] 

D (ms) 

BMHM 

CRAS 

200 106.31 53.83 68.49 46.65 

400 104.76 52.87 67.17 45.21 

600 102.40 51.11 65.01 42.84 

800 98.84 48.21 61.61 39.12 

1000 96.93 47.40 60.17 37.54 

1200 94.55 46.42 58.40 35.61 

1400 92.12 44.37 56.05 33.04 

1600 89.70 42.78 53.93 30.72 

1800 87.27 41.18 51.82 28.41 

2000 84.85 39.59 49.70 26.09 

2200 82.43 37.99 47.59 23.77 

2400 80.00 36.39 45.47 21.46 

2600 77.58 34.80 43.35 19.14 

2800 75.15 33.20 41.24 16.83 

3000 72.73 31.60 39.12 14.51 

Table 9. Delay for Plant Disease Classification 

In terms of delay performance, it can be seen that the 

proposed model is 41.8% better than TF CNN [9], 

26.5% better than MTL AF [10], and 25.0% better 

than ELM KF [12], making it suitable for high-

efficiency and high-speed plant disease classification 

applications. Table 10 displays the accuracy of credit 

card fraud detection for various datasets when 

compared to TTS ABF [13], NFAG [15], and SFS OM 

[18] as follows, 

Test 

Sets 

A (%) 

TTS 

ABF 

[13] 

A (%) 

NFAG 

[15] 

A (%) 

SFS 

OM 

[18] 

A (%) 

BMHM 

CRAS 

1000 90.20 85.60 96.50 97.25 

2000 90.30 85.70 96.70 97.39 

3000 90.50 85.90 96.90 97.61 

4000 90.70 86.03 97.10 97.80 

5000 90.80 86.18 97.30 97.96 

6000 90.98 86.33 97.50 98.15 

7000 91.14 86.48 97.70 98.33 

8000 91.30 86.63 97.90 98.51 

9000 91.46 86.78 98.10 98.69 

10000 91.62 86.93 98.30 98.88 

11000 91.78 87.08 98.50 99.06 

12000 91.94 87.23 98.70 99.24 

13000 92.10 87.38 98.90 99.42 

14000 92.26 87.53 99.10 99.60 

15000 92.42 87.68 99.30 99.79 

Table 10. Accuracy for Credit card fraud detection 

In terms of accuracy performance, it can be observed 

that the proposed model is 6.5% more accurate than 

TTS ABF [13], 10.6% more accurate than NFAG [15], 

and 0.5% more accurate than SFS OM [18]. Similarly, 

the precision performance for the same application 

can be observed in the following table 11, 

 

Test 

Sets 

P (%) 

TTS 

ABF 

[13] 

P (%) 

NFAG 

[15] 

P (%) 

SFS 

OM 

[18] 

P (%) 

BMHM 

CRAS 

1000 85.95 81.57 92.00 92.69 

2000 86.10 81.71 92.19 92.86 

3000 86.29 81.87 92.38 93.05 

4000 86.43 82.01 92.57 93.22 

5000 86.56 82.15 92.76 93.38 

6000 86.72 82.29 92.95 93.56 

7000 86.88 82.44 93.14 93.73 

8000 87.03 82.58 93.33 93.91 

9000 87.18 82.72 93.52 94.08 

10000 87.33 82.87 93.71 94.25 

11000 87.49 83.01 93.90 94.43 

12000 87.64 83.15 94.10 94.60 
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13000 87.79 83.29 94.29 94.77 

14000 87.94 83.44 94.48 94.95 

15000 88.10 83.58 94.67 95.12 

Table 11. Precision for Credit card fraud detection 

On the basis of this precision performance, it can be 

observed that the proposed model outperforms TTS 

ABF [13], NFAG [15], and SFS OM [18] by 5.9%, 

8.5%, and 0.4%, respectively. Similarly, recall 

performance for the same application can be observed 

in the following table 12, 

Test 

Sets 

R (%) 

TTS 

ABF 

[13] 

R (%) 

NFAG 

[15] 

R (%) 

SFS 

OM 

[18] 

R (%) 

BMHM 

CRAS 

1000 90.57 85.95 96.92 97.40 

2000 90.69 86.07 97.12 97.56 

3000 90.89 86.26 97.32 97.77 

4000 91.07 86.40 97.52 97.96 

5000 91.19 86.55 97.72 98.12 

6000 91.36 86.70 97.92 98.31 

7000 91.53 86.85 98.12 98.49 

8000 91.69 87.00 98.32 98.68 

9000 91.85 87.15 98.52 98.86 

10000 92.01 87.30 98.72 99.04 

11000 92.17 87.45 98.92 99.22 

12000 92.33 87.60 99.12 99.41 

13000 92.49 87.75 99.32 99.59 

14000 92.65 87.90 99.53 99.77 

15000 92.81 88.05 99.73 99.95 

Table 12. Recall for Credit card fraud detection 

In terms of recall performance, it can be observed that 

the proposed model is 6.8% superior to TTS ABF 

[13], 10.6% superior to NFAG [15], and 0.2% 

superior to SFS OM [18]. Similarly, the delay 

performance of the same application can be observed 

in the following table 13, 

Test 

Sets 

D (ms) 

TTS 

ABF 

[13] 

D (ms) 

NFAG 

[15] 

D (ms) 

SFS 

OM 

[18] 

D (ms) 

BMHM 

CRAS 

1000 33.28 46.88 14.58 12.66 

2000 32.91 46.51 13.99 12.19 

3000 32.32 45.97 13.40 11.57 

4000 31.80 45.56 12.81 11.03 

5000 31.45 45.12 12.22 10.53 

6000 30.93 44.68 11.63 9.98 

7000 30.46 44.23 11.04 9.44 

8000 29.99 43.79 10.45 8.90 

9000 29.51 43.35 9.85 8.37 

10000 29.04 42.90 9.26 7.83 

11000 28.57 42.46 8.67 7.29 

12000 28.09 42.01 8.08 6.75 

13000 27.62 41.57 7.49 6.21 

14000 27.15 41.13 6.90 5.68 

15000 26.67 40.68 6.31 5.14 

Table 13. Delay for Credit card fraud detection 

On the basis of this performance, it can be seen that 

the proposed model is 25.3% better than TTS ABF 

[13], 46.5% better than NFAG [15], and 6.1% better 

than SFS OM [18] in terms of delay performance, 

making it suitable for high-efficiency and high-speed 

credit card fraud detection applications. Similarly, the 

accuracy of Stock Market Prediction for various 

datasets when compared to DNN [19], GA LSTM 

[21], and ST DNN [24] can be observed in Table 14 

as follows, 

Test 

Sets 

A (%) 

DNN 

[19] 

A (%) 

GA 

LSTM 

[21] 

A (%) 

ST 

DNN 

[24] 

A (%) 

BMHM 

CRAS 

400 65.60 71.50 61.80 79.56 

800 65.80 71.90 61.90 79.84 

1200 66.50 72.30 62.30 80.44 

1600 66.87 72.50 62.50 80.75 

2000 67.32 72.90 62.80 81.21 

2400 67.77 73.24 63.04 81.62 

2600 68.22 73.58 63.30 82.04 

3000 68.67 73.92 63.56 82.46 

3400 69.12 74.26 63.82 82.88 
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3800 69.57 74.60 64.08 83.30 

4200 70.02 74.94 64.34 83.72 

4600 70.47 75.28 64.60 84.14 

5000 70.92 75.62 64.86 84.56 

5400 71.37 75.96 65.12 84.98 

6000 71.82 76.30 65.38 85.40 

Table 14. Accuracy for Stock Market Prediction 

In terms of accuracy performance, it can be seen that 

the proposed model is 14.1% more accurate than DNN 

[19], 8.3% more accurate than GA LSTM [21], and 

19.5% more accurate than ST DNN [24]. Similarly, 

the precision performance for the same application 

can be observed in the following table 15, 

Test 

Sets 

P (%) 

DNN 

[19] 

P (%) 

GA 

LSTM 

[21] 

P (%) 

ST 

DNN 

[24] 

P (%) 

BMHM 

CRAS 

400 62.57 68.29 58.90 75.90 

800 63.00 68.67 59.14 76.32 

1200 63.51 68.95 59.43 76.76 

1600 63.90 69.24 59.67 77.12 

2000 64.33 69.59 59.92 77.54 

2400 64.75 69.91 60.16 77.93 

2600 65.18 70.24 60.41 78.33 

3000 65.61 70.56 60.66 78.73 

3400 66.04 70.89 60.90 79.13 

3800 66.47 71.21 61.15 79.53 

4200 66.90 71.53 61.40 79.93 

4600 67.33 71.86 61.65 80.33 

5000 67.75 72.18 61.90 80.73 

5400 68.18 72.50 62.14 81.13 

6000 68.61 72.83 62.39 81.53 

Table 15. Precision for Stock Market Prediction 

In terms of precision performance, it can be observed 

that the proposed model is 12.8% superior to DNN 

[19], 6.5% superior to GA LSTM [21], and 18.3% 

superior to ST DNN [24]. Similarly, the recall 

performance for the same application can be observed 

in the following table 16, 

Test 

Sets 

R (%) 

DNN 

[19] 

R (%) 

GA 

LSTM 

[21] 

R (%) 

ST 

DNN 

[24] 

R (%) 

BMHM 

CRAS 

400 65.90 71.87 62.06 79.73 

800 66.22 72.27 62.23 80.08 

1200 66.84 72.62 62.59 80.61 

1600 67.23 72.87 62.81 80.96 

2000 67.68 73.26 63.10 81.41 

2400 68.13 73.60 63.34 81.82 

2600 68.59 73.94 63.60 82.24 

3000 69.04 74.28 63.86 82.66 

3400 69.49 74.63 64.13 83.08 

3800 69.94 74.97 64.39 83.50 

4200 70.39 75.31 64.65 83.92 

4600 70.84 75.65 64.91 84.34 

5000 71.30 75.99 65.17 84.76 

5400 71.75 76.33 65.43 85.18 

6000 72.20 76.67 65.69 85.61 

Table 16. Stock Market Prediction 

In terms of recall performance, it can be observed that 

the proposed model is 12.3% superior to DNN [19], 

9.4% superior to GA LSTM [21], and 19.1% superior 

to ST DNN [24]. Similarly, the delay performance of 

the same application can be observed in the following 

table 17, 

Test 

Sets 

D (ms) 

DNN 

[19] 

D (ms) 

GA 

LSTM 

[21] 

D (ms) 

ST 

DNN 

[24] 

D (ms) 

BMHM 

CRAS 

400 105.93 88.35 117.24 64.81 

800 104.98 87.16 116.72 63.75 

1200 103.15 86.12 115.69 62.19 

1600 102.01 85.39 115.02 61.18 

2000 100.68 84.25 114.18 59.85 

2400 99.35 83.24 113.46 58.63 

2600 98.02 82.24 112.69 57.39 

3000 96.68 81.23 111.92 56.15 
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3400 95.35 80.23 111.15 54.91 

3800 94.02 79.22 110.38 53.67 

4200 92.69 78.22 109.61 52.43 

4600 91.36 77.21 108.84 51.19 

5000 90.03 76.21 108.07 49.94 

5400 88.70 75.20 107.31 48.70 

6000 87.37 75.90 106.54 47.46 

Table 17. Delay for Stock Market Prediction 

In terms of delay performance, it can be seen that the 

proposed model is 46.2% better than DNN [19], 

39.4% better than GA LSTM [21], and 59.3% better 

than ST DNN [24], making it suitable for high-

efficiency and high-speed stock market prediction 

applications. Due to its consistently high performance 

across a variety of applications, the proposed model 

exhibits high scalability and can be applied to a variety 

of scenarios for accuracy, precision, recall, and delay 

metric efficiency optimization. This makes the model 

highly applicable to a variety of deployment scenarios 

for real-time applications. 

5. Conclusion and Future Scope 

The proposed BMHMCRAS model initially 

compresses data by optimizing compression model 

parameters. This optimization was accomplished by 

utilizing PSO-based internal parameter selection for 

Huffman, Run-Length Encoding (RLE), Wavelet, 

ZLib, BZ2, and LZMA methods. The compressed data 

was processed using the MGA Model, which aided in 

the performance-aware extraction and selection of 

features for various application types. The proposed 

model was fine-tuned by employing a correlation-

based layer, which facilitated continuous training-set 

updates. This model was tested and validated against 

12 different cutting-edge techniques and 4 different 

applications. It was observed that the proposed model 

is 16.1% more accurate than GA SVM [2], 9.3% more 

accurate than CNN SVM [4], and 8.5% more accurate 

than MLBF [5] in terms of ECG classification 

accuracy; and 31.5% more accurate than GA SVM 

[2], 26.8% more accurate than CNN SVM [4], and 

25.4% more accurate than MLBF [5] in terms of delay 

performance due to the use of compression models, 

making it useful for high efficiency, and high-speed 

ECG classification Similarly, it was observed that the 

proposed model was 19.4% better than TF CNN [9], 

4.9% better than MTL AF [10], and 7.4% better than 

ELM KF [12], in terms of accuracy performance, and 

41.8% better than TF CNN [9], 26.5% better than 

MTL AF [10], and 25.1% better than ELM KF [12], 

in terms of delay performance, making it suitable for 

high-efficiency and high-speed plant disease 

classification applications. It was also observed that 

the proposed model was 6.5% better than TTS ABF 

[13], 10.6% better than NFAG [15], and 0.5% better 

than SFS OM [18], in terms of accuracy performance, 

and that it is 25.3% better than TTS ABF [13], 46.5% 

better than NFAG [15], and 6.1% better than SFS OM 

[18], in terms of delay performance, making it useful 

for high-efficiency and high-speed credit card fraud 

detection applications. Similarly, it was found that the 

proposed model is 14.1% better than DNN [19], 8.3% 

better than GA LSTM [21], and 19.5% better than ST 

DNN [24], in terms of accuracy performance, and 

46.2% better than DNN [19], 39.4% better than GA 

LSTM [21], and 59.3% better than ST DNN [24], in 

terms of delay performance, making it suitable for 

high-efficiency and high-speed stock market 

prediction applications. Indicating that the model is 

highly scalable and accurate across a variety of 

application types. In the future, researchers will be 

able to add a larger number of compression and 

feature extraction models for optimization via PSO 

and MGA, which will contribute to a higher density of 

feature extraction and a reduction in application 

deployment errors. In addition, researchers can 

validate the model's performance in terms of 

applicability and scalability under a variety of test 

conditions by evaluating its applicability and 

scalability under various application types. 
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