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Abstract: The human brain is the most complicated human organ, and simulating its functionality is an exceedingly challenging task, 

particularly the multi-modal sensory functionalities of the brain. Results from biological experiments show that it is possible to identify 

instances of objects using tactile signals. This research uses similar concepts for modelling a multi-modal sensory input processing system 

for tactile inputs. VRSS is a novel touch-to-vision-to-text-to-audio system which simulates the multi-modal sensory behavior of the brain 

by converting tactile inputs to visual images, which are further converted to audio and text. The main aim of this research is to classify 

object instances based on tactile signals. Tactile inputs are captured and implicitly converted to visual inputs using the DIGIT sensor 

simulated in the TACTO simulator, and using them, the object is classified using Convolutional Neural Networks. The classification output 

is further converted into audio, thus successfully simulating three modalities - touch, vision, and sound. For construction of VRSS, multiple 

pretrained CNNs with different configurations of hyperparameters were tested, and the pretrained ConvNeXtTiny model had the best 

accuracy of them all - 91%. It was further modified, and the accuracy of the resulting custom VRSS CNN Model was found to be 95.83%. 

Following these results, this research will help in expanding the applicability of different CNNs. Along with this, it will also facilitate in-

depth understanding of the human multi-modal sensory system, and also has wide scope in the fields of artificial intelligence and robotics, 

particularly in the navigation of uncharted territories. 
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1. Introduction 

The 5 sensory organs present in the human body allow humans to 

accurately perceive the world as it is. They also capture crucial 

information about various events happening in the environment. 

The human brain perceives the object through these sensory organs 

and one of them is the skin, which provides the sensation of touch. 

In robots, this sense of touch can be replicated with the help of 

tactile sensors. The human brain also employs shared models of 

objects across multiple sensory modalities such as vision and 

tactile sensing so that knowledge can be transferred from one to 

another [1]. 

The system VRSS presented in this research can be used to 

understand the working of the brain for object recognition using 

the sense of touch with the help of artificial model. It helps to 

increase the dynamics of robotic vision. By analyzing the data 

obtained from the sensors, a robot can recognize the properties of 

an object and determine its shape, size, texture, and other relevant 

information. In recent years, the rapid advancement of tactile 

devices and skins has opened new possibilities for incorporating 

tactile sensing into diverse robotic applications [2]. This will also 

facilitate research in the robotics field by helping to understand the 

relationship between the senses of touch and vision.  

Various models are tried and studied to understand the relation 

between the sense of touch and the sense of vision. The essence of 

cross-modal retrieval research lies in the ability to learn a shared 

subspace where items from different modalities can be directly 

compared to one another [3]. The senses of touch and vision are 

complementary and have often been combined to form a multi-

modal perception framework for understanding object geometry 

[4].  

Using the outcome of the comparison of models, fine-tuning was 

done on the best model to build the custom model which has better 

accuracy. The custom model can further be used by the research 

community to understand the touch-to-vision transformation with 

better accuracy. 

In the next section, an overview of the different approaches that 

have been previously applied to tackle this challenge of converting 

tactile inputs to visual outputs is presented. 
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2. Literature Survey 

Previous work on the topic of converting touch to vision includes 

a few notable and relevant implementations.   

The MIT paper [5] that examines the mechanics of human object 

grasping will supplement vision-based robotic object handling. It 

demonstrates how sensors evenly dispersed over the hand may be 

utilized to detect specific objects, estimate their weight, and 

investigate common tactile patterns using a scalable tactile glove 

and deep convolutional neural networks.  

Different measures such as using pressure sensors and measuring 

both touch and orientation are taken into consideration in T-SGs 

and GT-SGs respectively [6]. The challenge arises that designing 

such high-architecture gloves is easy, but its implementation is 

difficult.  

The user's palm housed a cluster of fifteen Force Sensitive 

Resistors (FSRs), which were used to determine the region of 

interaction in [7]. The active zones at the palm during contact with 

each surface at various forces were demonstrated by experimental 

data. The overall recognition rate is 84 percent, indicating that the 

user can confidently recognize four patterns.   

Utilizing deep neural networks, active sensing, and learning to 

address the issue of robotic visuotactile cross-modal object 

recognition was demonstrated in [8]. The proposed work does 

unsupervised cross-modal transfer learning and actively learns 

from tagged visual point cloud examples. Additionally, an active 

tactile object recognition approach is used in the suggested work.  

By modelling the relationship between the retrieved features and 

the human tactile sensation scores gathered via sensory evaluation 

tests, Ito et al. created a machine-learning model that assesses the 

tactile feeling of an unknown sample [9]. The gaps in this paper 

are that more diverse shapes and samples of different materials 

could not be identified properly. This research paper provides a 

method for detecting the objects sensed by using an encoder-

decoder architecture.  

A new model known as ResNet10-v1 was proposed in a different 

study [10] by fusing a convolutional neural network and a residual 

network. It enhanced the model's convolutional kernel, 

hyperparameters, and loss function, and used the K-means 

clustering technique to increase the accuracy of target 

categorization further. Through a significant number of trials, the 

study proved the viability and efficacy of the suggested strategy.  

For the creation of cross-modal visual-tactile data, a residue-fusion 

GAN trained with additional feature-matching and perceptual 

losses is suggested by Cai and colleagues [11]. The paper uses the 

tactile data—pen sliding motion on the surface—as well as the 

visual image of a material surface as the visual and tactile data. The 

paper's findings demonstrate that the model performs significantly 

better than the baseline model in both the visual and tactile 

domains for recognition.  

Deep CNN architectures have been employed to test the feasibility 

of learning transfer from vision to touch, confirming that visual 

and tactile data overlap some properties at some levels [12]. The 

topic was examined using various types of touch sensors in the 

article.   

A unique framework for the creation of cross-modal sensory data 

for tactile and visual perception was suggested in [13]. Using the 

sense of texture as an example, conditional generative adversarial 

networks were used to produce fictitious tactile or visual outputs 

using input from the other modality. However, quality of image 

generation process can be improved and training the network on 

more datasets could increase the capabilities of the model.  

Given a visual and tactile observation, Lin et al. describe a multi-

model instance recognition system that can determine whether or 

not these observations pertain to the same object [14]. Here, a 

dataset of tactile observations and photographs is gathered using a 

robot outfitted with two GelSight touch sensors, one on each 

finger, and a self-supervised, autonomous data collecting 

technique.   

Usage of conditional adversarial networks to suggest links between 

vision and touch was presented in [15]. According to the paradigm, 

findings for cross-modal prediction of known and unseen items are 

expected to be positive [15]. To link vision and touch, researchers 

have created novel activities that involve creating convincing 

tactile signals from visual inputs and thinking how to interact with 

objects when tactile data is provided as input.   

Li and colleagues, in [16], focus on the cross-modal visual-tactile 

transformation based on deep learning. The classification 

information for the image is first obtained using the Resnet, then 

the spectrogram generator G and classification data from the most 

recent output are combined with G using ensembled GANs. The 

experimental findings demonstrate that the model can convert the 

texture image's visual data into tactile data. The tactile feedback of 

the item material is, however, restricted by the visual classification 

effect and the visual inaccuracy will carry over into the tactile 

feedback in the real tactile test.  

Demonstration of object recognition from Piezoresistive tactile 

sensors has also been evaluated in [17]. The method implemented 

uses a tactile sensors’ array of 16 rows × 16 columns matrix for 

taking tactile input. The tactile data from sensors is processed for 

resolution enhancement. Further, several DCNN models were 

implemented to get the best model. However, the paper suggests 

implementing multimodal learning and object exploration to 

increase recognition rate.  

Falco and colleagues trained a classifier using visual data obtained 

from a Kinect camera, and objects are recognized at execution time 

solely based on tactile data, without any prior tactile information 

[18].   

Deep convolutional neural networks, GAN and convolutional 

adversarial network have been primarily employed to derive a 

relationship between extracted features from images to human 

tactile sensation features. Sensors such as pressure sensors, force 

sensitive resistors, piezoresistive tactile sensors have been heavily 

used to locate the object on the hand. Accordingly, this study first 

highlights the proposed model to satisfy the aim of the research, 

followed by a discussion on the various models, technologies and 

components used in this research. Following this, the 

experimentation undertaken, which includes the preliminary work 

undertaken to understand the intricacies of visual and tactile data 

collection, manipulation, conversion and visualization, along with 

the preliminary design of the VRSS Model (The Hand Model), a 

description of the dataset used, the comparison between various 

designing strategies, simulated hardware components like sensors, 

different electrical phenomena that could be leveraged, and 

different machine learning models and their relative setups has 

been presented. After experimentation, a summary of the results of 

the experimentation, the corresponding discussion on those results, 

and finally the derived conclusion along with the future scope of 

this research work is presented. 

3. Proposed VRSS Model 

Various models and configurations have been experimented with 

in this research work, such as the Mathematical Model, the Hand 

Model and the Palm Model, which have been explained in detail 

in the subsequent sections. Out of those models, the best model 
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obtained was the Palm Model. Hence, the Palm Model has been 

selected as the proposed model, since it satisfies the aim of this 

research work considering various real-world constraints. 

The main aim of the Palm Model is to mimic the somatosensory 

functionalities of the human palm. The model will simulate the 

human palm using the simulated DIGIT sensor, collect tactile data, 

transform it to visual data, and classify the object placed on the 

palm of the hand. It is explained in detail in the following sub-

section. 

3.1. The Palm Model 

The Palm Model has its basis in the fact that the palm of the hand 

has the highest sensing area of the entire available sensing area on 

the hand. Therefore, to successfully classify the object within a 

certain level of accuracy, it is reasonable to use just the palm of the 

hand to sense the object. In this model, the simulation contains just 

one DIGIT sensor (whose sensing area represents the palm of the 

hand), which senses the shape and size of the object, classifies the 

object and finally provides the output in audio and text format. 

 

Fig. 1. Flow of Palm Model 

The various stages involved are depicted in Fig. 1 and are 

described below: 

3.1.1. Rendering the DIGIT sensor using the TACTO  

simulator 

Using the open-source configuration files and the 3D model files 

of the DIGIT sensor, a 3D model of the DIGIT sensor (along with 

sensing surface) is rendered in the TACTO simulator. 

3.1.2. Loading the test object into the simulator using its URDF 

file 

To obtain tactile images from objects in the simulator, the 3D 

model file of the object needs to be created using CAD software 

like Microsoft 3D Builder and Blender. These object files (which 

are in the form of waveforms or point-clouds) need to be loaded 

into the simulator using Unified Robot Description Format 

(URDF) files, which define the physical properties of the object 

such as its size, inertia, mass, collision properties, etc. 

3.1.3. Extracting tactile data as images from the rendered 

DIGIT sensor 

Once the object is rendered in the simulator alongside the DIGIT 

sensor, the object is then moved towards the sensing surface of the 

DIGIT sensors using a control panel which allows translation as 

well as rotation of the object in 3 axes each (therefore 6 DOF are 

available for each object). Then, the object is brought in contact 

with the sensing surface, and subsequently tactile image is 

recorded. 

3.1.4. Pre-processing obtained tactile images 

Since simulated tactile images contain noise, pre-processing 

techniques need to be employed to improve the accuracy of the 

classification model. 

3.1.5. Use Neural Network structures for classification of 

object in the image 

The images obtained from the DIGIT sensor are noisy. Hence, to 

learn the implicit patterns present, and to classify the images 

efficiently and effectively, Deep Neural Network techniques have 

to be utilized for classification tasks. 

3.1.6. Providing results in text and audio formats 

To increase the accessibility of the results for most of the audience, 

the results of classification are given both in textual and audio 

formats. 

The Palm Model is fairly simple and straightforward and can be 

easily implemented considering real-world processing constraints. 

But it may fail to capture certain geometrical relationships between 

some parts of the objects, since only palm of the hand is touching 

the object. To improve upon this point, the Hand Model, which is 

explained in the Methodology and Experimentation section, can be 

used if enough resources are available (since the Hand Model was 

proven to be extremely resource extensive.) 

The complete architecture of the Palm Model (which is also 

referred to as the VRSS Model in this research) is provided in the 

next section. 

4. Model Architecture 

The architecture diagram in Fig. 2 depicts, at a higher level, all the 

components discussed in the section on Proposed Model, and the 

various transitions associated. 
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In the next section, the various components and models that have 

been experimented with in this research have been discussed. 

5. Components and Models 

To understand the following research, it is important to understand 

the various components and models involved. These include the 

DIGIT sensor, TACTO simulator, Xception, EfficientNetV2, 

ResNet152V2, ConvNeXtTiny, VGG-16 and InceptionV3. 

5.1. DIGIT Sensor 

It is a low-cost, small, and high-resolution tactile sensor designed 

for in-hand handling. Many tactile sensors measure force at a 

single point or patch of contact, providing potentially rich dynamic 

information but limited geometric information [19]. DIGIT 

improves upon past vision-based tactile sensors by miniaturizing 

the form factor to be mountable on multi-fingered hands, and by 

providing several design improvements that result in an easier, 

more repeatable manufacturing process, and enhanced reliability 

[20]. In this study, tactile input is gathered using a set of emulated 

DIGIT sensors. 

5.2. TACTO Simulator 

TACTO is a quick, adaptable, and free simulator for tactile vision 

sensors. TACTO produces high-resolution and high-fidelity 

reading from tactile sensors at high frequency (>100 Hz) [21]. The 

DIGIT and OmniTact tactile vision sensors may be easily 

simulated using this simulator, which can produce realistic high-

resolution touch readings at hundreds of frames per second. The 

simulator has been utilised for this research project to mimic 

various biological sensing configurations. 

5.3. Xception 

The Keras deep learning library provides an implementation of the 

Xception model, which is pre-trained on the ImageNet dataset. 

This model is available in the Keras applications module and can 

Fig. 2. Model Architecture Diagram 
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be easily loaded using the Keras API. The Xception model in Keras 

has 88 convolutional layers and achieves state-of-the-art 

performance on the ImageNet dataset. In order to reduce the 

number of parameters and increase computational performance, 

the model makes use of depth wise separable convolutions. 

5.4. EfficientNetV2 

The Keras deep learning library provides an implementation of the 

EfficientNetV2 model, which is a family of convolutional neural 

network architectures that were introduced in 2021 as an 

improvement over the original EfficientNet models. EfficientNet 

properly adjusts depth, width, and resolution when the network is 

shrunk, outperforming other cutting-edge algorithms in 

effectiveness [22]. These models are designed to be both efficient 

and effective for a wide range of computer vision tasks. Once the 

model is loaded, it can be used for image classification or as a 

feature extractor for transfer learning. EfficientNetV2 models 

achieve state-of-the-art performance on several computer vision 

benchmarks while having fewer parameters and requiring less 

computational resources compared to other models. This makes 

them a popular choice for a wide range of computer vision tasks. 

5.5. ResNet152V2 

The Keras deep learning library provides an implementation of the 

ResNet152V2 model, which is a variant of the ResNet model that 

has 152 layers. ResNet152V2 is a very deep neural network 

architecture that has achieved state-of-the-art performance on 

several computer vision benchmarks. Once the model is loaded, it 

can be used for image classification or as a feature extractor for 

transfer learning. ResNet152V2 uses residual connections to 

mitigate the vanishing gradient problem and has achieved state-of-

the-art performance on several computer vision benchmarks. It is 

a popular choice for a wide range of computer vision tasks, 

including image classification, object detection, and semantic 

segmentation. 

5.6. ConvNeXtTiny 

ConvNeXtTiny is a CNN of the family ConvNeXt. ConvNeXt is a 

family of convolutional neural network architectures that were 

introduced in 2018 and are known for their ability to achieve high 

accuracy with a relatively small number of parameters. The 

ConvNeXtTiny model can be used with pre-trained weights or can 

be trained from scratch. 

5.7. VGG-16 

A deep convolutional neural network that has shown remarkable 

success in image classification is the Keras VGG-16 model. It 

starts with a string of convolutional layers with tiny 3x3 filters, 

then moves on to layers with maximum pooling for down 

sampling. Its uniform design with several stacked convolutional 

layers, which makes it deeper than many other models at the time 

of its inception, is the distinctive feature of VGG-16. The model 

can learn complicated characteristics and recognise minute details 

in photos because of its deep architecture. There are 16 weight 

layers in the VGG-16 algorithm, including convolutional, pooling, 

and fully connected layers. It has had prior training on big picture 

datasets like ImageNet, where it has displayed outstanding ability 

in categorising images. Pretrained weights are readily available, 

which enables effective transfer learning, where the model is 

modified to fit new tasks and datasets by adjusting the pre-learned 

representations. For computer vision applications, the VGG-16 

model in Keras offers a dependable and popular architecture that 

strikes a compromise between performance and ease of use. 

5.8. InceptionV3 

The InceptionV3 model in Keras is a powerful deep neural network 

architecture that facilitates visual feature extraction and 

understanding. With its pretrained weights, it offers a convenient 

solution for transfer learning in various computer vision tasks, and 

its integration with Keras makes it easy to incorporate it into deep 

learning projects. InceptionV3 in Keras comes with pretrained 

weights that have been trained on the ImageNet dataset. These 

pretrained weights capture generalizable visual features learned 

from a large number of images and can be leveraged for transfer 

learning. InceptionV3 can be used for a wide range of computer 

vision tasks, including image classification, object detection, and 

image segmentation. Its deep architecture and sophisticated feature 

extraction capabilities make it suitable for tasks that require 

understanding complex visual patterns and structures. 

5.9. pyttsx3 

pyttsx3 is a text-to-speech conversion library in Python. It is an 

offline, cross-platform solution that works with both Python 2 and 

3. It supports multiple text-to-speech engines, including SAPI5 on 

Windows, NSSpeechSynthesizer on macOS, and eSpeak on Linux. 

It allows you to control voice properties such as rate, volume, and 

voice and also supports event callbacks to track the progress of the 

speech. 

5.10. gTTS 

gTTS (Google Text-to-Speech) is a Python library and command-

line tool that interfaces with Google Translate’s text-to-speech 

API. It allows you to input text and convert it into spoken audio. 

The audio data can be saved to a file or played directly. gTTS 

supports multiple languages and dialects and allows you to control 

the speed of the speech. However, it requires an internet 

connection to work since it relies on Google’s servers to generate 

the audio. 

This completes the discussion on the various components and 

models used in this research. The next section outlines the research 

methodologies applied and the experimentation carried out for this 

research work on the VRSS Model. 

6. Methodology and Experimentation 

To clearly understand the reason behind selecting the Palm Model 

as the proposed model, it is crucial to first understand the 

preliminary work undertaken before designing the Palm Model. 

This work is described in the following sub-section. 

6.1. Preliminary Work 

The preliminary work for this research consists of the 

Mathematical Model and the Hand Model. Both of these models 

are explained subsequently. 

6.1.1. Basic Mathematical Model 

This model represents the first iteration of the research work. Here, 

only a single DIGIT sensor simulated using TACTO simulator is 

used to record the tactile input from small-scaled cuboidal objects, 

and a simple mathematical model coupled with a computer vision 

model (to analyse and interpret the pre-processed tactile image 

obtained) is used to estimate the dimensions of the object, which 

are subsequently used to reconstruct a 3D model of the same 

object. 

The reconstructed model is shown in Fig. 3. 



International Journal of Intelligent Systems and Applications in Engineering  IJISAE, 2023, 11(3), 691–703 |  696 

Fig. 3. Reconstructed 3D Model 

Although this model is extremely simple and fast (as it depends on 

basic mathematics), it has many flaws. Firstly, it fails to capture 

the shape-related information of objects that do not conform to any 

standard geometric shape. Secondly, as the number of faces in the 

object increases, the complexity of the model increases steeply. 

This is clear from the graph in Fig. 4. 

 

Fig. 4. Relation between Complexity and number of faces of object. 

Graph in Fig. 5 is based on the Table 1. Table 1 demonstrates the 

increasing complexity of the shape prediction with increasing 

number of faces. The complexity of the object prediction is 

represented using a numerical range of 1-5 where 1 stands for 

lowest complexity in shape prediction and 10 stands for highest 

complexity. The objects with different number of faces require 

different number of faces to be sensed by the sensor to plot the 3D 

model. The number of faces sensed depends on the dimensions 

required to plot the 3D model. On finding the number of faces 

sensed, the calculations involved in predicting the dimensions is 

different for different shapes, which serves as a deciding factor for 

the complexity of the model. 

Table 1. Relationship between number of faces in object, number of faces 

sensed and complexity 

Number of faces 

in object 

Number of faces 

sensed 

Examples Complexity 

0 1 Sphere 1 

5 2 Square Pyramid 3 

6 2 Cube, Cuboid 2 

7 2 Heptahedron 4 

8 2 Octahedron 3 

9 9 Enneahedron 5 

These flaws led to the necessity of designing alternative models. 

One of those models was the Hand Model, which is explained next. 

6.1.2. The Hand Model 

As seen from the preliminary work on the mathematical model, a 

single DIGIT sensor can capture extremely valuable information 

regarding the shape and size of the object touching its surface. 

Keeping this property in mind, the next iteration of the research 

work was designed. It was called “The Hand Model”. It is 

explained in the following text. 

Early researchers extensively employed methods based on contact 

points due to the low resolution of tactile sensors and the 

prevalence of single-contact force sensors. Allen et al. [23] 

proposed fitting a super-quadric surface to sparse finger-object 

contact points and utilized the recovered super-quadric parameters 

for haptic object recognition. Similarly, in [24], a polyhedral model 

was derived by leveraging the locations of contact points and hand 

pose configurations to reconstruct the shape of unknown objects. 

Pezzementi et al., in [25], introduced a method for constructing an 

object representation by mosaicing tactile measurements. Meier et 

al. [26] utilized Kalman filters to generate 3D representations of 

unknown objects using contact point clouds collected by tactile 

sensors and applied the ICP algorithm for object classification. In 

[27], contact point clouds were combined with voxel 

representations to model object shapes. These methods enabled the 

retrieval of arbitrary contact shapes, but they can be time-

consuming for investigating large object surfaces due to the 

requirement of excessive contacts. 

The Hand Model, on the other hand, is based on the skeletal 

structure of the human hand. A total of 23 simulated DIGIT sensors 

are arranged in the shape of a human hand and are placed at 

strategically important points on the hand. When the rendered 

object is brought in contact with the sensor, array, sensors at the 

point of contact are activated, and tactile inputs from all sensors 

are collected. These inputs are then arranged in a 4 * 6 grid of 

tactile images (where some cells are left blank due to the absence 

of sensors in the corresponding positions), and a single image is 

used for further tasks. This image is then used to classify the object, 

the result of which is provided in textual and audio format. 

Fig. 5. Human hand skeletal structure depicting finger bones, joints, 

metacarpals, and carpal bones [28] 

Understanding the skeletal structure of the hand is extremely 

important to determine the arrangement of sensors in the simulated 

sensory hand. As can be clearly seen from Fig. 5, each finger 



International Journal of Intelligent Systems and Applications in Engineering  IJISAE, 2023, 11(3), 691–703 |  697 

except the thumb has 2 joints on in the finger, and one base joint 

(which joins the finger to the palm, or with respect to the skeletal 

structure, to the Metacarpals and Carpal Bones). And for the 

thumb, there is one joint in the finger, and one base joint. Thus, 

from this skeletal structure it can be concluded that, to accurately 

capture sensory and geometric information as captured by the 

human hand, it is beneficial to have 3 sensors (out of which one is 

at the fingertip) on the 4 fingers and 2 sensors on the thumb. 

Contact sensing can typically be achieved with force/torque 

sensors, joint torque sensors and pressure sensor arrays as well 

[29]. But, to increase the quality of tactile data captured, and to 

facilitate implicit touch-to-vision conversion, this model makes 

use of the simulated DIGIT sensors. The region covered by the 

Metacarpals and the carpal bones (generally known as the palm) 

can be modelled using 9 sensors arranged in a 3 * 3 grid of sensors. 

Thus, a total of 23 simulated DIGIT sensors will be rendered in the 

TACTO simulator. 

Fig. 6. Simulated Hand in TACTO Simulator 

The corresponding simulated hand in the TACTO simulator is as 

shown in Fig. 6. 

The sensors are numbered to keep track of corresponding tactile 

images in the 2D image array (which will be useful to involve the 

relative location of the sensors in classification task). 

The tactile input obtained from such a simulated hand is of the 

form as shown in Fig. 7. 

The main limitation of this model is the computational resources 

required. This model requires parallel processing of 23 optical 

tactile sensor inputs, which makes the data collection process very 

slow. 

Now that the preliminary work and experimentation is clearly 

stated, in the following sub-subsections, the experimentation 

carried out for the VRSS Model (The Palm Model) is explained. 

This starts with the explanation of the dataset used, in the next sub-

section. 

6.2. Dataset 

The dataset used for the experimentation is a hybrid dataset. The 

original dataset consists of a total of 1100 pressure images. These 

images have been collected from a high-resolution tactile sensor, 

which is basically an array of a number of pressure sensors. In the 

original paper, a dataset formed by tactile images has been 

collected. This dataset is used to train the TactNet models, and the 

classifiers of the transfer learning methods [30], in the original 

paper. The data from this dataset is expanded by adding the depth 

images collected from the simulated DIGIT sensor to fine-tune the 

dataset to make it usable with VRSS. The image-collection process 

is completely automated and collected images of the object in 

different configurations. Out of the 22 classes present in the 

original dataset, this research work uses only 6 out of those 22 

classes, and one more new class has been added to the original 

dataset. The hybrid dataset contains images for 7 classes labelled 

as: ball, box, key, pliers, scissors, screw, and pen. The complete 

dataset contains 503 tactile images, which have been divided into 

training and testing sets. 

The next sub-section describes the experimentation methods 

applied for the VRSS Model (The Palm Model). 

6.3. VRSS Model Experimentation Description 

As stated in the Proposed Model section, the Hand Model leads to 

excessive computational overhead, which is very large for even a 

powerful personal computer with good enough memory and GPU 

specifications. Therefore, hereafter, the Palm Model is referred to 

as the VRSS model. 

As stated at the start of the Proposed Model section, the main aim 

of this research is to transform tactile signals to visual signals, and 

then to classify those visual signals. The methodology described 

below tries to achieve this aim. 

As discussed in the section for proposed models, the Palm Model 

consists of a single DIGIT sensor representing the sensing area of 

a human palm. The setup is as shown in Fig. 8. 

This setup is used to convert the tactile signals to visual signals. 

This is done implicitly by the simulated DIGIT sensor. The tactile 

image obtained from such a sensor is as shown in Fig. 9. 

The obtained image corresponds to the visual signal corresponding 

to the tactile signal collected by placing the object on the sensor 

(which represents the palm of the human hand). 

This image is then subjected to various preprocessing steps before 

it is given to the CNN model for classification. These 

preprocessing steps are given in the following text (The same 

preprocessing steps are also applied while training the CNN 

models). 

6.3.1. Preprocessing of images 

1. The images ae first loaded from either the training or the 

testing dataset, depending upon the task to be performed. 

2. Next, the images are resized to a size of 224 × 224, which 

is required for the CNN models. 

3. These images are then converted to NumPy arrays. 

4. Finally, the dimensionality of the arrays from step 3 is 

altered by adding a new axis at the position 0 of those 

arrays. 

This completes the preprocessing of the images that is required to 



International Journal of Intelligent Systems and Applications in Engineering  IJISAE, 2023, 11(3), 691–703 |  698 

be carried out before training and testing the CNN models. 

The remaining sub-sections describe the process of experimenting 

with different CNN models, and how transfer learning is used for 

classification using these Keras models. 

6.3.2. Use of Transfer Learning of Keras models for 

Classification 

6.3.2.1. Keras Models 

For classification, a comparison of six Keras models- Xception, 

ResNet152V2, EfficientNetV2, VGG16, InceptionV3 and 

ConvNeXtTiny was made. Keras models are convolutional neural 

networks. A pre-trained version of the network trained on more 

than a million images from the ImageNet database can be loaded. 

The pre-trained network can classify images into 1000 object 

categories, such as keyboard, mouse, pencil, and many animals. As 

a result, the network has learned rich feature representations for a 

wide range of images. The network has an image input size of fixed 

size. Since the imagenet was not pre-trained on tactile images, 

transfer learning of Keras models was used.   

Machine learning methods typically assume that the training and 

test data belong to the same feature space and distribution. 

However, when the distribution changes, it is expensive or 

impossible to collect new training data and rebuild the models. To 

address this challenge, transfer learning or knowledge transfer 

between task domains is utilized, minimizing the need for 

reacquiring training data [31], [32]. The intuition behind transfer 

learning for image classification is that if a model is trained on a 

large and general enough dataset, this model will effectively serve 

Fig. 7. Tactile Images from Sensors numbered 1 to 23 

Fig. 8. DIGIT Sensor in TACTO Simulator 

Fig. 9. Image obtained from simulated DIGIT sensor 
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as a generic model of the visual world. When strongly labelled 

target data is available, the model can further be fine-tuned using 

the labelled bounding boxes to improve both the recognition and 

the object localization [33]. One can then take advantage of these 

learned feature maps without having to start from scratch by 

training a large model on a large dataset.  

All of the Keras models mentioned were then trained on the dataset 

which consisted of 7 objects – ball, box, key, pen, pliers, scissors 

and screw. 

All of these six models were trained with three different 

configurations each. These were as follows: 

1. Batch Size: 32; Learning Rate: 0.01; Epochs: 7 

2. Batch Size: 32; Learning Rate: 0.05; Epochs: 10 

3. Batch Size: 32; Learning Rate: 0.01; Epochs: 10 

The best configuration out of these configurations (according to 

accuracy and loss) was then determined for each of the CNN 

models, after training and evaluating all of the six Keras models 

with these three configurations for each CNN model. The best 

model was then determined based on the accuracy and loss of these 

best-configuration-models (As is indicated in the Results and 

Discussion section later, this model was found out to be 

ConvNeXtTiny). This best model was further fine-tuned to build 

the final Custom VRSS CNN Model. 

6.3.2.2. Custom VRSS CNN Model 

The Custom VRSS CNN Model is based on the ConvNeXtTiny 

Model. Conditional adversarial networks, such as those used in 

ConvexNeXTiny show great promise in various image-to-image 

translation tasks, particularly when dealing with intricate graphical 

outputs that possess a high level of structure [34]. A two-step 

transfer learning process has been applied to improve the 

performance of the base pre-trained ConvNeXtTiny model. This 

approach involves adapting object models acquired in a specific 

visual domain to new imaging conditions. It achieves this by 

learning a transformation that minimizes the influence of changes 

in the feature distribution induced by different domains [35]. 

The model architecture can be visualized as shown in the Fig. 10. 

The color index for the layers in the architecture is shown in the 

Fig. 11. 

The first step is feature extraction, and the second step is fine-

tuning. 

Feature Extraction 

In this step, all the classification layers after the flatten operation 

are removed. In this way, a network is obtained that is ideal for 

feature extraction. This is because the output features of the last 

layer before the flatten operation retain more generality as 

compared to the classification layers.  

After this, the convolutional base so obtained is frozen before 

compiling and training the model. After freezing the weights of the 

base model, a new classification head consisting of a Global 

Average Pooling 2D layer, and a Dense layer is added.  

The final model consists of a total of 27,825,511 parameters, out 

of which only 5,383 are trainable. Finally, the model is compiled 

using a categorical cross-entropy loss function with a learning rate 

of 0.001 for the feature extraction step. The trained model is saved 

for fine-tuning. 

Fine-tuning 

The previous model is further trained for fine-tuning the weights. 

In this model, the first 100 layers out of the 151 layers are frozen, 

while the rest of the layers are unfrozen. This is done because the 

lower layers learn very simple and general features while the 

higher layers learn more specialized features specific to the 

application, which in this case is learning features from tactile 

images.  

The learning rate is kept at 0.0001, which is much smaller than the 

previous learning rate. This is because the aim here is to train a 

much larger model and readapt the pre-trained weights.  

The number of trainable parameters in this model is 19,083,271. 

This is the final custom model which is trained on the training and 

validation images. 

After the model gives its classification output, this output is 

preliminarily represented in the form of text, which limits the 

accessibility of the VRSS Model. Therefore, the next sub-section 

addresses the task of enhancing the accessibility of the VRSS 

Model by providing the classification output in the form of audio 

signals. 

6.3.3. Providing Results in the form of Audio 

Various solutions exist which allow the conversion of textual data 

to audio data. Some of the most popular solutions to perform this 

conversion were found out to be the pyttsx3 library and the gTTS 

library, the details of which are provided in the Components and 

Models section covered previously. 

As was indicated, pyttsx3 works seamlessly in offline mode as 

well, and supports various TTS engines, while the gTTS library 

only works in online mode. But gTTS has the added advantage of 

accessing the powerful Google Translate API. 

Hence, the VRSS model makes use of both these models. In the 

lack of a stable internet connection, the CRSS model utilizes the

Fig. 10. Custom VRSS CNN Model Architecture 

Fig. 11. Colour Index for layers in Custom VRSS CNN Model Architecture 
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Fig. 12. Three configurations each of the six models trained using transfer learning - Xception, InceptionV3, VGG-16, EfficientNetV2, ConvNeXtTiny, 

ResNet152V2 and Custom model 
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 pyttsx3 library to perform the text-to-speech task, while in the 

presence of a stable internet connection, the model switches 

seamlessly to the gTTS library to perform the TTS task. 

This completes the discussion of various methodologies applied in 

the experimentation phase of the VRSS Model. The next section 

highlights the key findings and results of this experimentation, and 

also provides discussion on the same. 

7. Results and Discussion 

As explained in the previous Methodology and Experimentation 

section, six different pre-trained Deep Learning models were used 

to classify the tactile image obtained from the sensor. The models 

used were imported from the Keras library. As explained in the 

Methodology and Experimentation section, each model was 

trained with three sets of different parameters and the best among 

them was selected to be customized for the dataset used in this 

paper. Epochs and Learning rate were the parameters which were 

fine-tuned to get the best results. Table 2 shows the best parameters 

and accuracy obtained by training them. 

Table 2. Comparison of CNN Models 

Model Name Learning Rate Number of 

epochs 

Accuracy 

Xception 0.01 7 0.843 

EfficientNetV2 0.05 10 0.904 

ResNet152V2 0.05 10 0.576 

VGG-16 0.01 7 0.831 

InceptionV3 0.05 10 0.843 

ConvNeXtTiny 0.05 10 0.905 

Fig. 12. shows the comparison between the model accuracy of 

different models (with different configurations of 

hyperparameters). The images for each model are ordered 

according to the parameters used to train those models. The first 

image corresponds to the model trained with the parameters [Batch 

Size: 32; Learning Rate: 0.01; Epochs: 7], the second one 

corresponds to the model trained with the parameters [Batch Size: 

32; Learning Rate: 0.05; Epochs: 10] and the third one corresponds 

to the model trained with the parameters [Batch Size: 32; Learning 

Rate: 0.01; Epochs: 10]. 

 

Table 2 and Fig. 12 shows the comparison between the models 

which used parameters that gave the best output. Since the 

accuracy of the ConvNeXtTiny model was best, it was then 

modified to build the custom model which had higher accuracy and 

thus provided better results. The modifications made to the 

ConvNeXtTiny model were already explained in the previous 

section. But they are revisited in the next sub-section so that 

understanding the results of the model is easier. 

7.1. Custom VRSS CNN Model 

The custom model as mentioned in the methodology and 

experimentation section was trained on a total of 503 images, out 

of which 327 were used for training, 80 for validation and 96 for 

testing. The total number of classes was 7. The number of epochs 

for the feature extraction phase was set to 40, batch size to 32 and 

learning rate to 0.001, while for the fine-tuning phase, the number 

of epochs was 50, batch size was 32 and the learning rate was 

0.0001. Comparing the weight updates in various convolutional 

layers reveals that a pre-trained CNN may effectively identify 

tactile data by updating a few of its convolutional layers on visual 

data. 

After training the feature extractor, the training accuracy was 

obtained to be 83.75% with a validation loss of 0.5208. 

After fine tuning the model, the validation accuracy increased to 

94.99% and the loss decreased to 0.3549. 

Also, after fine-tuning, the testing accuracy was found out to be 

95.83% and the loss was found out to be 0.3058. 

The accuracy and loss values of the final custom model were found 

out to be better than the pretrained models by a big margin. This 

was because, the weights of the specialist layers of the custom 

model, in addition to the new classification head, were fine-tuned. 

The precision score of the Custom VRSS CNN Model was 0.9608, 

while the recall score of the model was 0.9583. 

Fig. 12 depicts the confusion matrix obtained while evaluating the 

Custom VRSS CNN Model. 

 
Fig. 13. Confusion Matrix for Custom VRSS CNN Model 

The confusion matrix clearly shows the goodness of the model. 

This is further reinforced with the Table 3 given which contains 

the result given by the custom model after testing, for each object 

tested. 

Table 3. Object classification statistics for Custom VRSS CNN Model 

Object name No. of object 

instances 

No. of correctly 

identified object 

instances 

No. of incorrectly 

identified object 

instances 

Ball 22 20 2 

Box 20 20 0 

Key 18 17 1 

Pen 8 8 0 

Pliers 8 7 1 

    

Scissors 9 9 0 

Screw 11 11 0 

 

Above results have been visualized as a bar graph as shown in Fig. 

14, for better interpretability. 
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Fig. 14. Object Classification Results 

This completes the discussion of the results obtained after 

performing the experimentation for the VRSS Model. 

Finally, the conclusion of the entire research work conducted on 

the VRSS model is given in the next section. 

8. Conclusion 

In this research work, the working of the VRSS model which 

includes the conversion of tactile inputs to visual images whose 

result is further provided in the form of text and audio, has been 

highlighted. In this way, the presented model VRSS successfully 

models the multi-modal sensory neural processes. The tactile 

inputs are captured using DIGIT sensor. These tactile images are 

then fed into the Deep Convolutional Neural Networks (DCNNs) 

for object classification. The output is presented in the form of 

audio and text. 

The paper compares various Deep Convolutional Neural Networks 

(DCNNs) such as XceptionNet, EfficientNet, ResNet152V2, 

VGG-16, InceptionV3 and ConvNeXtTiny to get the model with 

the best accuracy. The most accurate model comes out to be 

ConvNeXtTiny with an accuracy of 91.4%. The best accuracy 

model is further modified to improve the accuracy. The model on 

modification has a better accuracy of 95.83%. The model performs 

exceptionally well for predefined 7 objects; however, the number 

of objects can be further increased to make the model more diverse. 

DCNN fine-tuned transfer learning with Keras models technique 

which is used in building the custom model offers a powerful 

approach for touch to vision research. By adapting pre-trained 

models to learn the mapping between tactile and visual data, 

researchers can leverage existing visual knowledge, optimize the 

touch to vision mapping, and enhance the understanding and 

application of tactile information in various research domains. 

The project successfully serves in predicting the objects from 

sensed data which contributes to the fields of robotics, AI and Deep 

Learning. The future scope of the project includes incorporating 

more objects to diversify the model. The future prospect of this 

research also includes the recreation of 3D model of the sensed 

object to facilitate object identification and perception in the fields 

of robotics, haptics, and medical sciences to provide relief for 

various vision and touch-related diseases.  
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