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Abstract: The widespread adoption of cognitive radio networks (CRNs) has led to increased interest in “spectrum sensing” techniques to 

efficiently detect and utilize underutilized frequency bands. However, the presence of impulsive noise poses a significant challenge to 

accurate “spectrum sensing”, as it can disrupt signal measurements and lead to false detections. This research paper aims to analyze the 

impact of impulsive noise on “spectrum sensing” techniques for CRNs. Impulsive noise is a type of noise that occurs randomly and can 

significantly affect the performance of cognitive radio systems. The assessment involves comparing the performance of different “spectrum 

sensing” techniques such as Energy detection (ED), Maximum-minimum eigenvalue detection (MMED), and Generalized Likelihood Ratio 

Test (GLRT) in the presence of impulsive noise. The analysis is done  by considering different metrics and optimum “spectrum sensing” 

model is proposed. This proposed work involves the use of a direct conversion receiver architecture with automatic gain control (AGC) to 

minimize noise and DC offset. The simulation scenarios involve different threshold and signal-to-noise ratio (SNR) levels to evaluate the 

performance of different “spectrum sensing” techniques in the presence of impulsive noise. The comparative evaluation is done by 

analyzing the graphical results obtained from the simulations and from results it is evident that the GLRT detection method exhibits better 

sensing ability in an impulsive.  

Keywords: Automatc Gain Control. Cognitive radio Networks. Energy detection.  GLRT, “spectrum sensing”. 

I. Introduction 

With reference to the incresing demand for wireless 

communication services, the availablability of the  frequency 

spectrum has become a major issue. The allocation of this 

spectrum has become a challenge for policymakers, as they 

must balance the needs of various stakeholders, including 

government agencies, commercial providers, and individual  

users.  

The current spectrum allocation policies are often inflexible 

and do not account for changes in technology or usage 

patterns. This has led to inefficiencies in spectrum utilization 

and a lack of available spectrum in certain regions or for 

certain applications. These rules are drawn from a model that 

is considered to be static. In this model, the distribution of 

the spectrum is governed by a variety of governmental 

bodies all over the world, such as the Federal 

Communication Commission (FCC). It results in an 

inefficient use of the available frequency spectrum and a 

frittering away of valuable frequency resources [1]. The 

Dynamics of Spectrum Management has introduced 

techniques for improving the utilization of existing spectrum 

allocations. The cognitive radio (CR) has come forward as 

an intelligent system to exploit the available spectrum and 

has proven as the supreme solution to defeating the spectrum 

scarcity crisis. Auxiliary spectrum efficiency can be obtained 

by expanding the CR networks (CRN) to support the new 

wireless users in the accessible packed spectrum without 

causing any trouble to the existing licensed primary users 

(PU) performance [2]. The CRN permits the unlicensed 

secondary users (SU) also referred to as CR users, to share 

the wireless channels with the PU in an opportunistic 

approach. Still there exists the challenge to the CR users with 

the instability within the accessible spectrum and assorted 

Quality of Service(QoS) necessities. “spectrum sensing” is 

considered the major necessity for the realization of a CRN. 

It permits to use of the spectrum segment in the radio 

environment by repetitively examining the vacant spectrum 

and detecting the PUs to avoid interference. It has been 

determined that cooperative “spectrum sensing” is the most 

effective method because of its capacity to resolve hidden 

PU. [3]. The eigenvalue–based “spectrum sensing” 

techniques have shown the best performance of the existing 

sensing methods [4-6].  

The performance of the “spectrum sensing” methods is 

tested over the Impulsive noise (IN) background[7-8]. The 

basis of IN generation includes electromagnetic interference, 

including, sea wave reflections, lightning, noise from 

running vehicles, etc. An effect of IN over “spectrum 
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sensing” in fading and non-fading conditions is considered 

for analysis by using the GLRT method of detection [9].  

This paper contributes to an integrated investigation of the 

cause of IN on the performance of detection techniques 

namely, ED, MMED, and GLRT. The performance analysis 

is based on the effect of IN with the inclusion of AGC in 

residual dynamic DC offset. The comparative performance 

assessment is done for the P-model with C- the model and R-

model. The P-model offered better sensing results and more 

precise sensing results are obtained even in the presence of 

IN. 

The remaining sections of the work are structured in the same 

manner as is demonstrated in the paragraphs that follow. In 

the section that comes after this one, which is titled "Section 

2," the specifics of the system model are broken down into 

agonising depth. In the section that follows, titled "Section 

3," you will find an explanation of the simulation setup that 

will be used to compare the performance of three distinct 

"spectrum sensing" approaches, as well as the configuration 

of the parameters. This comparison will be carried out using 

the information that you will find in the following section, 

titled "Section 3." In Section 4, the results of the simulations 

are illustrated, along with a comprehensive analysis and a 

comparison of the sensing performance. The last and most 

recent section of the publication, which bears the number 5, 

is devoted to an analysis of the results of the simulation. 

II. System model 

The model of the system is constructed such that it may 

address the problem of “spectrum sensing”. The test of the 

binary hypothesis distinguished between the hypotheses H0 

and H1, which respectively reflect the sensed states of signal 

presence and signal absence. It is possible to determine the 

relevant values for the detection probability (Pd) and the 

“false alarm probability” (Pfa) using the formula [13]. 

                           Pd  =  P (T > γ/H1)                                    

(1) 

                         Pfa  =  P (T > γ /H0)                                    

(2) 

The receiver operating characteristic (ROC) is the graph of 

PdversusPfa which varies with the “decision threshold” γ. 

detection-dependent test statistics is denoted by  T. The 

“spectrum sensing” requirements are considered for 

choosing the value of γ, and the threshold is estimated 

through ROC. 

For analysis purposes, multiple antennas are activated by the 

SU to detect the primary signal. The channel is assumed 

constant and memoryless in all the sensing windows and 

constant throughout the detection time.  

m denotes antennas in a CR considered for the analysis 

purpose. This is collecting n “baseband complex” (I/Q) 

samples of the received signal from p “primary transmitters” 

throughout the sensing period. All the received samples are 

arranged in a matrix Y ∈ Cm×n. Another matrix X ∈ Cp×n is 

used to arrange the y. The transmitted signal samples 

transmitted from the ptransmitters channel matrix H ∈ Cm×p  

with the elements {hij}, i =  1, 2, . . . , m and j =

 1, 2, . . . , p, relate to the channel gains are amongst the jth 

primary transmitter and ithreceiver. 

Additional two matrices namely,V andVIN ∈ Cm × nare used 

to exemplify thermal noise and impulsive noise samples. 

Based on this then the matrix of received samples is 

represented as,  

                           Y =  {
HX +  V + VIN              H1

V                                      H0
               

(3) 

m Complex Gaussian noise samples are collected for the 

received signal under H0vector with “zero mean” and 

“variance” σv
2.Then the received vector contains signal plus 

noise underH1 compare to H0. 

The transmitted signal sample is denoted X, which represents 

a Gaussian2 random variable with zero mean and 

varianceσs
2. 

The signal vector matrix X ≜   [x(1). . . x(N)]is 1 × n is and 

V ≜   [v(1). . . v(N)]is m× n noise matrix.  

Considering that the PUs symbols are unknown, with 

assumptions sis circularly symmetric Gaussian-distributed 

with zero mean and covariance matrix Rs = hh†, where, 

†indiactes complex conjugate and transpose. 

UnderH1, the SNR at the receiver is defined as,   

                                ρ ≜
𝙴‖HX‖2

𝙴‖V‖2 =
σs

2‖h‖2

σv
2m

                             

(4) 

where,‖. ‖ denotes Euclidean (L2) norm. 

The received m × nmatrix is used to store the received 

samples, 

                         Y ≜   [y(1). . . … . y(N)]                                   

(5) 

When performing eigenvalue-based “spectrum sensing”, it is 

necessary to describe spectral holes using test statistics, and 

these statistics are dependent on the eigenvalues of the 

sample covariance matrix of the received signal matrixY. 

According to the description, “the sample covariance matrix 

R for centralized data fusion cooperative sensing looks like 

this”: 

                                    R ≜
1

N
YY†                                             

(6) 

Let λ1 ≥ ⋯ ≥ λK = “eigenvalues ofR sorted in decreasing 

order assuming the only primary transmitter”.  
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When centralized cooperative sensing is used with CRs that 

only have a single antenna, the matrix Y is meant to be 

available at the FC as though no signal processing is 

necessary before each row of Yis is sent to the FC. 

After modifications in the direct conversion radio receiver 

[14], the received signal covariance matrix becomes, 

                    R′  ≅
1

N
Y′Y† =

1

N
GY† = GRG                               

(7) 

where G = “diagonal AGC gain matrix”. 

Snubbing the constants without performing any signal 

processing operations in addition to AGC, G becomes,  

                     Gii = (yi † yi)
−0.5 = ‖yi‖2

−1                             

(8) 

where, yi = “ith row ofY, i.e., the set of nsamples collected 

by the ith CR, and ‖yi2
‖ is the Euclidean norm of yi”. 

For performance analysis, the different cases of IN are 

considered for demonstrating the impact of IN on “spectrum 

sensing”. 

The test figures considered for “GLRT, MMED, and ED” 

according to [4, 15,16] are, 

           𝑇𝐺𝐿𝑅𝑇 =
𝜆1

1

𝑚
𝑡𝑟(𝑅)

=
𝜆1

1

𝑚
∑ 𝜆𝑖

𝑚
𝑖=1

                            (9) 

                                 𝑇𝑀𝑀𝐸𝐷 =
𝜆1

𝜆𝑚
)                                         

(10) 

                       𝑇𝐸𝐷 =
‖𝑌‖𝐹

2

𝑚𝑛𝜎2 =
1

𝑚𝜎2
∑ 𝜆𝑖

𝑚
𝑖=1                           (11) 

In the above test statistics, the “thermal noise power” is 

represented by σ2in addition to this, tr(R ) and ||Y ||F are the 

trace and the Fresenius norm of the fundamental matrix 

respectively. When there is noise present, methods that are 

based on eigenvalues make the assumption that the 

covariance matrix is a diagonal matrix with its elements 

equal to 2; this is the case even though this is not always the 

case. In addition, if the environment contains only Gaussian 

noise, the test statistic for each and every one of the sensing 

methods that are being evaluated should be equal to one. This 

is the case even if there is only Gaussian noise in the 

environment. 

Following models are considered for performance 

comparison of different “spectrum sensing” techniques: 

2.1 Conventional “discrete-time memoryless linear 

MIMO fading channel model” (C-Model) 

In the beginning, the traditional “discrete-time memory-less 

MIMO fading channel model” is developed so that an 

evaluation of the performance of various “spectrum sensing” 

approaches can take place. This model is static with single-

sensor centralized cooperative sensing. The Additive White 

Gaussian Noise (AWGN) channel is assigned. In this model, 

no random process and signal processing is involved. It is 

projected that the sensing performance beneath the 

conventional model can be rather  

 

Fig.1. CR Receiver diagram 
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Within the framework of the direct-conversion CR receiver 

architecture, which is depicted in Figure 1, the R-model 

implements fundamental signal processing operations like as 

“filtering, quantization, and automatic gain control” (AGC). 

The direct-conversion receiver (DCR) is implemented for 

cognitive radio applications in regular circumstances. Fig. 1 

is used as the key reference to build this model. Previous 

work in [9], illustrates the discovery of samples affected by 

IN. These samples are considered for analysis on “spectrum 

sensing” techniques and have shown noticeable 

improvement in the effect of IN. The model presented in [10-

12] is used for performance comparison in which the IN 

waveform is produced by receiving the white noise signal as 

shown in Fig.2. Table 1, denotes the parameters configured 

for “spectrum sensing” as per the type of the noise 

source.suspicious if IN is present, while it can be better when 

the IN is not present. 

2.2 The Realistic Implementation Oriented MIMO 

model (R-Model) 

The realistic implementation orientation model is based on a 

random process. This model is dynamic and it is 

implemented by considering the signal detection in CRNs for 

multi-sensory detection situations for different IN levels.  In 

this model slowly time-varying Rayleigh fading channel is 

considered 

 

Fig. 2. Waveform for Impulsive Noise. 

2.3 Performance orientation model (P-Model) 

Fig.1 is used as the main reference to build the P- model. The 

existence and non-existence of IN is the point of reference 

used for the adaptation of the threshold levels set for the 

different sensing techniques. Analytical investigations under 

this model are used as contributions to the performance 

comparison of different detection techniques in the context 

of “spectrum sensing”. The P-model is also dynamic and is 

implemented for the centralized data fusion cooperative 

“spectrum sensing” in multi-spectrum/multi-sensor 

scenarios. The detection process is carried out by the 

Maximum Likelihood Estimator (MLE) in the time-varying 

Rayleigh fading channel. 

 

 

III. Simulation Setup 

The simulation setup is developed allowing for the general 

centralized data-fusion cooperative “spectrum sensing” 

situation. For C- the model initial assumption is made that 

the received signal samples with the matrix 𝑌 in equation (1), 

are available to the FC. In this model, the sample values are 

sent to the FC directly without any signal processing by CR. 

Matrices𝑋, 𝐻, 𝑉 and VINunder the C-model are generated as 

follows:  

𝑋 = “produced by zero-mean complex Gaussian samples”. 

𝐻 = “The elements in the channel matrix 𝐻 are zero mean”. 

𝑉 = “Complex Gaussian variables for the additive thermal 

noise and the impulse noise”. 

𝑉𝐼𝑁 = “Complex Gaussian variables the impulse noise”. 

Both 𝑉 and  𝑉𝐼𝑁 are corrupting the received samples 

For the R and P-model, the simulation setup is built 

concerning receiver architecture shown in Fig.1. 

Matrices “𝑋, 𝐻, 𝑉,and 𝑉𝐼𝑁” under the R and P -model are 

generated as follows: 

𝑋: is formed by a simple signal processing operation of 

filtering with a length-L due average (MA) filter without 

quantization.𝐻, 𝑉and 𝑉𝐼𝑁 are modeled similar to that of the 

C- model. 

The influence of the Low Noise Amplifier (LNA) and the 

AGC on the samples processed by the ithCR, i =  1, 2, . . . , m 

is given by the gain. 

         𝑔𝑖 =
𝑓𝑜𝑑𝐷√2

6√
1

𝑛
𝑦𝑖†yi

=
𝑓𝑜𝑑𝐷√2

6‖𝑦𝑖‖2
       (12) 

where, 𝑦𝑖  is 𝑖𝑡ℎrow of 𝑌, and ‖𝑦𝑖‖2is the Euclidean norm of 

𝑦𝑖 . The static performance of the amplified samples of𝑦𝑖is 

changes because of AGC. According to this, it is imagined 

the gains in equation (12) are taken into account for the 

sensing techniques that insist on knowledge of the noise 

variance information in the derivation of new test statistics. 

With reference architecture shown in Fig.1, the simulation 

setup is built to stick to the overall centralized data-fusion 

cooperative “spectrum sensing” scenario.  

Table 1. Parameters configured for simulation of sensing 

model 

Parameters 

Defined 

Description 

𝑚 “Antennas in CR / CR with one antenna each” 

𝑛 “Number of received samples from the 

primary transmitter” 
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𝑁𝑒 “The number of Monte Carlo simulation 

events” 

𝑁𝑞 “The number of quantization levels” . 

𝐷 “ADC dynamic range” 

𝑓𝑜𝑑 “Overdrive factor” 

For Impulsive Noise additional parameters to be set 

𝑝𝐼𝑁 “Probability of IN occurrence” 

𝑝𝐶𝑅 “Fractions of CR hits by IN”. 

𝑁𝑆 “Number of IN blurts” 

𝐾 “The ratio of avg. IN power and avg. thermal 

noise power” 

𝛽 “The average number of samples between IN 

pulses” 

𝐴 “The mean of the log-normal IN amplitudes”. 

𝐵 “The standard deviation of the log-normal 

amplitudes” 

IV. Simulation Results 

In this section, initially, the extensive simulations are 

performed by setting the different threshold and SNR levels 

to compare the performance of all the models i.e. C-model, 

R-model, and P-model for variable scenarios. Later ROC 

curves are depicted for performance analysis of r all the 

detection techniques.   

The performance measurements parameters set for 

simulation scenario one as,𝑚 = 8  𝑛 = 50, 𝑆𝑁𝑅 =

−10 𝑑𝐵, 𝑁𝑒 = 2000, along with this, the minimum to 

maximum threshold levels sets in the range of are 𝛾 =

0.78  𝑡𝑜𝛾 = 1.1 with , 8 different threshold events. Fig.3. 

presents comparison plot for, 𝑃𝑑 and𝑃𝑓𝑎 with respect to the 

changes in threshold levels for all three models. For fixed 

threshold, the behavior of 𝑃𝑓𝑎 is shown, and it is evident from 

the results that 𝑃𝑑is improved for all the models for variable 

threshold levels. These curves can be used to compute the 

threshold necessary to achieve a given false alarm rate.  

 

Fig. 3. Pd, Pfa Vs Threshold 

The second simulation scenario involves changing the 

signal-to-noise ratio (SNR) while maintaining the threshold 

level at value = 1.4. The range of possible SNR values is 

from -20 dB to 10 dB. Figure 4 displays the outcomes of the 

simulation in the form of a graph between Pd and Pfa for a 

variety of SNR values. 

 

Fig 4. Comparision of Pd, Pfa Vs SNR 

It can be observed from the results that, with an increase in 

SNR𝑃𝑑is increased. Further significant improvement in 𝑃𝑑is 

obtained. For a wide range of SNR situations, the P-model 

consistently produces superior results to those of the C-

model and the R-model. Although Fig.3-4 only shows data 

for the ED approach, it is generally accepted that the findings 

are applicable to all three of the detection methods that are 

being taken into account for the analysis. 

 

Fig.5. ROC curve for ED method with m=8, SNR = -10 dB. 
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 Fig. 6. ROC curve for GLRT method with m=8, SNR = -

10 dB. 

 

Fig. 7. ROC curve for MMED method with m=8,SNR = -

10 dB 

The ROC curve for all of the “spectrum sensing” methods 

that were evaluated may be seen in Fig. 5-7, along with the 

effect of IN. The findings provide an illustration of the 

performance of the system in IN situations. The parameters 

set for simulation are  𝑝𝐼𝑁 = 0.2 , 𝐾 =  10 , 𝑝𝐶𝑅 = 0.5 , 𝑁𝑠 

=10,𝑁𝑏 = 1 with 𝐴 =100, 𝐵 =75 and𝛽 = 10 . In both the R 

and the P-model, the threshold levels that are established for 

performance evaluation with and without IN are the same. It 

has been observed, based on the ROC curves, that the sensing 

performance can be too positive if the C-model operates 

without IN, and it can be too negative with IN for all 

detection techniques. Both of these outcomes are possible. 

And the results show that including IN lowers performance 

across the board for all false alarm probability values when 

considering C- the model.  When compared to the other 

models, the R-model shows a significantly smaller level of 

influence of IN on the sensing. In addition, it is clear from 

the findings that both the sensing results with IN and those 

without IN are extremely near to one another when it comes 

to the R and P-model. This can be deduced from the findings. 

V. Conclusion  

The AGC-based model is suggested and implemented in this 

research for the purpose of performance evaluation of three 

distinct detection approaches for spectrum detection in 

cognitive radio networks under a variety of IN situations. 

The performance of the proposed model is compared with 

the conventional models and exhibited better sensing results. 

GLRT detection method demonstrated significant 

improvement over ED and MMED methods for “spectrum 

sensing” even in presence of IN background. In addition, it 

has been reached the conclusion that the accuracy of sensing 

in the implementation-oriented model could have been 

irregular in comparison to the typical residual dynamic DC-

offsets. The precise design of RF and DC offset 

compensation circuits is one way in which it is possible to 

make improvements. 

References 

[1] Federal Communications Commission.: Spectrum 

policy task force report, ET Docket No. 02-135, (2002) 

[2] Mitola, J., Maguire, and G.Q.: Cognitive Radio: making 

software radios more personal. IEEE Personal 

Commu.Mag., Vol.6, Issue 4, pp. 13–18 (1999) 

[3] Akyildiz, I.F.:Cooperative “spectrum sensing” in 

cognitive radio networks: A survey: a survey.  In: 

Elsevier physical communication, pp.40-62 (2011). 

[4] Nadler, B., Garello, R.: Performance of Eigenvalue-

Based Signal Detectors with Known and Unknown 

Noise Level. In Proceedings of IEEE International 

Conference on Communications, ICC, Kyto, Japan, 

pp.1-5 (2011) 

[5] Kortun, A., Ratnarajah, T., Sellathurai, M., Zhong, C., 

Papadias, C.: On the performance of eigenvalue-based 

cooperative “spectrum sensing” for cognitive radio. 

IEEE Journal on Sel. Top. Signal Processing, 49–55 

(2011) 

[6] Tandra, R., Sahai, A.: Fundamental limits on detection 

in low SNR under noise uncertainty:  in Proc. Int. Conf. 

Wireless Networks., Communications.Mobile 

Computing., Maui, HI, pp. 464–469 ( 2005) 

[7] Osorio, M-R., de Haro-Ariet, Calvo-Ramon, L., Sanchez 

L.M.: Performance evaluation of W-CDMA in actual 

impulsive noise scenarios using adaptive antennas. IEEE 

Proc. Communications, 151, pp. 589–594 ( 2004) 

[8] Budsabathon, M., Hara, S.: Robustness of OFDM Signal 

Against Temporally Localized Impulsive Noise. In 

Proceedings of the IEEE VTS 54th Vehicular 

Technology Conference, VTC 2001, 7–11; Vol. 3, pp. 

1672–1676 (2001) 

[9] Kang, H.G., Song, I., Yoon, S., Kim, Y.H.: A class of 

spectrum-sensing schemes for cognitive radio under 

impulsive noise circumstances: Structure and 

performance in nonfading and fading environments.  

IEEE Trans. Veh. Tech., pp. 4322–4339(2010) 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(10s), 727–733 |  733 

[10] Guimarães,D.A.,.de Souza, R.A., dos Anjos.: 

Implementation orientation model for centralized data 

fusion cooperative spectrum.  IEEE Commun. letter 

16,pp.184-187, (2012) 

[11] Guimarães,D.A.,.de Souza, R.A., Barreto, A.N.: 

Performance of Cooperative Eigenvalue”spectrum 

sensing” with a Realistic Receiver Model under 

Impulsive Noise.  Journal of Sensor and Actuator 

Networks, pp.46-59(2012) 

[12] Lago, J., Fernández, Salter, J.: Modeling Impulsive 

Interference in DVB-T: Statistical Analysis, Test 

Waveforms, and Receiver Performance. BBC R&D 

white paper WHP 080 (2004) 

[13] Yates, R.D., GoodmanD.:Probability, and Stochastic 

Processes: A Friendly Introduction for Electrical and 

Computer Engineers. 2nded. (2004) 

[14] Razavi, B.: Design considerations for direct-conversion 

receivers. IEEE Trans. Circuits Syst. II, vol. 44, no. 6, 

pp. 428–43 (1997) 

[15] Dipak P. Patil ,Vijay M. Wadhai, “Performance  

Evaluation of “spectrum sensing” in Cognitive Radio for 

Conventional Discrete-time Memoryless MIMO Fading 

Channel Model,” in proceedings of IEEE International 

Conference on Collaborative Computing: Networking, 

Applications and Work sharing, at Miami Florida USA, 

pp. 425-430, Oct. 2014 .978-1-63190-043-3 © 2014 

ICST. 

[16] Dipak P. Patil  and Vijay M. Wadhai, “Performance 

Evaluation in Cognitive Radio Network over Wireless 

Fading Channels from “spectrum sensing” Perspective,” 

in proceddings of IEEE International Conference on 

Green Computing, Communications and Conservation 

of Energy, IEEE ICGCE-2013, at Kavaraipettai, 

Chennai, pp 53-58, Dec. 2013.978-1-4673-6126-

2/13/$31.00 © 2013 IEEE. 

[17] Ms. Elena Rosemaro. (2014). An Experimental Analysis 

Of Dependency On Automation And Management 

Skills. International Journal of New Practices in 

Management and Engineering, 3(01), 01 - 06. Retrieved 

from 

http://ijnpme.org/index.php/IJNPME/article/view/25 

[18] Vijayalakshmi, V., & Sharmila, K. (2023). Secure Data 

Transactions based on Hash Coded Starvation 

Blockchain Security using Padded Ring Signature-ECC 

for Network of Things. International Journal on Recent 

and Innovation Trends in Computing and 

Communication, 11(1), 53–61. 

https://doi.org/10.17762/ijritcc.v11i1.5986 

[19] Aoudni, Y., Donald, C., Farouk, A., Sahay, K. B., Babu, 

D. V., Tripathi, V., & Dhabliya, D. (2022). loud security 

based attack detection using transductive learning 

integrated with hidden markov model. Pattern 

Recognition Letters, 157, 16-26. 

doi:10.1016/j.patrec.2022.02.012 

 


