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Abstract: Few works have been carried out for the vision-based Apple disease framework throughout the year. Mainly, apple disease 

recognition includes two issues: infection identification and disease classification. Because of the advancement of vision-based innovation, 

we got a better framework for this issue. The datasets are mainly grouped into four categories, i.e., typical, rot, blotch, and scab, the last 

three being the three major kinds of defects found in apples. The aim is to distinguish these defective apples from the normal ones. In this 

chapter, we propose an Alex net and VGG-16-based deep learning model for classifying disease in all categories of apples. The performance 

of the Alex-Net model is 95.56 percent, whereas VGG-16 produces 94 percent accuracy rates. In both models, the highest classification 

accuracy has been produced for the rot disease apple category. 
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1. Introduction 

Apple is a common but nutritious food item. A doctor 

always advises that to a person to be healthy. Himachal 

Pradesh and Jammu & Kashmir majorly produce it for the 

country. With the high volume grown, it gets evident that 

some part of it is infected, and some might be 

inconsumable, maybe because of the fertilizers used in 

cultivation or different types of worms found in the soil. 

If the farmer that grows it or the consumer buying it wants 

to pick the uninfected ones, it will take time due to the 

large quantity produced. Sometimes one might have a 

defective one in hand but cannot recognize it, and it can 

be for any product, just not Apple. 

Apple is a common but nutritious food item. A doctor 

always advises that to a person to be healthy. Himachal 

Pradesh and Jammu & Kashmir majorly produce it for the 

country. With the high volume grown, it gets evident that 

some part of it is infected, and some might be 

inconsumable, maybe because of the fertilizers used in 

cultivation or different types of worms found in the soil. 

If the farmer that grows it or the consumer buying it wants 

to pick the uninfected ones, it will take time due to the 

large quantity produced. Sometimes one might have a 

defective one in hand but need help to recognize it, and it 

can be for any product, just not Apple. 

Compared with other non-destructive detecting 

procedures, machine vision systems dependent on RGB 

shading cameras indicated more potential for online 

organic product arranging and reviewing per shading, 

size, shape, and imperfections because of its ease and fast 

review speed [1-4]. However, using NIR organized light 

and NIR camera confounds the image classification and 

expands the creation expenses of the organic product 

evaluating framework. Furthermore, as shading, textural, 

and morphological highlights were often used to examine 

the deformities of natural products, the acknowledgment 

precision of those investigations was profoundly subject 

to the highlights chosen and removed [5]. 

It would be a great help if there is an application that can 

do this job for humans, which means by looking at the 

apple, it could identify the defect or the condition if 

consumable or not. It could be installed with cameras 

mounted on the walls of a room storing apples. A day’s 

work can be done in minutes. Now, the bigger picture is 

how will such an application be built. A neural network 

needs to be used because these networks work in layers, 

and the outcomes of multiple data are mutated to obtain 

the best. The network needs to be trained for the job, and 
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it can be done using a dataset containing numerous 

pictures of apples, both defective and good. The images 

are supposed to cover all types of diseases found in apples 

to date. Then the trained model will be tested on a dataset 

utterly different from the training dataset, which is 

expected to give a good accuracy value. The rest of this 

section is as follows. Section 2 describes the related work 

in the current area. The model of profound learning in 

portrayed in section 3. The dataset clarifies the proposed 

framework design in section 4. Section 5 presents the 

exploratory outcomes and our discoveries. Section 6 

elaborate the results and discussion And Section 7 makes 

a few conclusions and recommendations for future work. 

2. Related Work 

Recently, a lot of progress has been finished regarding 

deformity identification. The author proposes a 

straightforward solution for fruit disease [6]. Disease 

segmentation using K-means clustering approaches has 

shown exact recognition results and is widely adopted [7-

10]. The quality of fruit depends on the broad internal and 

external features. The quality parameter such as size, 

shape, colour, mass, and volume is classified as an 

external feature [11]– [12]. The sizes of apples are a 

crucial parameter for outward appearance because the 

quality of apples is mostly graded by size variability. The 

estimation of outside rate dependent on size is, in reality, 

progressively complex because of the sporadic size and 

shape. The meaning of size is removed dependent on its 

highlights, strikingly the length, the distance across, and 

width. The size estimations are increasingly challenging 

for apples' changeable shape as opposed to oval or round-

formed natural fruit products [13]. 

Recently, the author [14] used wavelet sifting calculation 

to smooth the gathered apple leaf image, utilizing the 

shading contrast of the sores and limiting the following 

analysis to the disease region. The technique is essential 

for the programmed fast conclusion, counteracting apple 

leaf infections, and focusing on distinguishing plant 

illnesses by utilizing the picture highlights of plant 

sicknesses. Another author [86] has also explored the 

application of Ultrasound techniques to estimate the 

quality of apple fruits based on a firmness internal 

parameter. The experimental setup for determination of 

apple firmness. In this, a non-destructive ultrasonic 

system measures velocity and attenuation. The multiple 

linear regression model (MLRM) correlates the 

relationship between firmness and ultrasound parameters. 

They have found that an ultrasound technique is reliable 

for assessing apple quality. The proposed technology 

achieves an overall 82 percent accuracy rate. One of the 

other researchers [14] highlighted the role of velocity and 

attenuation in changing biochemical composition during 

the ripening process.  

Machine vision is part of an engineering expert skill in 

consolidation with optical and mechanical properties, 

electromagnetic, and image processing methods. Machine 

vision frameworks are progressively fast regarding 

sample image assessment when analysing acoustic and 

vibration modes. The improvement of the application has 

increased a lot of enthusiasm for the quality assessment of 

agricultural products. The volume estimation is essential 

for fruit to decide the size per specific grading evaluations 

[18]. At the present stage, the principal worries in this 

machine vision now explore the capacity of machine 

vision to classify the agriculture product as far as quality 

parameters [17]. Till now, research has dealt with the 

primary practice of quality assessment with methods for 

machine vision frameworks [18]– [19]. 

In a computer vision-based system, each image is 

represented in some particular colour space. Many colour 

spaces are available in image processing; some common 

colour space is RGB colour space, HSI colon space, L* a* 

b* colour space [20-21]. For example, the RGB colour 

space is frequently utilized in exacting R G B individually 

of apple fruits which contains the three wavelengths with 

the composition of red, green, and Blue. As we know, 

RGB colour space hardware-based colour changes have 

been done by standard colour value of the particular image 

that can be identical to the human person in HSI colour 

space [22]. The machine vision framework plays a vital 

role in detecting colour, texture, shape, and illumination 

[23]. Identifying disease or external damage is ongoing 

with further, more challenging tasks. For instance, the 

exactness of the machine vision framework to assess the 

external part of food products depends upon a few 

elements, including the cultivar, planting area, and 

postharvest treatment of fruits [24]. 

The author [25] has presented a computer vision approach 

to improve productivity. The system comprises a camera, 

frame grabber, and sample holder components. In this 

image, samples are kept on a sample holder. Image 

processing techniques mostly do the quality analysis of 

fruits and vegetables. This technique consists mainly of 

four steps, where the first step is to do pre-processing to 

remove unwanted noise, the second segmentation process 

is to extract the background of the image sample, followed 

by feature extraction to extract the parameter responsible 

for the quality, finally, applying classifiers to detect the 

performance of the proposed system. 

The author [26] first prepared the image acquisition 

chambers set to grade the apple quality. Various 

components are arranged in the image acquisition 

chamber, such as a lamp, focus, camera, reflection 
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material, and sample holder. They have done the quality 

grading of apples based on three different class labels: 

Grade I, Grade II, and Grade III. This class is based on the 

value of color, size, and spot attributes. In the experiment 

step, the first pre-processing will have done by median 

filter followed by background extraction using Otsu 

Threshold techniques. After that, all segmented images 

are taken, and the spot pixels are extracted by calculating 

the ratio between the spot pixel and the total apple pixel. 

Also, colour and shape-based feature is calculated. They 

have shown that if the value of dominance is less or equal 

to 117, it falls into the unripe class, or if it is between 117 

to 130, it comes under the semi-ripe apple. Otherwise, for 

more than 130, it falls under the third category, ripe apple. 

Finally, based on a fuzzy-based rule classifier, apple is 

classified into Grade I, Grade II, and Grade III.  

A design framework was presented by the author [27]. 

The layout of the system is helpful for fruit grading. In 

this, the camera captures the image placed on the fruit 

place device, and the image processor will convert the 

image into a pixel value. This pixel value will be analysed, 

and finally, based on the class of quality, an assessment of 

the fruit will have done. In this, they have taken date fruit 

from the data sample set. The initial binary threshold 

method is applied to remove the background noise. The 

background removal image will process to the next step, 

where all feature is extracted based on size, shape, and 

intensity. The assessment and inspection of these mangoes 

are done manually, which consumes more time and high 

labour costs. As a solution to this, come into the field of 

the “non-destructive and automated fruit grading system” 

with the image processing techniques 

The author presents a computer vision framework for 

Apple grading [28]. This model comprises a CCD camera 

with lens and filter, a fluorescent lamp, and a PC. All these 

components are connected via wire. They have labelled 

the sample apple in small, medium, and large categories. 

Image dilation and smoothing method were performed on 

the segmented approach. The relationship between 

various parameters to grade the apple class is based on 

distinguishing attributes such as area, diameter, Feret 

diameter, and roundness. The results show the highest 

accuracy has been achieved with Feret diameter for large 

apple classes, whereas less accuracy was received for 

medium apple classes with roundness parameters. 

Image processing is a widely applied technique for sorting 

fruits in agriculture fields. Author [29] also presents the 

Machine Vision system for the quality determination of 

Apple. This framework consists the component such as a 

Conveyer assembly, an Electric power drive, Fruit 

samples, an Illumination unit, Light sources, a Camera, a 

Control unit, Computer, Frame grabber software, and 

Variable-frequency control. The grading of apples is done 

based on three categories such as ripe, unripe, and 

overripe. The author presents an artificial intelligence-

based structure for sorting apples [30]. Their study briefly 

described the role of image processing and AI in sorting 

the apple. The present model helps capture the image of 

the apple. Next, it goes for the segmented process, and all 

feature is extracted to obtain a segmented image of an 

apple based on colour, mass, and volume feature. Finally, 

ANN-based regression method quality grading has been 

done. The proposed system has produced 80 percent 

accuracy rates for sorting apples. 

A hardware and software-based model system is explored 

to sort an apple by author [31]. They have utilized a 

conveyor belt, AC motor controller, webcam, sensor and 

serial commination board. In this model apple sample is 

kept on conveyor belt, where they pass through webcam 

device capture the image. This dilatation and erosion 

operation play an important role to improve the 

performance of proposed system. Further, Size of apple 

sample based on calibre determination method. This 

method extracts the pixel value of images based on weight 

of respective image 89.5 percentage of accuracy rate is 

achieved by the proposed system. 

The author [32] proposed a framework for learning all 

processes, such as background removal, feature 

extraction, training, and classification. This approach is 

applied to a different scope of issues in the horticultural 

produce, such as the quality grading of apple. It is 

indicated that shape, colour, and texture attributes together 

produce more exact quality grade results.  They used a 

neural network and SVM classifier to grade the apple. The 

neutral network achieved more accuracy than SVM, with 

a value of 93.33 percent. Unfortunately, a labour hand-

based quality grading of fruit has many disadvantages. Via 

computerizing the method and utilizing new techniques, 

the system's performance a neural network and SVM 

classifier to grade the apple. The neutral network achieved 

more accuracy than SVM, with a value of 93.33 

percent. Unfortunately, a labour hand-based quality 

grading of fruit has many disadvantages. Via 

computerizing the method and utilizing new techniques, 

the system's performance many disadvantages. Via 

computerizing the method and utilizing new techniques, 

the system's performance may improve.  

In this paper, author [33] has presented a novel framework 

based on the bio-inspired sensing system for sorting the 

apple. The proposed method shows a prominent accuracy 

rate of 92 percent. A similar type of framework is 

presented by the author [34]. They must grade the apple 

by regression model based on mass and volume features. 

The proposed system produces a 91.76 percent accuracy 

rate for grading apple. towards a coordinated framework 

for the agriculture industry. These goals will take care of 

the issues, yet they will likewise give legitimate 
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knowledge of internal and external parameters in the 

machine vision  

3. Deep Learning Models 

Deep Learning is a machine learning technique that can 

classify information more easily using network models 

like CNN, ANN, etc. It has applications in various fields 

like audio recognition, image processing, speech 

recognition, natural language processing, board  

games, and also medical purposes. The idea is to train a 

machine using big datasets using different techniques like 

supervised, semi-supervised, and unsupervised Learning. 

It is an iterative process using multiple network layers to 

extract the best features from the raw input. Different 

algorithms propose simple and time-saving techniques so 

that the number of layers can be reduced and the best 

features can be extracted. Mainly we have used two major 

deep learning models here. 

3.1. Alex Net 

Earlier datasets like CIFAR and NORB were used, which 

contained just some thousands of images. However, for 

real-life applications, including massive datasets like 

ImageNet, the need for a more capable data learning 

model has arisen. So here comes Alex Net in the play. It 

is a Convolutional Neural Network technique proven 

highly efficient in image recognition. This model's highest 

error percentage that can be achieved is 15.3%, which says 

it has a promising accuracy. It consists of eight five 

convolutional layers and three fully connected like any 

other CNN. 

Some other essential features of Alex Net are:  

3.1.1 Rectified Linear Units (ReLU) Non-linearity: It is 

used because of its ability to complete the job in less 

amount of time. It is proven to be six times faster than any 

other technique. 

3.1.2 Multiple GPU’s:  While using such big datasets, the 

image load must be distributed over multiple GPUs to 

save training time. This also helps in training big models 

in an efficient time. 

3.1.3 Overlapping Pooling: Pooling helps in reducing the 

complexity of the representation by reducing the number 

of parameters in the network. Overlapping pooling refers 

to the phenomena when the output of two neighbouring 

group is same then they can be considered as one hence, 

reducing the number of parameters. It also finds reduction 

in error. 

 

Fig. 1: Neural Network Model 

3.1.4 Overfitting: This problem is associated with big 

datasets, and it can be tackled by using a model large 

enough and keeping the weights small. It can also make 

the optimization faster and positively affect overall 

performance. 

3.1.5 Data augmentation: An intelligent technique can 

increase the training set's data without collecting new data. 

The goal is to train the dataset best to promise the highest 

accuracy, and we don't need to order new relative images 

because that may increase error and overfitting. Because 

neural networks are more inclined towards that frame that 

promises best accuracy so one can focus on that one 

properly and increase the amount of data without affecting 

the accuracy. 

3.1.6 Dropouts:  Dropout, as the name suggests, refers to 

dropping out of random testing units while training the 

dataset. While the testing phase, a neural network learns 

new specializations, which also increases the weight of 

neurons in the model. This could improve dataset training 

by maintaining the same weight, reducing overfitting, and 

optimizing performance. 

 

Fig 2: Pooling architecture in NN
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3.2 VGG (Visual Geometry Group) Net  

VGG-16 is an advancement over Alex Net, promising 

around 92%. The architecture is almost the same as Alex 

Net; multiple 3x3 filters replace the large kernel-sized 

filters. The input to the first convolutional layer is a 

224x224 RGB image. Then the image passes through 

other layers with the filter sized 3x3 (smallest). In a 

particular configuration, it uses 1x1 conv. 

4.  Proposed Method 

4.1 Image datasets: 

There are four kinds of apples for identification and 

classification. The apple is classified as (a) apple scab, (b) 

average apple, (c) apple blotch, and (d) apple rot. These 

images were taken in a fixed foundation instead of under 

normal conditions. This section chooses the apple image 

from the informational collection for research. Some 

disease images appear shown in Fig. 3. All indications 

pictures were resized to 128 × 128 × 3 for the 

acknowledgment. After the de-duplication activity, the 

informational collection contained 240 images. The built 

dataset was then isolated into preparing and test datasets 

in a proportion of 8:2 by arbitrarily choosing pictures as 

indicated by the classification name proportion from the 

dataset. 

 

Fig 4: Example data set images (a) apple scab, (b) normal 

apple, (c) apple blotch, and (d) apple rot 

4.3 Training 

We must prepare a training set of image data for a network 

model. It should be large enough to test all the meaningful 

possibilities or possess all the test set's characteristics. 

Here, we have introduced two models, I.e., Alex Net and 

VGG-16 using supervised learning methods on an 

NVIDIA GeForce GTX 1050 graphic processor, which 

gives different accuracies. We have used a training set of 

over 2000 images containing 500 images for each rot, 

blotch, and scab disease, including additional features. 

 

Fig. 4: Block diagram of a deep learning-based 

recognition model 

4.5 Validation  

It consists of about 20 percent of all the data used. 

Sometimes validation is performed in the training phase 

so that parameters can be tuned for selecting the best 

model. Overfitting is checked in the proof set to eliminate 

errors or for future predictions. The details of the data 

argument in both Alex Net and VGG-16 are described in 

Tables 1 and 2. 

Table 1: Before Data Augmentation 

Model Dataset Training Testing 

 

 

Alex Net 

 

 

Blotch 61 10 

Normal 65 10 

Rot 76 9 

Scab 66 11 

VGG-16 

Blotch 61 10 

Normal 65 10 

Rot 76 9 

Scab 66 11 

 

 

 

Table 2: After Data Augmentation 
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Model Dataset Training Testing 

 

 

Alex Net 

 

 

Blotch 479 70 

Normal 526 69 

Rot 612 77 

Scab 526 63 

      VGG-16 

Blotch 479 70 

Normal 526 69 

Rot 612 77 

Scab 526 63 

5. Experimental Setup:

We implemented the proposed method for classifying 

apple disease using the Deep learning model. Below, 

Table 3 and Table 4 briefly explain the implementation 

and corresponding results. In Alex Net before Image 

Augmentation, we used an optimizer as Adam with a 

batch of 4, each size 12. As we have used the Adam 

optimizer, the momentum is not considered by default, 

and the learning rate is 0.01. Similarly, after Image 

Augmentation for Alex Net, the optimizer we have used 

is the same, i.e., Adam with 22 batches with each batch 

size of 15. The momentum and learning rate are the same 

as before. 

Table 3: Alex net 

Parameter Values before IA Values after IA 

Optimizer Adam Adam 

Batch 4 22 

Batch size 12 15 

Momentum - - 

Learning 

rate 

0.01 0.01 

For VGG-16, we have used SVG optimizer before and 

after image augmentation. Before augmentation, the 

number of batches implemented is 8, with a batch size of 

0.9, a momentum of 0.9, and a learning rate of 1. 

Similarly, for after-image augmentation number of 

batches implemented is 33, with a batch size of 13. 

Table 4: VGG-16 

Parameter Values before IA Values after IA 

Optimizer SVG SVG 

Batch 8 33 

Batch size 12 13 

Momentum 0.9 0.9 

Learning rate 1 1 

 

 

5.1 Performance Metric: 

In the section we have analysed deep learning model for 

identification and classification of apple disease. The 

performance measure of the proposed system was 

introduced given as: 

𝐂𝐀 =

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑒𝑟 𝑜𝑓𝑓𝑢𝑖𝑡𝑠/𝑣𝑒𝑔𝑒𝑡𝑎𝑏𝑙𝑒𝑠 
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑡𝑒𝑠𝑡𝑖𝑛𝑔

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑖𝑡𝑠/𝑣𝑒𝑔𝑒𝑡𝑎𝑏𝑙𝑒𝑠
𝑖𝑚𝑎𝑔𝑒 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 

∗ 100           (1) 

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

∗ 100           (2) 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

∗ 100                (3)                                   

                  

     𝑭 − 𝑺𝒄𝒐𝒓𝒆 = 2.  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
∗ 100                        (4) 
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6. Results and Discussion: 

For Alex Net and VGG-16, we used around 270 training 

datasets before image augmentation, while for testing, we 

used 40 data sets. In Alex Net, before augmentation, we 

got an accuracy of 86.11% by implementing 200 epochs, 

and it took around 2 hours for execution. In VGG-16, the 

precision we got before image augmentation was 88.88% 

after executing with 150 epochs, and it took about 4 hours 

to complete. After image augmentation, we got a dataset 

of over 2000 images for training and over 200 for Alex 

Net and VGG-16 testing. In Alex Net, it took around 3hrs 

to complete its execution of 100 epochs with an accuracy 

of 94.44%. While in VGG-16, it took 7hrs to complete 150 

with weighted accuracy of 94%. Table 7 and 8 shows the 

Evolution of each class with its precision, recall, and f-

score for both models before and after Image 

Augmentation. Both model VGG models proved better 

results, with a value of 88.88 compared to Alex's net 

model. The details of all classes of apples with different 

performance model results have shown in Table 5 and 

Table 6. 

Table 5: Before Image Augmentation 

Mod

el 

Accura

cy 

Datas

et 

Precisi

on 

Reca

ll 

F-

Scor

e 

Alex 

net 

 

86.11 

Blotch 80 80 80 

Norm

al 

91 100 95 

Rot 100 82 90 

Scab 70 78 74 

VGG

- 16 

 

88.88 

Blotch 89    80                84         

Norm

al 

91 100 95 

Rot 82 82 82 

Scab 89 89 89 

 

Table 6: After Image Augmentation 

Model Accuracy Dataset Precision Recall F-

Score 

Alex 

net 

 

95.55 

Blotch 100 97 99 

Normal 100 100 100 

Rot 100 94 97 

Scab 90 100 95 

 Blotch 94        86 90 

 

VGG- 

16 

94.00 Normal 100 100 100 

Rot 94 97 96 

Scab 88 92 80 

 

7. Conclusion  

In this paper, we have proposed deep learning model-

based approach to the classification of different categories 

of the apple. Here, we have considered two other models, 

Alex Net and VGG, to solve apple disease recognition. 

The deep learning model will build, and various 

performance metric has been implemented to check the 

performance of the proposed system. The metrics used are 

performance accuracy, Precision, recall, and F-score. The 

results show that the Alex Net model is more accurate than 

VGG-16 after the segmentation. The performance of the 

Alex Net model is 95.56 percent, whereas VGG-16 

produces a 94 percent accuracy rate. In both models, the 

highest accuracy has been made for the Rot disease apple 

category. 
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