

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 54–61 | 54

Scheduling Scientific Workflow to Improve Service Quality Parameters

in the Cloud Computing

1Prof. Riya Gohil, 2Dr. Hiren Patel

Submitted: 08/05/2023 Revised: 15/07/2023 Accepted: 08/08/2023

Abstract: Cloud computing has emerged as a crucial platform for managing and executing time-constrained scientific applications,

typically represented by workflow models and their scheduling. The scheduling of workflow applications in cloud computing poses a

significant challenge, as they consist of numerous tasks with complex structures involving processing, data entry, storage access, and

software functions. To address this challenge, users are provided with a convenient and cost-effective approach to run workflows on

rented on-cloud Virtual Machines (VMs) at any time and from anywhere. With the growing dominance of pay-as-you-go pricing models

in cloud services, extensive research has been conducted to minimize the cost of workflow execution by developing customized VM

allocation mechanisms. However, most existing approaches assume static task execution times in the cloud, which can be estimated in

advance. Unfortunately, this assumption is highly impractical in real-world scenarios due to performance variations among VMs. In this

study, we propose a custom workflow scheduling algorithm designed to handle deadline-constrained workflows with random arrivals and

uncertain task execution times, while ensuring higher CPU utilization. Our algorithm supports the use of containers to manage targets and

optimize resource utilization, thereby reducing the overall cost of infrastructure resources and meeting individual workflow deadline

constraints. Simulation results demonstrate that the proposed algorithm outperforms existing approaches in terms of rental costs and

resource utilization efficiency.

Index Terms -: Scientific workflow, Cloud computing, Amazon Web Services, Scheduling

1. Introduction

Cloud computing offers computing resources like CPU,

memory, hard plates and data transmission and

programming assets including virtual program and

workflow programming [1, 2]. The Cloud supplier

simply focuses on further developing the help capacities of

the Cloud stage to address client issues and fulfill client

requirement [3, 4].

Virtualization is one of the critical empowering

innovations of Cloud computing which permits various

VMs to reside on a solitary actual machine [7]. A VM

copies a specific PC framework and exe-cutes the client's

undertakings [8]. By utilizing the instantiation of the VMs,

clients can send their applications on resources with

different execution and cost levels. In each physical

machine or server, the VMs are overseen by a product

layer called hypervisor or the VM screen which works with

the VM creation and scheduled execution.

Workflow booking is one of the conspicuous issues in

Cloud computing which attempts to plan the work process

assignments to the VMs in light of various utilitarian and

non-useful requirements [9]. A workflow comprises a

series of related undertakings which are limited together

through data or utilitarian conditions and these conditions

ought to be considered in the planning [10]. In any case,

workflow scheduling in Cloud computing is a NP-hard

optimization problem and accomplishing an ideal schedule

is troublesome [11]. NP is a complexity class that

represents the set of all decision problem for which the

instances where the answer is “yes” have proofs that can be

verified in polynomial time. This means that if someone

gives us instances of the problem and a certificate to the

answer being yes, we can check that it is correct in

polynomial time. NP hard intuitively, these are the

problems that are at least as hard as the NP complete

problem. Note that NP hard problems do not have to be in

NP, and they do not have to be decision problems. Because

there are various VMs in a Cloud and numerous client

undertakings ought to be scheduled by thinking about

different auto scaling methods.

The normal target of the work process planning techniques

is to limit the makespan by the appropriate assignment of

the tasks to the virtual assets [12]. For instance, for

instance preplanning of auto scaling techniques help to

achieve promised SLAs, the client indicated cutoff times

and cost constraints [13].Also, scheduling solutions may

consider factors such as load balancing availability of the

Cloud resources, resource utilization and services in the

scheduling decisions.

The workflow planning issue has been broadly examined.

This paper presents a total overview of the workflow

scheduling algorithms. For this reason, it first sorts and

objectives of workflow scheduling and afterward gives a

classification of the proposed plans in light of the

1LDRP-ITR Engineering college, Sarva Vidyalaya Kelavani Mandal,

Gujarat, India and
2Principal, VSITR, Sarva Vidyalaya Kelavani Mandal, Gujarat, India

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 54–61 | 55

calculation which has been utilized in every workflow

scheduling plan. Likewise, the objectives, properties and

the constraints of workflow scheduling schemes are

surveyed exhaustively and a total correlation of them is

introduced. Albeit a few plans, for example [14] examined

the workflow scheduling problem in Cloud computing, is

not the only solution, a top to bottom examination and

correlation of the proposed workflow scheduling plans

[15].

Common performance metrics for workflow scheduling

algorithms include:

Makespan: This measures the total execution time of the

workflow, from the start of the first task to the completion

of the last task. A lower makespan indicates better

performance.

Resource Utilization: This measures the utilization of the

Cloud resources, such as CPU, memory, and storage.

Higher resource utilization indicates better performance.

Cost: This measures the cost of executing the workflow on

the Cloud platform. This includes the cost of using the

Cloud infrastructure, data transfer costs, and any other

related costs. A lower cost indicates better performance.

Deadlines Compliance: This measures the ability of the

algorithm to meet the deadline constraints for each task in

the workflow. A higher compliance rate indicates better

performance.

Reliability: This measures the ability of the algorithm to

perform consistently and accurately under different

conditions and workloads.

Scalability: This measures the ability of the algorithm to

handle increasing workloads and larger workflows without

a significant decline in performance.

The use of Cloud computing for scientific applications has

grown rapidly in recent years, due to its ability to provide

on-demand access to computational resources. However,

scheduling workflow applications in Cloud computing can

be a complex and challenging task, given the dynamic

nature of task execution times in Cloud environments. In

addition, the increasing popularity of Cloud computing has

led to a rise in pay-as-you-go pricing models, making it

more important than ever to develop efficient and cost-

effective solutions for scheduling workflows in the Cloud.

The objective of this work is to address the challenge of

scheduling workflow applications in Cloud computing by

proposing a novel algorithm that takes into account the

dynamic nature of task execution times and aims to

minimize the cost of executing workflows while

maximizing resource utilization efficiency.

The main contribution of this work is the development of a

custom scheduling algorithm for deadline-constrained

workflows with random arrivals and uncertain task

execution times. The algorithm supports the use of

containers to manage resources and meet workflow

deadlines, and it has been evaluated through simulation

results, which show that it significantly outperforms

existing solutions in terms of rental costs and resource

utilization efficiency. This work makes a valuable

contribution to the field of Cloud computing by offering a

practical solution for scheduling workflows in Cloud

environments that addresses the real-world challenges

posed by dynamic task execution times and cost-sensitive

pricing models."

2. The Implementation of Our Strategy

Cloudsim [15] simulation toolkit is the more generalized

and effective simulator for testing Cloud computing related

hypothesis. This toolkit allows seamless modeling,

simulation and experimentation related to Cloud based

infrastructures and application services. We created

simulation on Cloudsim for shortest job first (SJF)

scheduling and identified how the Cloudsim simulation

works for scheduling process. Cloudsim simulation is not

given accurate result for scientific workflow application.

For scientific workflow application the other Cloud

platform like Amazon Web Services (AWS), Azure,

Google Cloud etc. are provide more accurate result

[16].Instead of simulation now we moved on the real Cloud

where we used AWS. In the empirical part of study, we

validated that AWS Elastic Cloud (EC2) [19] can be used

for our proposed plan for scientific workflow scheduling in

Cloud computing for enhancing QoS parameters like cost,

makespan and budget.

AWS offers feature such as autoscalling and load balancing

witch motivated us to use it for the purpose of scientific

workflow scheduling. The default AWS scheduler

schedules the task within built algorithm (e.g. SJF), and it

permits the developer to replace SJF with their algorithm

for testing purpose [17,18].

Fig. 1 System Architecture[19]

Fig. 1 shows AWS architecture with customized

configuration system. Amazon Virtual Private Cloud

(VPC) enables to launch AWS resources into a virtual

network that have been defined. This virtual network

closely resembles a traditional network that you'd operate

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 54–61 | 56

in your own data centre, with the benefits of using the

scalable infrastructure of AWS [17]. Identity and Access

Management (IMA) roles allow you to delegate access to

users or services that normally don't have access to your

organization's AWS resources. IAM used to control access

to AWS resources, like which users are authenticated and

who is authorized. IAM users or AWS services can assume

a role to obtain temporary security credentials that can be

used to make AWS API calls. AWS Lambda [18] is a

serverless, event-driven compute service that lets you run

code for virtually any type of application or backend

service without provisioning or managing servers. One can

trigger Lambda from over 200 AWS services and software

as a service (SaaS) applications, and only pay for what you

use.

Amazon CloudWatch [19] is a monitoring and

management service that provides data and actionable

insights for AWS, hybrid, and on-premises applications

and infrastructure resources. You can collect and access all

your performance and operational data in the form of logs

and metrics from a single platform rather than monitoring

them in silos (server, network, or database). CloudWatch

enables you to monitor your complete stack (applications,

infrastructure, and services) and use alarms, logs, and

events data to take automated actions and reduce mean

time to resolution (MTTR). Amazon Elastic Kubernetes

Service (Amazon EKS) is a managed Kubernetes [19]

service that makes it easy for you to run Kubernetes on

AWS and on-premises. Kubernetes is an open-source

system for automating deployment, scaling, and

management of containerized applications.

Fig. 2 Process Flowchart

Fig. 2 defines how our scheduler works with LAMBDA

and EC2 instances. An EKS cluster [20] has been created

which takes place as a 1 master node and 3 slave nodes

have also been created. We have applied a YAML file [21]

for scheduling based on CPU. It is based on containerized

service and now the next step is to import scientific

workflow applications to aggregate the results with the

usage of scientific application. As we are using a scientific

application, there is a large amount of data in that

application : We are going to check with AWS Cloud

watch service and also monitor the load with the

configuration with Cloudwatch.

3. Scheduling Algorithm

Kube-scheduler[kubelet][18,22] is first decide which node

to place with pod. After specifying the resource limit of

container, kubelet apply those limits. The running

container is not allowed to use more resources based on

limit set. Second, kubelet reserves least request amount of

that system specifically which containers are in used.

Containers are managed by a kubelet. It is responsible for

starting, stopping and restarting containers. Each time a

pod is requested by a client application, it passes

information about its resources required (e.g. CPU and

memory) and limits (e.g. request and limit). The kubelet

checks this information against its own configuration and

decides on how many CPUs or memory units are needed. It

then selects an appropriate host machine where these

resources can be allocated.Thekubelet manages allocating

CPU resources by monitoring load on each host machine

where containers are running. It will try to start one new

container if there are no enough resources available. This

happens automatically when there are too few resources

available at any point in time.

Below is the algorithm which we have used for scheduling:

As the title of the section is Scheduling Algorithm, It

should talk more about our proposed algorithm, its

strengths, comparison with existing algorithms etc. The

algorithm proposed scientific workflow

scheduling_Resource Allocation (SWFS_RA) in the paper

is to be a custom scheduling algorithm for deadline-

constrained workflows with random arrivals and uncertain

task execution times in a Cloud computing environment.

The algorithm aims to minimize the cost of executing

workflows while maximizing resource utilization

efficiency.

Algorithm Parameters are defined like:-Batch size (B): The

number of jobs that are processed in each instance. This

parameter determines the number of jobs that are scheduled

and executed simultaneously. Number of instances (L):

The number of virtual machines (VMs) required executing

the workflow. This parameter affects the resource

utilization and overall cost of executing the workflow.

Resource utilization: The utilization of the available

resources (e.g. CPU, memory, storage) by the instances.

This parameter affects the performance and cost of

executing the workflow. Task execution time (T_i and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 54–61 | 57

T_j): The time required to complete each task in the

workflow. This parameter affects the overall execution

time of the workflow. LoadBalancing array

(LoadBalancing[m]): An array that counts the number of

sent jobs to each instance. This parameter determines the

distribution of the workload among the instances.

Here is a brief overview of the steps involved in the

algorithm:Ti and Tj are defined as the successor and

dependent jobs, respectively. The number of scheduled

jobs is defined as jobsnum. The "L" variable represents a

lambda instance. The batch size is defined as the number of

jobs in a single lambda instance. The alertmax variable is

set to true if the number of scheduled jobs is equal to the

batch size. The "for" loop runs from 1 to "q" and performs

the following steps:

a. jobsnum is incremented by 1.

b. If jobsnum is equal to the batch size, alertmax is set to

true and the loop is broken.

If alertmax is set to true, the loadbalancing array is updated

to reflect the number of sent jobs.

Table1. Symbol and Abbreviation for SWFS_RA

Algorithm

Symbol Abbreviations

Ti
The execution time of

task i.

Tj
The execution time of

task j.

L

The number of

instances (i.e. VMs)

required executing

the workflow.

B
The batch size of jobs

in each instance.

N
The number of jobs in

the workflow.

M

The number of

instances in the

Cloud environment.

J_num
The number of

scheduled jobs.

LoadBalancing[m]

An array that counts

the number of sent

jobs to each instance.

For each request, the algorithm checks if the group is a

CPU group, and then perform the following checks:

a. Check if a container is available in the pod.

b. Check if the container is of the CPU group.

c. Check if sufficient resources are available.

d. Check if there is a CPU group request.

e. If all checks pass, launch a new pod or container in

the same pod, depending on the situation.

The algorithm is designed to handle CPU-intensive tasks

in a Cloud computing environment, and to make efficient

use of available resources to minimize costs and maximize

resource utilization. Table 1 represents the symbol and

their abbreviations used in proposed algorithm.

In this mathematical model, the algorithm first increments

the number of scheduled jobs (J_num) until it reaches the

batch size (B). Once the batch size is reached, the number

of sent jobs to each instance is updated in the Load

Balancing array. For each request, the algorithm performs a

series

of checks to determine whether a new pod should be

launched, a container should be launched in the same pod,

or a container should be launched in a different pod. The

checks include verifying the existence of a CPU group

request, checking the availability of sufficient resources,

and checking the type of group (i.e. CPU or non-CPU).

Algorithm: SWFS_RA

Step1: Define the variables:

Ti and Tj as previously defined.

L, B, N, M, jobsnum, and LoadBalancing[m] are

the same as the algorithm.

S_ij, C_m, P_ijm, X_im, and Y_m as defined in

the mathematical model.

Step 2: For j = 1 to N, perform the following steps:

Increment jobsnum by 1.

Check if jobsnum is equal to B.

If true, set alertmax to true and break out of the

loop.

If alertmax is true, update LoadBalancing[m] to

reflect the number of sent jobs.

Step 3: For each request, perform the following steps:

Check if the group is a CPU group.

If true, check if a container is available in the pod.

If a container is available, check if it is of the CPU

group.

If it is of the CPU group, check if there are

sufficient resources available and if there is a CPU

group request.

If all checks pass, launch a new pod or container in the

same pod, depending on the situation.

Step 4: Define the objective function:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 54–61 | 58

Minimize the sum of the communication costs between

tasks i and j, multiplied by the binary variable indicating

whether tasks i and j are executed on the same instance.

Step 5: Define the constraints:

The execution time of task i multiplied by the binary

variable indicating whether task i is executed on instance m

should be less than or equal to the capacity of instance m,

for all m.

The sum of binary variables indicating whether task i is

executed on instance m should be equal to 1, for all i.

The binary variable indicating whether instance m is used

or not should be greater than or equal to the binary variable

indicating whether task i and task j are executed on the

same instance, for all i, j.

SWFS_RA algorithm is performing load balancing in a

cluster of some kind. It iterates over a number of requests,

represented by the variable N, and keeps track of how

many requests have been processed using the variable

J_num. When J_num reaches a certain threshold,

represented by the variable B, the variable alertmax is set

to true and the loop is broken. After the loop, if alertmax is

true, the algorithm updates a load balancing variable for

each node in the cluster, represented by the variable

LoadBalancing [m]. It then enters a loop over each request

and performs some actions based on the group of the

request. If the group of the request is CPU, the algorithm

checks whether the container is already in a pod and

whether the container is in the CPU group. If it is, it checks

whether there are sufficient resources available for the

CPU group request and whether a CPU group request

already exists. If both conditions are true, it launches a new

pod for the request. Otherwise, it launches the container in

the same pod. If the container is not in a pod or not in the

CPU group, the algorithm launches a new pod for the

request.

The algorithm checks whether a given request belongs to

the CPU group, and then checks whether there is a

container for that request already running in a pod. If there

is, the algorithm checks whether that container belongs to

the CPU group and whether there are sufficient resources

available for the request. If there are, the algorithm

launches a new pod for the request. If there is no container

for the request, or if the container does not belong to the

CPU group, the algorithm launches a new pod for the

request. In general, a scheduler is a program that assigns

tasks or resources to different entities in a system

according to some set of rules or criteria. This algorithm is

a scheduler for CPU resources

SWFS_RA is a load balancing and resource allocation

system for a cluster of nodes that are used to run

containers. Such systems are used to ensure that resources

are used efficiently and effectively, and to prevent any

individual node or container from becoming overloaded.

Load balancing is the process of distributing workloads

across multiple resources in order to optimize performance

and avoid overloading any one resource. In the context of a

container cluster, load balancing typically involves

distributing containers across multiple nodes so that each

node is utilized evenly. Resource allocation is the process

of assigning resources to specific tasks or processes in

order to ensure that those tasks or processes have sufficient

resources to complete their work. In the context of a

container cluster, resource allocation typically involves

ensuring that each container has sufficient resources to

operate correctly, such as CPU, memory, and storage. By

using a load balancing and resource allocation system such

as the algorithm provided, organizations can ensure that

their container clusters are operating efficiently and

effectively, with each container receiving the resources it

needs to operate correctly, and with workloads being

distributed evenly across the cluster. This can help to

prevent system failures, reduce downtime, and improve

overall system performance.

4. Experiments and Results

Fig. 3 ELB Diagram

Fig. 3 ELB Diagram is representing Elastic load balancer.

Load balancer is a way to balance the traffic by sending

client request to multiple backend servers. Also load

balancer checks the health of backend servers.AWS

Lambda [23] is a serverless computing administration

given by Amazon Web Services (AWS). Clients of AWS

Lambda make capabilities, independent applications

written in one of the upheld dialects and runtimes, and

transfer them to AWS Lambda, which executes those

capabilities in a proficient and adaptable way.The Lambda

capabilities can play out any sort of computing task, from

serving site pages and handling floods of information to

calling APIs and coordinating with other AWS

administrations.

The idea of "serverless" computing alludes to not expecting

to keep up with your own servers to run these capabilities.

AWS Lambda is a completely overseen administration that

deals with all the framework for you. Thus "serverless"

doesn't intend that there are no servers included: it simply

implies that the servers, the working frameworks, the

organization layer and the remainder of the foundation

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 54–61 | 59

have previously been dealt with, so you can zero in on

composing application code.

Amazon CloudWatch serves as the monitoring service

within AWS, responsible for gathering metrics and logs

from your resources. Within CloudWatch, there exists a

sub-service called Amazon CloudWatch Events, which

promptly streams system events in near-real time whenever

changes occur in your AWS resources. By defining targets

for these events, we can take appropriate actions. For

instance, when an EC2 instance is started, it sends an event

to Amazon CloudWatch Events. We can create a rule that

triggers an AWS Lambda function whenever this event

occurs. These events are triggered in response to changes

in your AWS resources. We have the capability to define

event rules that self-trigger at regular intervals, along with

configuring a target action to perform routine tasks. We

designate an Amazon Lambda function as the scheduled

target. Once the specified time or interval for this event is

reached, our function is executed. These types of events are

referred to as scheduled Amazon CloudWatch Events.

We define event rules that self-trigger regularly and

configure a target action to do some regular work. So we

define an Amazon Lambda function as scheduled targets.

when this event is triggered at the specified time or interval

you defined, our function is executed. These types of

events are called scheduled Amazon CloudWatch Events.

Amazon EventBridge, the serverless event bus service, is

the upgraded version of CloudWatch Events. It simplifies

the creation of an event-driven architecture and facilitates

the integration of SaaS applications with AWS resources.

To create scheduled events, we utilized the Amazon

EventBridge console. The Horizontal Pod Autoscaler

(HPA) continuously monitors metric threshold values that

we have configured. By default, HPA checks these values

every 15 seconds, but it can be adjusted using the --

horizontal-pod-auto-scaler-sync-period flag according to

our needs. If the current threshold exceeds the specified

threshold, HPA attempts to increase the number of pods.

The HPA controller assumes a linear relationship between

the metric and the number of pods, operating based on the

ratio between the desired metric value and the current

metric value.The formula used to compute the desired

replicas is as follows.

Fig. 4 Horizontal Pod Auto scaling

Initially, the pod count =1 (this is the minimum number of

pods specified) in the Horizontal Pod Autoscaler

configuration. As the load increases, the pod count

increases to 4, to maintain the CPU utilization below

50%.

Reasons to Scale Horizontally

Handle More Throughput

When we have very less traffic in our application or

websites it can easily run with a single web server. But

what about if we have a popular site and a large amount of

traffic needs to be handled? Then it’s not able to handle

traffic with a single web server so we required more web

servers to handle this traffic.

Fault Tolerance

Fault tolerance is frequently sought after by individuals

who wish to enhance a system's resilience. To achieve

better resilience in the face of failures, the approach often

involves increasing the number of nodes, which is

commonly referred to as "high availability" or "HA."

Need More Resources than You Can Get from a Single

Node

When adopting a vertical scaling strategy, there may come

a point where the resources available from a single node

become insufficient. It becomes impossible to add more

memory, disk space, or other components. At that juncture,

it becomes necessary to explore horizontal scaling options

to address the issue.

Determining the desired number of replicas

In this experiment, our focus is on horizontal pod auto-

scaling, and we will scale the system based on CPU

utilization, a widely used metric. It's worth noting that

higher CPU utilization corresponds to increased latency.

By maintaining lower levels of CPU utilization, we can

also keep the application's latency at lower levels. The

graph below illustrates the variation in CPU utilization for

an I/O-bound microservice.

Fig. 5 experimental Results with CPU Utilization

Here in the Fig.5 experimental result with CPU Utilization

its shows that with the three nodes initially we have one

pod per node. After doing load testing on pods CPU

utilization increased eventually nodes with pods value also

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 54–61 | 60

increased. These showcased that horizontal pod autos

calling is working with hpa value increased. Here while

doing experiment we have defines hpa value to 80

percentages. so whenever hpa crossed pods will increased

that we can see in above graph. Horizontal pod auto scaling

update the workload with the aim of auto scaling to match

the demand of load.

5. Conclusions

With the fast advancement of the containerization method,

CaaS is becoming increasingly more famous in Cloud

computing administrations. For software engineering

research centers in colleges, the asset is moderately

restricted and the kinds of administrations are assorted.

Workflow scheduling algorithm is one of the scheduling

algorithms in load balancing. It is used to reduce

makespan, cost, energy consumption, execution time and

maximize resource utilization. Most of the researchers

worked on important performance parameters such as

makespan and cost, execution time, energy consumption

and resource utilization. Our objectives on offering novel

workflow scheduling framework are makespan, cost and

reliability.

Firstly, we will make the scheduling algorithms more

automated and stable by repairing the above defects. In

addition, we will continue to research preprocessing of the

dataset. We plan to do some practical analysis on workflow

scheduling techniques. How AWS load balancing and

instance scheduler used for our proposed plan and will

implement it.

References

[1] Felter, W.; Ferreira, A.; Rajamony, R.; Rubio, J. An

updated performance comparison of virtual

machines and Linux containers. In Proceedings of

the 2015 IEEE International Symposium on

Performance Analysis of Systems and Software

(ISPASS), Philadelphia, PA, USA, 29–31 March

2015.

[2] Jennings, B.; Stadler, R. Resource Management in

Clouds: Survey and Research Challenges. J. Netw.

Syst. Manag. 2015, 23, 567–619. [CrossRef]

[3] Liu, P.; Hu, L.; Xu, H.; Shi, Z.; Tang, Y. A Toolset

for Detecting Containerized Application’s

Dependencies in CaaS Clouds. In Proceedings of

the 2018 IEEE 11th International Conference on

Cloud Computing (CLOUD), San Francisco, CA,

USA, 2–7 July 2018.

[4] Dragoni, N.; Giallorenzo, S.; Lluch-Lafuente, A.;

Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L.

Microservices: Yesterday, today, and tomorrow. In

Present and Ulterior Software Engineering;

Springer: Cham, Switzerland, 2017.

[5] Singh, V.; Peddoju, S.K. Container-based

microservice architecture for Cloud applications. In

Proceedings of the 2017 International Conference

on Computing, Communication and Automation

(ICCCA), Greater Noida, India, 5–6 May 2017; pp.

847–852. [CrossRef]

[6] A Survey on Scheduling Strategies for Workflow in

Cloud Environment and Emerging Trends,Mainak

Adhikari, Tarachand Amgoth and Satish Narayana

Srirama,ACM, 2019.

[7] A GSA based hybrid algorithm for bi objective

workflow scheduling in Cloud computing, Anubhav

Choudhary, Indrajeet Gupta, Vishakha Singh and

Prasanta K. Jana, FGCS, 2018.

[8] Minimizing cost and Makespan for workflow

scheduling in Cloud using fuzzy dominance sort

based HEFT, Xiumin Zhou, Gongxuan Zhang, Jin

Sun, Junlong Zhou, Tongquan Wei and Shiyan Hu,

Future Generation Computer System, 2018.

[9] GRP-HEFT :A Budget Constrained Resource

Provisioning Scheme for Workflow Scheduling in

IaaS Clouds, Hamid Reza Faragardi, Mohammad

Reza Saleh Sedghpour, Saber Fazliahmadi, Thomas

Fahringer and Nayereh Rasouli, IEEE, 2019.

[10] A Workflow Scheduling Deadline based Heuristic

for Energy optimization in Cloud, Emile Cadorel,

HeieneCoullon and Jean Marc Manaud, IEEE,

2019.

[11] Cost-Efficient and Latency-Aware Workflow

Scheduling Policy for Container-based Systems,

Weiwen Zhang, Yong Liu, Long Wang, Zengxiang

Li and Rick Siow Mong Goh, IEEE, 2018.

[12] Concurrent Workflow Budget- and Deadline-

constrained Scheduling in Heterogeneous

Distributed Environments, N. Zhou, F. Li, K. Xu,

and D. Qi, IEEE 2018.

[13] Understanding the performance and potential of

Cloud computing for scientific

application,ISadooghi ae al, IEEE, 2017.

[14] Makespan Driven Workflow Scheduling in Clouds

Using Immune Based PSO Algorithm, Pengwei

Wang, Yinghui Lei, Promise Ricardo Agbedanu,

and Zhaohui Zhang, IEEE, 2020.

[15] Cost and Makespan aware workflow scheduling in

hybrid Clouds, Junlong Zhou, Tian Wang, Peijin

Cong, Pingping Lu, Tongquan Wei and Mingsong

Chen, JSA 2019.

[16] Resource Provisioning for Task-batch based

Workflows with Deadlines in Public Clouds, Z. Cai,

X. Li, and R. Ruiz, ,IEEE 2019.

[17] http://Cloudbus.org/Cloudsim.

[18] “Uncertainty-Aware Online Scheduling for Real-

Time Workflows in Cloud Service Environment, H.

Chen, X. Zhu, G. Liu, andW. Pedrycz , IEEE 2018.

[19] https://aws.amazon.com/ec2/.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 54–61 | 61

[20] “Cloud Pricing Models: Taxonomy, Survey, and

Interdisciplinary Challenges, C. Wu, R. Buyya, and

K. Ramamohanarao ACM, 2019.

[21] Cost and Makespan aware workflow scheduling in

hybrid Clouds, Junlong Zhou, Tian Wang, Peijin

Cong, Pingping Lu, Tongquan Wei and Mingsong

Chen, JSA 2019.

[22] Multi Objective Cloud workflow scheduling: A

Multiple Population Ant Colony System Approach,

Zong-Gan Chen,Zhi Hui zhan, Yue Jiao Gong, Tian

Long Gu, Feng Zhao, Hua Qiang Yuan, Xiaofeng

Chen, Qing Li and Jun Zhang, IEEE 2018.

[23] Decomposition Based Multi Objective Workflow

Scheduling for Cloud

Environments,EmmanuelBugingo, Wei Zheng,

Dongzhan Zhang, Yingsheng Qin and Defu Zhang,

Easychair, 2019.

[24] Workflow Scheduling in Cloud computing

environment with classification on ordinal

optimization on using SVM, VahebSamandi,

Debajyoti Mukhopadhyay and Nikhil Raut, IEEE

2019.

[25] Budget and Deadline Aware E Science Workflow

Scheduling in Clouds, Vahid Arabnejad, Kris

Bubendorfer and Bryan Ng, IEEE 2018.

[26] Dynamic Fault Tolerant Workflow Scheduling with

Hybrid Spatial Temporal Re execution in Cloud, Na

Wu, Decheng Zuo and Zhan Zhang, Information,

2019.

[27] A new Optimization Method for Security

Constrained Workflow Scheduling,Ali Abdali and

SafaMeasoomyNia, IJCSE, 2019.

[28] Fault Tolerant Scheduling for Scientific Workflow

with Task Replication Method in Cloud, Zhongjin

Li, Jiacheng Yu, Haiyang Hu, Jie Chen, Hua Hu,

Jidong Ge and Victor Chang, Scipress,2018.

[29] Workflow Scheduling Using Hybrid GA-PSO

Algorithm in Cloud Computing,Ahmad M.

Manasrah and Hanan Ba Ali, Wiley, 2018.

[30] A Cuckoo based Workflow Scheduling Algorithm

to Reduce Cost and Increase Load Balance in the

Cloud Environment, Shahin Ghasemi and Ali

Hanani, IJIV,2019.

[31] Workflow Scheduling in Cloud Computing Using

Memetic Algorithm, Abdulsalam Alsmady,Tareq Al

Khraishi, Wail Mardidni ,Hadeel Alazzam and

Yaser Khamayseh, IEEE 2019.

[32] Performance Modeling and Workflow Scheduling

of Microservice Based Application in Clouds, Liang

Bao, Xiaoxuan Bu, Nana Ren and Mengqing Shen,

IEEE, 2019.

[33] Workflow Scheduling Algorithm in Cloud

Cmoputing,SavioVaz,Alisha Crystal D’Almeda and

Santhosh B,IJERT 2019.

[34] User Priority Aware and Cost Constrained

Workflow Scheduling in Clouds, Yuehing Chen,

Yaunqing Xia, Ce Yan and Runze Gao, Chinese

Control Conference, 2019.

[35] A QoS aware Workflow Scheduling Method for

Cloudlet based Mobile Cloud Computing,Wei Tian,

Renhao Gu, Feng Ruan, Xihua Liu and Shucun Fu,

IEEE, 2019.

[36] Patil, S. D. ., & Deore, P. J. . (2023). Machine

Learning Approach for Comparative Analysis of

De-Noising Techniques in Ultrasound Images of

Ovarian Tumors. International Journal on Recent

and Innovation Trends in Computing and

Communication, 11(2s), 230–236.

https://doi.org/10.17762/ijritcc.v11i2s.6087

[37] Martinez, M., Davies, C., Garcia, J., Castro, J., &

Martinez, J. Machine Learning-Enabled Quality

Control in Engineering Manufacturing. Kuwait

Journal of Machine Learning, 1(2). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/vie

w/122

[38] Timande, S., & Dhabliya, D. (2019). Designing

multi-cloud server for scalable and secure sharing

over web. International Journal of Psychosocial

Rehabilitation, 23(5), 835-841.

doi:10.37200/IJPR/V23I5/PR190698

https://doi.org/10.17762/ijritcc.v11i2s.6087
http://kuwaitjournals.com/index.php/kjml/article/view/122
http://kuwaitjournals.com/index.php/kjml/article/view/122

