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Abstract: Accurate traffic congestion prediction is crucial for effectively managing urban transportation systems. Traditional 

models often focus on either speed or density factors independently, which limits their ability to capture the complex dynamics 

of real-world traffic conditions. This paper proposes a hybrid approach that integrates both speed and density factors to enhance 

the realism and accuracy of congestion prediction. The standard TCI is modified to combine density with speed, and a modified 

Traffic Congestion Index (M_TCI) is proposed. A new hybrid model called STTBoost (Spatio-temporal Transformer Boost) 

is also proposed, which uses the strengths of Transformer networks and XGBoost to predict traffic congestion. The Transformer 

model captures spatial-temporal dependencies, whereas XGBoost excels at handling nonlinear patterns. The integration of 

these two models is used for robust predictions, especially when contextual features, such as road characteristics, road 

incidents, and temporal patterns, are included. The proposed hybrid model, tested on real-world datasets, demonstrates 

significant improvements in prediction accuracy, offering a powerful tool for modern traffic management systems. This 

approach addresses the shortcomings of existing models by providing a more comprehensive and realistic method for 

congestion forecasting. 

Keywords: Traffic congestion prediction, Free-stream velocity, Number of vehicles, Geohash-temporal information, 

Transformer, XGBoost. 

1. Introduction 

The rapid urbanization and increasing number of 

vehicles have made traffic congestion a critical issue 

in modern cities, leading to delays, economic losses, 

and environmental challenges. Effective traffic 

management and accurate congestion prediction are 

essential for mitigating these issues, optimizing road 

networks, and improving commuter experiences. 

Traditional congestion prediction models [1-5] have 

often relied on isolated factors such as speed or 

traffic volume, failing to capture real-world traffic 

patterns' complex dynamics. However, congestion is 

influenced by several interconnected factors, 

including vehicle density, road network 

characteristics, and external conditions, such as 

weather and time of day [6,7]. A more 

comprehensive approach is required to predict and 

manage congestion accurately. 

A significant limitation of conventional approaches 

is that traffic volume alone does not always indicate 

congestion. High traffic volume on major roads 

might simply reflect busy but free-flowing 

conditions, while low traffic volume near residential 

areas or schools may still lead to congestion due to 

lower speed limits and complex road conditions. 

Therefore, integrating speed and density is crucial 

for a more realistic prediction. To address this, we 

introduce the concept of free-stream velocity, 

representing the ideal speed under no congestion, 
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and combine it with vehicle density to reflect the 

actual capacity and congestion level of roads. This 

approach, captured in a modified Traffic Congestion 

Index (M_TCI), enhances the accuracy of 

congestion predictions by considering both factors 

in conjunction. 

Geohash, a spatial encoding technique, also plays a 

key role in improving congestion prediction by 

allowing the model to capture spatial relationships 

between road segments. Geohashing divides 

geographical areas into uniform grids, making it 

possible to incorporate spatial proximity and 

interactions between regions into the predictive 

model [ 8,9]. This is particularly valuable in urban 

environments where traffic congestion often spreads 

spatially over time. When combined with temporal 

embeddings, geohash provides a structured way to 

model how congestion propagates across different 

parts of a city, offering more profound insights into 

traffic patterns. 

Recent advancements in machine learning, 

particularly with Transformer networks, have 

enabled the modeling of complex spatio-temporal 

dependencies in traffic data. Transformers excel at 

capturing sequential patterns over time, making 

them well-suited for predicting congestion 

evolution. However, Transformers alone may 

struggle to capture non-linear relationships that are 

common in traffic flow. To overcome this, we 

propose a hybrid model that combines the temporal 
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learning capabilities of Transformers with XGBoost, 

which excels at handling non-linear dependencies. 

This hybrid model integrates geohash-encoded 

spatial data, speed, density, and contextual features 

such as road type and weather conditions, events 

occurring, and landmarks, resulting in a more robust 

and accurate congestion prediction framework. 

Transformer model was initially proposed by 

Vaswani et al. [10], and its key components—the 

attention mechanism, encoder, and decoder—form 

the black box that underpins the model's core 

structure. The complex nature of its parallelized 

computation provides significant advantages over 

RNN in terms of both accuracy and performance, 

which is why it has been widely applied in fields 

such as Natural Language Processing (NLP) [11] 

and Computer Vision (CV) [12]. Ahmed et al. 

extended its use to mine temporal features in time- 

series data. However, using the Transformer to 

extract spatiotemporal patterns is less common [13]. 

This paper presents a novel approach that merges 

these elements to create a more comprehensive 

congestion prediction model. The proposed model 

significantly outperforms traditional methods by 

better reflecting the realities of road traffic through 

a modified TCI and advanced machine learning 

techniques. This hybrid model offers a scalable and 

powerful tool for modern traffic management in 

urban environments. The main contributions of this 

paper are as follows: 

Integration of Speed and Density Factors: The paper 

introduces a modified Traffic Congestion Index 

(M_TCI) that combines vehicle speed and density, 

providing a more comprehensive and realistic 

measure of congestion compared to traditional 

models that only consider one factor. 

Geohash Embedding for Spatial Representation: 

Geohash encoding enables the model to capture 

spatial relationships between road segments, 

resulting in a more structured representation of 

geographical areas. This enhances the model's 

ability to understand and predict how congestion 

spreads across different regions in urban 

environments. 

Temporal Embedding for Time-Based 

Dependencies: The model incorporates temporal 

embeddings to capture time-based patterns in traffic 

data, such as rush hour trends and daily variations. 

This helps in accurately modeling the evolution of 

congestion over time. 

Hybrid Model Combining Transformer and 

XGBoost: The paper proposes a hybrid model that 

combines Transformer networks' spatiotemporal 

learning capabilities with XGBoost's nonlinear 

prediction strengths. This fusion improves the 

accuracy of congestion prediction by combining the 

best features of two algorithms. 

Incorporation of Contextual Features: The model 

integrates contextual factors such as road 

characteristics, road incidents, landmark, weather 

conditions, and external events, which are essential 

for capturing the full complexity of traffic 

congestion and enhancing prediction accuracy. 

Improved Prediction Accuracy: Through 

experiments on real-world datasets, the proposed 

model demonstrates significant improvements in 

congestion prediction accuracy over traditional 

methods, making it a more effective tool for urban 

traffic management. 

2. Related Work 

The prediction of road traffic congestion has 

evolved significantly, transitioning from traditional 

statistical models to advanced machine learning 

(ML) and deep learning (DL) techniques. This shift 

is driven by the need to manage the growing 

complexity of urban traffic data, including non- 

linear relationships, spatial-temporal dependencies, 

and external factors such as weather and public 

events. This literature review covers key 

contributions in traffic congestion prediction from 

2020 to 2023, focusing on applying statistical 

models, ML, and DL approaches, emphasizing their 

predictive capabilities and limitations. 

2.1 Statistical Models 

Statistical models have been foundational in traffic 

prediction, primarily relying on time-series data to 

forecast traffic congestion. Among these, 

Autoregressive Integrated Moving Average 

(ARIMA) models remain widely used for short-term 

traffic forecasting due to their simplicity and 

effectiveness in capturing linear relationships in 

traffic data. However, these models struggle with 

non-linear traffic patterns and complex spatial- 

temporal interactions. A study by Alghamdi et al. 

(2021) highlighted the limitations of ARIMA 

models in dealing with real-world traffic conditions, 

especially during peak congestion hours. The 

authors proposed a hybrid ARIMA-LSTM model to 

address the ARIMA model's shortcomings in 

capturing non-linear dependencies in traffic flow. 

Other extensions, such as Seasonal ARIMA 

(SARIMA), have also been applied to address 

periodic variations in traffic patterns, but they still 

face challenges with high-dimensional and highly 

volatile data [14,15]. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 41–54 | 43 
 

2.1 Machine Learning Models 

Machine learning models have gained traction in 

traffic congestion prediction because they can 

handle non-linear data patterns more effectively than 

statistical models. Various approaches, such as 

Support Vector Machines (SVM), K-Nearest 

Neighbors (KNN), and Random Forests (RF), have 

been applied to predict congestion based on 

historical traffic data, road conditions, and external 

factors like weather and accidents. Support Vector 

Machines (SVM) have been used in congestion 

prediction due to their robustness in handling non- 

linear traffic data. Kamaruddin et al. (2022) applied 

SVMs to classify traffic conditions and predict 

future congestion based on historical traffic and 

weather data. Their model outperformed traditional 

statistical methods in accuracy but struggled with 

large datasets due to computational limitations [16]. 

Similarly, Random Forest models have been applied 

to congestion prediction by training on features such 

as traffic speed, volume, and density. Xu et al. 

(2021) proposed an ensemble-based Random Forest 

model that integrates multiple traffic-related 

datasets to improve accuracy in congestion 

forecasting [17]. Another popular machine learning 

model in recent years is XGBoost, which is known 

for its efficiency in handling large datasets and its 

ability to capture complex relationships. In 2023, 

Zhou et al. demonstrated the efficacy of XGBoost in 

traffic congestion prediction by incorporating real- 

time traffic data and external factors, such as 

weather and road incidents. Their model was highly 

accurate in predicting short-term congestion but 

faced challenges in long-term forecasting [18]. 

2.2. Deep Learning Models 

Deep learning models, especially those designed to 

capture spatial and temporal dependencies, have 

become state-of-the-art traffic congestion prediction 

approaches. Long Short-Term Memory (LSTM) 

networks, which are particularly adept at capturing 

temporal relationships, have been extensively used 

in recent studies. For example, Yang et al. (2022) 

developed an LSTM-based model to predict 

congestion by learning temporal patterns in traffic 

data. Their model achieved higher accuracy than 

traditional models, particularly for long-term 

predictions. However, LSTM models often struggle 

with spatial dependencies, which are crucial in 

traffic data [5]. Convolutional Neural Networks 

(CNNs) are used to capture spatial patterns by 

treating traffic data as grid-like structures to address 

this. Zhu et al. (2021) introduced a CNN-LSTM 

hybrid model that combines CNN's spatial learning 

capabilities with LSTM's temporal features to 

enhance prediction accuracy. This hybrid model 

demonstrated significant improvements in 

forecasting traffic congestion across different 

regions of a city [20]. In addition to LSTM and CNN 

models, Graph Neural Networks (GNNs) have 

gained attention for their ability to represent traffic 

networks as graphs, capturing the irregular nature of 

road networks and spatial dependencies between 

road segments. Li et al. (2022) proposed a GNN- 

based model to predict traffic congestion by learning 

from the graph structure of a city’s road network. 

The model outperformed traditional CNN and 

LSTM models by effectively capturing spatial 

dependencies and dynamic traffic patterns [21]. 

More recently, Transformer-based models have 

shown exceptional performance in traffic congestion 

prediction due to their ability to capture long-range 

dependencies in both spatial and temporal 

dimensions. Originally developed for natural 

language processing, transformer models are well- 

suited to processing traffic sequences because of 

their parallel processing capabilities. Wang et al. 

(2023) introduced a Spatio-Temporal Transformer 

(STTF) model for traffic congestion prediction, 

which integrates road network structures and 

spatiotemporal dependencies. The STTF model 

demonstrated superior performance in congestion 

prediction compared to other deep learning models, 

particularly in handling large-scale traffic datasets. 

However, it does not deal with non-linear features 

for prediction [22]. 

From 2020 to 2023, significant advancements have 

been made in traffic congestion prediction, from 

traditional statistical models to more sophisticated 

machine learning and deep learning techniques. 

While applicable, statistical models like ARIMA 

and SARIMA struggle with the complexities of 

modern traffic data. Machine learning models such 

as SVM, Random Forests, and XGBoost have 

improved prediction accuracy by capturing non- 

linear dependencies, but they are often limited in 

handling large-scale spatio-temporal data. Deep 

learning models, particularly LSTM, CNN, GNN, 

and Transformer-based models, have emerged as 

state-of-the-art, offering robust performance in 

capturing both temporal and spatial dependencies. 

Hybrid models that combine these approaches and 

integrate contextual features and geohash 

embeddings represent the most promising direction 

for future research in traffic congestion prediction. 

3. Notations 

In this section, we introduce the key notations used 

in the proposed STTBoost hybrid model for 
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predicting traffic congestion using hourly traffic 

data 

3.1 Traffic Congestion Index (M_TCI) 

A new Traffic Congestion Index using speed and 

density is proposed called as M_TCI. We use 𝑣̃ 𝑡 to 

denote the average speed of vehicles in km/h during 

the hour, 𝑣̃𝑓𝑠 is the ideal speed under no congestion 

adjustment constant to weigh density’s impact, 𝑁𝑟𝑒𝑓 

is the ideal operational capacity per kilometer before 

severe congestion or gridlock happens, 𝐷𝑡 is the 
traffic density/km, 𝑎𝑛𝑑 𝐷 = 𝑁𝑡 /0.7 , where 𝑁𝑡  is the 
number of vehicles passing through the area in 1 
hour considering heterogeneous traffic.  

Then TCI is calculated as follows, 

conditions and 𝑣̃ ≤ 𝑣̃𝑓𝑠, else M_TCI= 0, 𝛽 is the 

M_TCI=⟮1 − 
 𝑣̃  𝑡    ⟯ × ⟮1 + 𝛽 × 

   𝐷𝑡    ⟯ (1) 
𝑣̃𝑓𝑠 𝑁𝑟𝑒𝑓 

After calculating the TCI values, it is classified into 

six classes showing the congestion status. The 

classes used here are taken from the Highway 

Capacity Manual (HCM,2010) [23]. 

Table 1: Traffic Congestion Index 
 

TCI Values Congestion Status 

0.0−2.0 Unhindered flow conditions 

2.0−4.0 Nominal flow conditions 

4.0−6.0 Emerging congestion 

6.0−8.0 Escalated congestion 

8.0−10.0 Critical gridlock 

 

3.2 Geohash(G) 

Each location is represented by a geohash code, 

which encodes geographic coordinates into a string 

for spatial representation. We consider five geohash 

areas in Istanbul, each covering approximately 0.7 

km. Let Gi represent the geohash location, where I 

=1,2,3,4. 

3.3 Road Network Structure Graph for 

STTBoost Model 

The road network structure for our STTBoost hybrid 

model is based on a geospatial representation of five 

geohash locations in the Istanbul City, each covering 

approximately 0.7 km [24]. These geohash areas act 

as the primary units for spatial representation, and 

their connectivity and interactions are fundamental 

to predicting traffic congestion. The road network is 

divided into geohash grids, each representing a 

specific spatial unit on the map. This geohash 

structure simplifies the complexity of the urban road 

network, making it easier to model spatial 

dependencies and variations in traffic patterns 

across different locations. Each geohash area is 

represented as a node in the graph, denoted by 𝐺𝑖 , 

where i refers to the unique geohash location. The 

interaction between these geohash areas is critical to 

understanding how congestion propagates across 

regions. For instance, congestion in one geohash 

area can have ripple effects on neighboring areas due 

to traffic spillover. 

 
 

The spatial attention mechanism in the STTF model 

is intended to capture these relationships. It learns 

how traffic congestion in one geohash influences 

nearby geohashes, helping the model predict more 

accurately for spatially connected locations. The 

road network structure graph also incorporates 

temporal dynamics. Traffic congestion is not only 

spatially dependent but also varies by hour, day of 

the week, and month. These temporal variations are 

captured using the temporal attention layer in the 

STTF model, which integrates time-based features 

like hourly congestion patterns. The model provides 

a comprehensive representation of traffic dynamics 

across the city, capturing both spatial and temporal 

dependencies. The graph structure can be visualized 

as a network of nodes called a geohash area 

connected by edges representing the road 

infrastructure between them. Each node contains 

features related to the current traffic state, such as 

the number of vehicles and speed, and temporal 

factors, such as the hour of day. The spatio-temporal 

attention framework dynamically captures how 

congestion levels evolve over time and space, 

allowing for more accurate predictions of future 

congestion levels. 

The road network structure graph in our model 

leverages the geohash-based spatial framework 

integrated with the temporal dynamics of traffic. By 
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modeling both spatial and temporal relationships 

within the road network, the STTBoost hybrid 

model can more accurately predict congestion levels 

in Istanbul. 

4. STTBoost hybrid model 

In this section, we introduce the structure of the 

proposed STTBoost model and the functions of each 

part. 

The STTBoost model is built upon the STTF 

Transformer model and XGBoost. The whole 

framework incorporates the Transformer framework 

for the purpose of extracting spatio-temporal feature 

extraction and leverages XGBoost for prediction of 

traffic congestion levels. The dataset is preprocessed 

and divided into training, validation and test set and 

after model’s training on training data, performance 

of the model is evaluated. 
 

 
 

                                                            Fig.1: Proposed Framework of STTBoost 

The STTBoost hybrid model is specifically tailored 

to predict urban traffic congestion. The Transformer 

framework consists of the spatiotemporal attention 

layers (spatial and temporal) and geohash 

embedding layers, which enable it to handle spatial 

information from different locations in Istanbul and 

temporal data related to hourly, daily, and weekly 

traffic variations. Here, the input data X includes 

spatio-temporal data at different time steps. Each 

𝑋𝑡𝑖 consists of features describing traffic conditions 

excluding contextual information for a specific time 

𝑡𝑖, features such as Traffic Congestion Index 

(M_TCI), number of vehicles and average speed 

from five geohash locations. This data is processed 

through the spatial and temporal attention layers and 

STTF model outputs a D-dimensional vector, which 

encapsulates the spatio-temporal relationships of the 

traffic data. This vector, along with additional 

structured data (like lag features, weather, road 

incident, event etc.), is passed into XGBoost, which 

handles the final classification step to predict the 

Congestion Level Class. The integration of 

XGBoost allows for efficient handling of structured 

data, improving the model's robustness compared to 

using STTF alone. The model predicts the 

Congestion Level Class across different time 

horizons (e.g., hour-by-hour predictions or weekly 

trends), optimizing performance for traffic 

congestion prediction in Istanbul. 

 

 
 

Fig. 2: STTBoost Model Structure 
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2𝜋.𝑑𝑎𝑦 

2𝜋.𝑑𝑎𝑦 

2𝜋.ℎ𝑜𝑢𝑟 

2𝜋.ℎ𝑜𝑢𝑟 

This hybrid model not only captures spatial and 

temporal dependencies but also processes structured 

features more effectively, leading to improved 

accuracy in traffic congestion forecasting over 

traditional models. The output of the model is the 

predicted congestion levels for future time steps 

based on the input historical data. Each module in 

the framework is set to output a D-dimensional 

vector to facilitate smooth connections between 

layers and achieve the highest performance. 

4.1 GT-Embedding Layer 

The GT Embedding Layer in the proposed 

STTBoost model combines spatial and temporal 

embeddings to capture traffic dynamics effectively. 

In this modified version, we adopt cyclical encoding 

(sin/cos transformation) for temporal features to 

represent the periodic nature of traffic patterns 

better. The resulting embeddings from both spatial 

and temporal dimensions are then integrated using a 

novel concatenation technique. 

4.1.1 Geohash Embedding Layer (Spatial 

Embedding) 

We embed the geohash locations to capture spatial 

dependencies in the road network. The geohash 

encoding inherently captures proximity between 

locations, making it well-suited for embedding into 

a spatial feature space. Each geohash area is encoded 

as a D-dimensional vector. This vector 

representation captures the spatial relationships 

between locations by encoding each geohash 

region's traffic characteristics (e.g., vehicle density, 

road capacity) into a feature vector. The geohash 

codes are embedded into a dense vector space using 

an embedding layer in the model. These embeddings 

represent the spatial information, allowing the 

model to learn spatial dependencies between traffic 

zones. 

The final spatial embedding for each geohash 

location Gi is denoted as 

sevi ∈ 𝑅𝐷                            (2) 

where vi represents the geohash location, and D is 

the dimensionality of the embedding. 

4.1.2 Temporal Embedding Layer 

We use cyclical encoding with sine and cosine 

transformations to capture the cyclical nature of time 

features (such as hours of the day and days of the 

week). This encoding ensures that time steps like 11 

PM and 12 AM are treated as close in the temporal 

space, which one-hot encoding fails to capture. For 

each time 𝑡, the hour of the day is encoded using sine 

and cosine transformations, and these 

transformations project the hour of the day into a 

cyclical feature space. Similarly, the day of the week 

is encoded using equations (5) and (6) and captures 

the cyclical nature of the week (Monday to Sunday). 

sin _hour(t) = sin ( ) (3) 
24 

cos _hour(t) = cos ( ) (4) 
24 

sin _day(t) = sin ( ) (5) 
7 

 cos _day(t) = cos ( ) (6) 
7 

These cyclical encoding provides a continuous 

representation of time, ensuring that the temporal 

embeddings reflect the periodic nature of traffic 

data. These temporal features are combined into a D- 

dimensional vector using an embedding layer tetj ∈ 

𝑅𝐷, where tj represents the time step. 

4.1.3 Method for Concatenating Spatial and 

Temporal Embeddings 

To integrate the spatial and temporal embeddings, 

we propose a new concatenation method that 

maintains the structure of both embeddings while 

allowing the model to learn from both spatial and 

temporal dependencies. Rather than using simple 

concatenation, we propose using the Hadamard 

product (element-wise multiplication) [25] to 

combine the spatial and temporal embeddings. This 

allows each element of the spatial embedding to 

interact with the corresponding element of the 

temporal embedding, capturing both the geographic 

and temporal variations simultaneously. The 

combined spatiotemporal embedding for geohash 

location vi at time step tj is computed as 

 ste𝑣̃𝑖,𝑡𝑗 = sevi ⊙ te𝑡𝑗 ,                 (7) 

where ⊙ denotes the Hadamard product. This 

operation effectively integrates spatial and temporal 

information into a unified representation that can 

capture complex interactions between location and 
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time. The resulting embedding ste𝑣̃𝑖,𝑡𝑗 is then passed 

through subsequent layers of the STTF model, 

ultimately being combined with structured features 

(such as TCI, vehicle count, weather, etc.) before 

being passed to the XGBoost model for congestion 

prediction. 

4.2 Attention Layers 

In the STTBoost model, we utilize two primary 

attention blocks: Spatial Attention and Temporal 

Attention. Both blocks are designed to capture 

dependencies and relationships in the traffic data 

across space and time. 

4.2.1 Spatial Attention Block 

The Spatial Attention block focuses on capturing 

the interactions between different geohash locations. 

Traffic conditions in one location often influence 

neighboring areas, and this block helps the model 

learn these spatial dependencies. It takes the spatial 

embeddings (generated from geohash embeddings) 

and calculates attention scores between locations to 

determine how much influence one location has on 

another. The block outputs a refined spatial 

embedding that incorporates the spatial 

relationships between locations, helping the model 

to understand spatial spillover effects in traffic. 

4.2.2 Temporal Attention Block 

The Temporal Attention block captures the 

relationships between traffic patterns at different 

time steps. Traffic evolves over time, and this block 

helps the model learn how past traffic data 

influences future predictions. This block processes 

the temporal embeddings (created using cyclical 

encoding for time features) and computes attention 

scores between different time steps to highlight 

which past time periods are most relevant for 

predicting current or future congestion, and the 

temporal embedding is refined with attention to time 

dependencies, ensuring that the model can recognize 

time-based patterns such as daily rush hours or 

weekly trends. 

The spatial and temporal attention blocks operate in 

parallel to capture both spatial and temporal 

dynamics in traffic data. The attention scores are 

calculated automatically using the Scaled Dot- 

Product Attention mechanism and the model 

computes these scores using the Query, Key, and 

Value matrices, and the attention weights are learned 

through training and enhance model's ability to 

focus on the most important locations and time 

periods, making it better equipped to predict traffic 

congestion patterns in a complex urban environment 

like Istanbul. 

4.3 Spatio-Temporal Embedding 

The Spatio-Temporal Embedding (shown in pink) is 

the final representation that captures both the spatial 

and temporal dependencies in the model. This block 

represents the combined output of both the Spatial 

Attention and Temporal Attention blocks. It 

synthesizes the learned spatial relationships between 

different geohash locations and the temporal 

dependencies between time steps, providing a rich 

representation for each geohash at a given time. 

Together, this embedding represents the spatio- 

temporal dynamics of the traffic data, allowing the 

model to predict how congestion evolves over both 

space and time. 

4.4 Concatenation with Contextual Features 

After generating the Spatio-Temporal Embedding, it 

is concatenated with additional contextual features- 

road incident, weather, holiday and landmark 

proximity. The spatio-temporal embedding ste𝑣̃𝑖,𝑡𝑗 is 

concatenated with these structured features into a 

combined feature set. This combined feature set 

serves as the final input to the XGBoost model, 

which makes the final predictions for congestion 

level based on this enriched set of features. The 

concatenation ensures that both learned embeddings 

(spatio-temporal dynamics) and external structured 

data are integrated for more accurate predictions. 

This Spatio-Temporal Embedding provides a 

comprehensive representation of the traffic situation 

at each geohash and time step, and by concatenating 

it with contextual features, we ensure the model 

incorporates both deeply learned representations and 

external factors for robust traffic prediction. 

5. Experiments 

To evaluate the practical performance of our model, 

we conduct experiments using large-scale datasets 

from Istanbul, which provide hourly traffic density 

data across various locations in the city. 

5.1 Datasets 

We have gathered dataset from the city of Istanbul 

[29]. The 13-month period runs from April 2022 

until May 2023. The dataset is separated into test, 

validation, and training sets. We project the level of 

congestion in May 2023 for the following five 

geohash point of interest (POI) regions: sxkb6p, 

sxk3xe, sxkb97, sxk8yv, and sxk92w as shown in 

Fig:10. The dataset consists of 29,715 rows. It is 

trained using thirteen different factors that depict the 

actual traffic. For one geohash(sxk3xe), we have 

predicted and compared the real congestion levels 

with the result of the model. Fig.3 shows the density 

of vehicles over the data collected for one year, 
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where the red color shows the high-density area in 

Istanbul. 

Fig.3: Map reflecting traffic density across Istanbul City 

 
 

 

Fig.4: Map reflecting POIs 
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5.2 Experimental Configuration 

The STTBoost model represents traffic congestion 

on an hourly, weekly, and monthly basis, ensuring it 

can capture both short-term and long–term traffic 

variations over time. We use the Adam Warm-up 

optimizer [27], initializing the learning rate at 0.001, 

with a warm-up step size of 4000 and batch size of 

20, ensuring stable training. 

The STTF part of the model has three key 

hyperparameters: Number of encoder layers (L), L = 

4, ensuring the model has sufficient depth to capture 

spatio-temporal dependencies. Number of attention 

heads (Q), Q = 8, the multi-head attention 

mechanism captures different aspects of the spatial 

and temporal relationships in traffic data. Output 

vector dimension (D), D = 128, allowing enough 

capacity to model the complexity of the data. A 

dropout rate of 0.3 is set to prevent overfitting, and 

Xavier initialization [33] is used to initialize the 

weights in the network. For the XGBoost 

component, the following configuration is used to 

optimize the final prediction of the Congestion 

Level. The learning rate is set at 0.05 to balance 

convergence speed and performance. Max Depth of 

6 to ensure the model captures sufficient interactions 

between the features without overfitting. A 

subsample ratio of 0.8 ensures that XGBoost 

leverages different portions of the data to generalize 

better. The number of boosting rounds is set to 300, 

allowing enough iterations for the model to 

converge [28]. This configuration provides a robust 

hybrid approach that leverages both the STTF model 

for feature extraction and XGBoost for final 

congestion classification. 

5.3 Baselines and Measures 

We selected five benchmark models for comparative 

experiments, covering traditional and state-of-the- 

art congestion prediction approaches. These models 

include ARIMA [29], a classic linear model for time 

series forecasting, LSTM [24], DCRNN (Diffusion 

Convolutional Recurrent Neural Network) [30]; and 

STTF [31], which are state-of-the-art deep learning 

models that focus on spatial-temporal patterns in 

traffic data, GMAN [32] and XGBoost [34]. 

All models' codebases are publicly available, 

enabling us to run them on our traffic dataset. We 

use three metrics to measure the models’ predictive 

accuracy; these are F1-Score used for multi-class 

classification performance. Mean Absolute Error 

(MAE) which measures the average magnitude of 

errors between predicted and actual congestion 

levels. Root Mean Squared Error (RMSE) provides 

insight into the model’s ability to minimize large 

errors in predictions. These metrics provide a 

comprehensive evaluation of the models, ensuring 

we capture both the precision and robustness of the 

traffic congestion predictions. 

5.4 Experimental Results and Discussion 

In this section, we evaluate the performance of the 

proposed STTBoost model by predicting the 

congestion levels for each hour during the weekday 

period of May 8, 2023 (00:00 to 23:00). The 

predictions are made for every 1-hour interval and 

compared against the actual congestion level as 

shown in Fig.5. The result of weekly congestion 

level is shown in Fig.6, hourly weekday congestion 

level is shown in Fig.7 and the impact of accident in 

congestion level is shown in Fig.8. 

The TCI was calculated for each geohash location 

for every 1-hour interval, providing a continuous 

measure of traffic congestion. The congestion levels 

were then categorized into five classes (Unhindered 

flow, Nominal flow, Emerging congestion, 

Escalated congestion and Critical gridlock), which 

served as the target variable for all models. The 

STTBoost model utilized both spatial and temporal 

embeddings in conjunction with structured features 

like TCI, vehicle count, and road incident to predict 

the congestion level. The data of one geohash – 

sxk3xe is applied to the other models mentioned 

above for congestion prediction and to evaluate 

performance of STTBoost Model using key metrics 

and the result is shown in Fig.9. 

5.4.1 Results Analysis 

The results from the comparative experiments reveal 

that our proposed STTBoost model outperforms the 

other models across all key metrics, particularly in 

its ability to capture spatial-temporal dependencies 

in the data and incorporate contextual features (like 

weather, road incidents, etc.). LSTM and ARIMA 

models performed relatively well in modeling 

temporal dependencies but struggled to account for 

the spatial relationships between geohash locations. 

Both models exhibited higher errors when 

predicting congestion levels for locations with high 

traffic flow variability. GMAN, which handle 

spatio-temporal data with graph-based approaches, 

performed better than LSTM and ARIMA by 

capturing local spatial correlations. However, their 

performance was somewhat limited in cases where 

external structured features (like TCI) played a 

critical role in traffic flow. DCRNN and STTF 

performed better overall in capturing both the spatial 

and temporal aspects of the data, particularly with 

STTF integrating spatial and temporal embeddings 

through attention mechanisms. These models 
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provided more accurate predictions during high- 

traffic periods, such as morning (7:00-9:00) and 

evening rush hours (17:00-19:00). The XGBoost 

model on its own produced strong predictions by 

leveraging structured data, but when combined with 

STTF in the STTBoost model, the predictions were 

further refined. This hybrid approach resulted in 

better handling of non-linear relationships and short- 

term fluctuations in congestion levels. 

 

 
 

Fig.5: Actual vs predicted congestion levels on May 8,2023(Hourly) 
 

Fig.6: Actual vs predicted congestion level(weekly) 
 

Fig.7: Weekday congestion level(hourly) 
 

Fig.8: Weekend congestion level(hourly) 
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Fig.9: Monthly Congestion Level for May 2023 (Daily Average with Accident Spikes) 

Fig.10: Hourly congestion level for five geohash 

 

 

Fig.11: Feature importance in STTBoost Model 



 

All the above plots, from Fig. 5 to Fig. 10 depict the 

STTBoost model consistently tracked the actual 

congestion patterns with minimal deviations, 

especially during peak hours and Fig.11 shows the 

importance of all factors taken by STTBoost to 

predict congestion. 

5.4.2 Model Performance Evaluation 

The STTBoost model achieved the highest F1-Score 

for predicting each congestion level class, indicating 

its superior ability to classify traffic congestion 

correctly. The RMSE for the STTBoost model was 

the lowest among all models, reflecting its ability to 

minimize large errors in congestion prediction. The 

model's average RMSE was 5.6% lower than that of 

the best-performing baseline model (DCRNN). The 

Mean Absolute Error for the STTBoost model was 

consistently lower across all hourly intervals, 

especially during peak congestion times. This 

indicates that our model was able to predict the 

actual congestion levels closely. 

 

 
 

 
 

Discussion 

Fig.11: Comparison of models’ vs Performance Metrics 

developed a novel hybrid model called STTBoost, 

The results demonstrate that the STTBoost model 

significantly outperforms traditional models like 

ARIMA and LSTM, as well as graph-based models 

like GMAN, in predicting hourly traffic congestion 

levels. The attention mechanism in STTF, combined 

with the structured data processing power of 

XGBoost, allows the model to capture both spatial- 

temporal dependencies and contextual factors such 

as weather and traffic incidents. 

In conclusion, the combination of spatio-temporal 

embeddings with XGBoost in the proposed model 

offers a robust solution for traffic congestion 

prediction. This hybrid approach demonstrates the 

capacity to model the complex relationships in urban 

traffic patterns more accurately than the state-of-the- 

art models evaluated. Future work can focus on 

expanding the model to predict congestion over 

more extended periods and in different urban 

settings. 

6. Conclusion 

In this work, we formulated a new traffic congestion 

index that integrates density with speed factors to 

better capture real-world traffic conditions. We also 

designed to handle both short-term and long-term 

traffic predictions with enhanced accuracy. The 

STTBoost model leverages a spatio-temporal 

framework that includes an innovative information 

embedding module, which transforms road network 

structure and temporal data into learnable feature 

vectors. These vectors are processed through spatial 

and temporal attention modules, allowing the model 

to learn complex patterns in different directions. Our 

approach demonstrated superior prediction accuracy 

and efficiency compared to state-of-the-art 

algorithms, making it a robust solution for real- 

world traffic prediction tasks. 
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