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Abstract: Recently, the most common urological disease is Kidney stones that affect most of the individuals globally which provides a 

severe pain and discomfort. The kidney stone prediction is must for effective treatment planning and patient care. In this work, the Deep 

learning model of YOLO v7 model based Energy Valley optimizer for image segmentation and Pulse Couple Neural Network (PCNN) 

based classification is proposed effective approach for kidney stone prediction. At first, the YOLO v7 model is identified and localized the 

kidney stones for image segmentation. However, to provide an optimal result in YOLOv7 performance, the hyperparameter tunings are 

performed to learn and generalize from data. To achieve an optimal result, the Energy Valley optimizer is introduced that is motivated by 

energy valleys found in physics. This optimizer efficiently searches for optimal hyperparameters, mitigating issues such as local optima 

and slow convergence. By combining the YOLO v7 model with the Energy Valley optimizer, it enhances the model’s predictive capabilities 

and improves an accurate segmentation of kidney stones. Furthermore, the Pulse Couple Neural Network (PCNN) method is presented 

classification framework to classify kidney stones based on their attributes. The PCNN model leverages the temporal dynamics of pulse-

coupled oscillators to capture complex patterns and relationships within the segmented kidney stone regions. This facilitates accurate 

classification into different stone types, aiding in personalized treatment planning. In experiment, the proposed technique has achieved 

remarkable results across various evaluation metrics such as precision, recall, accuracy, F1 score and specificity values of 98.58%, 99.17%, 

98.88%, 97.42%, and 98.23% respectively. These metrics demonstrated exceptional accuracy in detecting and classifying kidney stones 

than the other traditional techniques. The proposed model has validated the effectiveness and superiority of the proposed technique for 

kidney stone prediction. 

Keywords: Kidney stone, Image Segmentation, YOLOv7 model, Energy Valley optimizer, PCNN classification, performance metrics. 

1. Introduction 

Kidney stones are also named as renal calculi that are salt 

deposits and solid mineral formed within the kidneys. It 

provides an excruciating discomfort and pain when it 

obstructs the urinary tract. Kidney stones are a prevalent 

urological condition, affecting a substantial number of 

individuals worldwide [1]. The timely and accurate 

prediction, segmentation, and classification of kidney stones 

play a vital role in guiding effective treatment strategies and 

improving patient outcomes. 

There are various types of kidney stones namely calcium 

oxalate stones, uric acid stones, calcium phosphate stones 

and struvite stones [2]. For every kidney stone disease has 

unique characteristics and also need specific treatments. 

Based on treatment planning and management, the kidney 

stones are identified accurately and provided better 

classifications [3]. 

The main issue in kidney stones is the lack of early 

prediction. Because many more time the stones are very 

painful after it become larger that also caused many 

complications. Due to this delay detection and diagnosis can 

lead to severe pain, urinary tract infections, and sometimes 

the kidney can also damage [4]. Whereas the Earlier 

prediction can help in appropriate interventions, preventing 

form a complications, and enhancing the patient 

outcomes.To avoid such issues, the Deep learning (DL) 

methods are presented in medical image analysis. The DL 

methods can perform an effective kidney stone 

segmentation and classification for earlier prediction [5]. 

For such kidney stones classification, the DL model can 

perform by training on labeled datasets, these models can 

learn to differentiate between calcium oxalate stones, uric 

acid stones, and other types based on their unique 

characteristics, such as shape, texture, and composition [6]. 

Accurate classification aids in determining the appropriate 

treatment approach and helps healthcare professionals make 

informed decisions.In the DL methods, Convolutional 

neural networks (CNNs) have been widely employed for 

accurate segmentation of kidney stones within medical 

images [7]. These techniques leverage the ability of CNNs 

to learn discriminative features and localize objects of 

interest, enabling precise identification and delineation of 

kidney stones. Likewise there are several CNNs variant 

methods are used for medical imaging such as InceptionNet, 

GoogleNet, AlexNet, ImageNet, Recurrent Neural Network 

(RNN), Long Short Term Memory (LSTM) respectively [8].  
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In this study, it aim to address these challenges by exploring 

the potential of deep learning techniques, specifically 

focusing on segmentation and classification of kidney 

stones. It is aimed to contribute to the early detection and 

personalized treatment of this prevalent urological condition 

[9-11]. In this work, an accurate kidney stone prediction and 

classification is performed by integrating the YOLO v7 

model with the Energy Valley optimizer for a segmentation 

techniques, and the PCNN classification framework, It 

achieve superior performance and provide valuable insights 

into the characteristics of kidney stones. This advancement 

in predictive modeling can contribute to personalized 

treatment planning and improve healthcare outcomes for 

individuals with kidney stones. 

2. Related Works 

In the field of kidney disease diagnosis and kidney stone 

detection, various studies have utilized deep learning and 

machine learning techniques. Shi et al. [12] presented a 

segmentation based on fully automatic for kidney images, 

employing pre-trained CNN to extract relevant features. In 

[13], the new deep learning model with adaptive weigting 

score is used to predict a chronic kidney disease. Abdullah 

et al. [14] focused on early detection of chronic kidney 

disease (CKD) based on artificial neural networks (ANN) 

and support vector machines (SVM) techniques. 

  Yildirim et al. [15] developed a DL based coronal CT scans 

for kidney stone prediction. It is used to analyze severity 

based on image features to provide an accurate detection 

even the stone was small. Baygin et al. [16] developed 

ExDark19 for an image classification method using CT 

images. It employed iterative neighbourhood component 

analysis  for feature selection and a ada boost classifier for 

stone identification with an accuracy of  88.9% respectively. 

Homayounieh et al. [17] explored a renal calculi prediction 

using autosegmentation-assistance. Next, Alnazer et al. [18] 

presented a survey work for monitoring renal function 

decline that highlighting the DL performance in improving 

renal dysfunction monitoring and prediction. Patro et al. 

[19] developed DL architecture using CNN model by 

achieving impressive accuracy in kidney stones prediction 

from CT images. Similarly, Yildirim et al. [20] presented an 

automated system using DL for kidney stone detection with 

a high accuracy even for small-sized stones. These studies 

highlight the potential of DL approaches with a high 

diagnostic accuracy and patient care in renal imaging and 

kidney stone detection. 

Akshaya et al. [21] used a Back Propagation Network 

(BPN) with Fuzzy C-Mean (FCM) clustering for kidney 

stone detection, while Mua’ad et al. [22] explored three 

segmentation techniques (threshold-based, watershed-

based, and edge-based) to enhance kidney stone detection. 

Additionally, Goel et al [23] presented an improved kidney 

stones from ultrasound images by using Gray-Level Co-

occurrence Matrix (GLCM) features for performance 

evaluation. These studies highlight the segmentation 

methods and classification algorithms to improve accuracy 

and image quality. 

3. Materials 

Dataset Description 

The study utilized a dataset of coronal CT scans obtained 

from a publicly available kidney stone detection repository 

on GitHub ((https:// 

github.com/yildirimozal/Kidney_stone_detection). This 

dataset includes scans from different institutions and 

scanners, aimed at developing intelligent algorithms for 

stone segmentation and classifications. The CT scans, 

acquired in DICOM format, were pre-processed to ensure 

patient privacy. The dataset consists of CT scans from male 

and female patients, aged 17 to 79 years, diagnosed with 

kidney stones by radiologists or urologists. Rigorous review 

and annotation by at least two radiologists were conducted 

to create a reliable dataset with scans. Among these, 5077 

were from normal subjects, Cyst  3,709 , stone 1,377, and 

tumor 2,283. The dataset was primarily collected from a 

hospital in Turkey, focusing on urinary system stone 

disorders. CT scans are known for their high sensitivity in 

detecting kidney stones.  

4. Proposed Methodology 

The figure 1 shows the proposed workflow for kidney stone 

prediction. It consists of several processes such as: Data 

Acquisition that is used to obtain a dataset of kidney stone 

images in DICOM format and contains a diverse range of 

images from different sources, Data Preprocessing that is 

used to preprocess the dataset by removing any personal 

identification data and standardizing the images to ensure 

consistency, Image Segmentation is done by using the 

trained YOLOv7 model to segment the kidney stone regions 

within the images. It can be accurately identify and localize 

the kidney stones. Also, the Energy Valley Optimization is 

applied to fine-tune the hyperparameters of the YOLOv7 

model for an improved the speedy performance and higher 

accuracy, then the Image Classification is done by PCNN 

that is used to provide an accurate predictions based on 

patterns in the data and finally the Model Evaluation is 

performed based on the metrics such as accuracy, precision, 

recall, and F1 score to measure the effectiveness of the 

model. 
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Fig.1. Proposed Workflow 

By following this workflow, the integrated system aims to 

provide accurate and efficient prediction of kidney stones 

using YOLOv7 for image segmentation and PCNN for 

classification. 

4.1. Image Segmentation 

 The YOLOv7 architecture is a highly effective and 

widely used for image segmentation that is shown in figure 

2. It comprises a several components such as Backbone 

Network, Feature Pyramid Network, Head and YOLO Loss 

respectively [24].  

1. Backbone Network: The backbone network serves as the 

foundation of YOLOv7. It typically consists of a deep CNN 

namely Darknet-53 or ResNet. This network's primary 

function is to extract high-level features from the input 

image. It learns to recognize various patterns and shapes that 

are crucial for segmentation. 

2. Feature Pyramid Network (FPN): FPN is integrated into 

YOLOv7 to address the challenge of detecting objects at 

different scales. It enhances the feature representation by 

combining features from different levels of the backbone 

network. FPN generates a feature pyramid, where each level 

of the pyramid corresponds to features at different 

resolutions. This allows YOLOv7 to effectively segment 

objects of various sizes and handle scale variations. 

 

 

 

 

Fig 2. YOLO v7 Architecture 

3. Feature Pyramid: The feature pyramid is the output of the 

FPN. It consists of multiple feature maps at different scales. 

These feature maps retain information from various levels 

of detail. The lower-level maps contain fine-grained details, 

while the higher-level maps capture more abstract and 

semantic information. The feature pyramid enables 

YOLOv7 to have an input image multi-scale representation 

that allowed to segment features at different resolutions. 

4. Head: The head of the YOLOv7 architecture follows the 

feature pyramid. It processes the feature maps and generates 

predictions for bounding boxes and class probabilities. The 

head typically includes additional convolutional layers, 

which refine the features and extract more specific 

information about the objects. It predicts the bounding box 

coordinates and class labels for the detected objects within 

each feature map. 

5. YOLO Loss: The YOLO loss function calculates the 

discrepancy between the predicted bounding boxes and 

class probabilities and the ground truth annotations. It 

consists of three main components: 

   - Localization Loss: This component measures the 

difference between the predicted and ground truth bounding 

box coordinates. It encourages accurate localization of 

objects. 

   - Confidence Loss: The confidence loss compares the 

predicted objectness scores (confidence scores indicating 

the presence of an object) with the ground truth labels. It 

guides the model to assign high confidence to correctly 

detected objects and low confidence to false detections. 

   - Class Loss: The class loss evaluates the difference 

between the predicted class probabilities and the ground 
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truth labels. It ensures accurate classification of objects into 

their respective classes. 

By minimizing the YOLO loss during training, the model 

learns to make precise predictions of object locations and 

class labels. 

Overall, the YOLOv7 architecture combines the backbone 

network, FPN, feature pyramid, head, and YOLO loss to 

achieve accurate and efficient object detection. It can 

process images in real-time and detect objects at different 

scales, making it suitable for various applications, including 

object recognition, segmentation, and tracking. 

4.2. Hyperparameter of YOLOv7 

The hyperparameters commonly used in training a 

YOLOv7 model, along with the number of epochs, include: 

1. Learning Rate: Determines the step size for updating 

model parameters during training. 

2. Batch Size: Specifies the number of training samples 

processed in each iteration. 

3. Input Image Size: Defines the dimensions of the input 

images processed by the model. 

4. Anchor Boxes: Predefined bounding boxes of different 

scales and aspect ratios for object localization. 

5. Confidence Threshold: Minimum confidence score 

required for a detected object to be considered valid. 

6. NMS Threshold: Minimum IoU overlap required for 

suppressing duplicate bounding box predictions. 

7. Number of Epochs: Specifies the number of complete 

passes through the training dataset during training. 

Here's an example of the hyperparameters and epochs is 

given in Table 1: 

Table.1 Hyperparameter and possible values 

Hyperparameter           Possible Values           

Learning Rate            0.01 

Batch Size               16 

Input Image Size         608x608 

Anchor Boxes             Custom configurations     

Confidence Threshold     0.6             

NMS Threshold            0.6             

Number of Epochs         100              

 

4.3. EVO Based Fine-Tuning 

The Energy Valley Optimizer (EVO) is a novel 

metaheuristic algorithm that draws inspiration from 

advanced physics principles, particularly the stability and 

decay modes of particles [25]. The algorithm has been 

proposed and evaluated using 20 unconstrained 

mathematical test functions in various dimensions to assess 

its performance. 

In the EVO, particles are considered unstable and tend to 

decay, emitting energy in the process. The decay rate varies 

among different types of particles, and stability is 

determined by the number of neutrons (N) and protons (Z) 

and the N/Z ratio. The stability band is defined by the N/Z 

ratio, with a higher value indicating stability for heavier 

particles. 

Particle stability is influenced by the neutron enrichment 

levels, with neutron-rich particles requiring more neutrons 

for stability and neutron-poor particles undergoing electron 

capture or positron emission to change towards the energy 

valley or stability band. 

The decay process involves the emission of alpha (α) 

particles (helium-like particles), beta (β) particles (high-

speed electrons), and gamma (γ) rays (high-energy 

photons). Alpha decay reduces the N/Z ratio, beta decay 

increases the N/Z ratio, and gamma decay involves emitting 

gamma photons without changing the N/Z values. 

The EVO algorithm utilizes these principles of particle 

decay and stability to improve the search for optimal 

solutions in optimization problems. It employs higher-level 

searching techniques inspired by the decay process and the 

tendency of particles to reach a stable point. The algorithm 

1 starts with initial candidate solutions and gradually 

improves their overall standing through iterative steps. 

Algorithm 1: pseudocode of  EVO algorithm for 

hyperparameter tuning: 

1. Initialize population of candidate hyperparameter 

configurations 

2. Set maximum number of iterations or termination 

condition 

3. While termination condition is not met do: 

4. Evaluate the performance of each candidate 

configuration using a validation set or cross-

validation 

5. Update global best configuration based on 

performance values 

6. For each candidate configuration do: 

7. Select neighboring configurations based on a 

certain strategy 

8. Update candidate configuration using the Energy 

Valley Optimization equations: 

9. Compute binding energy based on stability criteria 

(e.g., performance ranking) 

10. Adjust hyperparameter values to move towards 

stability or energy valley 

11. Apply local search or mutation operator if 

necessary 
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12. Perform selection or elitism to determine new 

population of candidate configurations 

13. End While 

14. Return the best hyperparameter configuration 

found 

From the pseudocode, the population consists of candidate 

hyperparameter configurations, and the evaluation step 

measures the performance of each configuration on a 

validation set or through cross-validation. The global best 

configuration is updated based on the performance values, 

and for each candidate configuration, neighboring 

configurations are selected and updated using the EVO 

equations. The process includes adjusting hyperparameter 

values to move towards stability or the energy valley. Local 

search or mutation operators can be applied to explore the 

search space further. Finally, selection or elitism is 

performed to determine the new population of candidate 

configurations. 

4.4. PCNN Classification  

The PCNN is a computational model inspired by the 

activities of neurons in the mammalian visual cortex [26]. It 

is a self-adjustable network that does not need explicit 

training. The PCNN model consists of three main 

components: the receptive field, the linking part or 

modulation, and the pulse generator (Figure 3). 

The concept of PCNN is introduced by Johnson and Padgett 

(1999a,b) which generates pulses as function of input 

images. They have described the PCNN as a model that 

simulates the activities of neurons in the visual cortex. 

The equivalent circuit of PCNN is shown in Figure 4. In the 

model, Y(t) denotes the pulse generator, Em denotes the 

inactive potential inside the cell (70 mV), ES represents the 

synaptic back potential (+20 mV), C1 and C2 are the 

compartmental capacitances (in the order of nanoFarads), 

gm1 and gm2 represent the membrane intrinsic leakage 

conductances, g12 is the longitudinal conductance, and V1 

and V2 denote the compartmental voltages. 

 

Fig 3. Structure of PCNN neuron 
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 Fig 4. Equivalent Model of PCNN 

The network comprises neurons in a quantity matching that 

of input images. Each neuron corresponds to an individual 

pixel within the image and maintains connections to 

adjacent neurons within a specific linking field radius. 

The PCNN is composed of three compartments: the 

receptive field, the linking section or modulation part, and 

the pulse generator. The primary component is the receptive 

field, which gathers input signals from neighboring neurons 

and external sources. It includes two internal channels called 

the Feeding compartment (F) and the Linking compartment 

(L). The linking inputs in the Linking compartment exhibit 

quicker response times compared to the feeding 

connections. 

The total internal activity U is generated by performing 

biasing and multiplying the input inside the receptive field. 

This activity forms the linking or modulation aspect of the 

PCNN, representing interaction between the feeding and 

linking compartments. 

Each neuron's pulse generator comprises a step function 

generator and a threshold signal generator. Neurons in the 

PCNN network can respond to stimuli, referred to as firing. 

When a neuron's internal activity surpasses a threshold, its 

output Y becomes 1. The threshold then decays until the 

next internal activity of the neuron. The neuron's output is 

continuously fed back with a one-iteration delay. If the 

threshold exceeds the internal activity, the neuron's output 

resets to zero. For every iteration, the series of pulses are 

generated from the network. These pulses reflect the content 

of the image based on pulse level. 

Regarding input and communication, a neuron's feeding and 

linking inputs establish connections with nearby neurons via 

synaptic weights. The input stimulus is provided only to the 

feeding section. Each neuron accepts the input stimulus, 

which corresponds to the color information of its 

corresponding pixel in the image, as well as stimulus from 

neighboring neurons in both the feeding and linking 

compartments. 

In this work, the segmented image is applied to the 

PCNN network for classification. In PCNN, each pixel from 

segmented image is connected to a unique neuron. The 

network analyzes the pulse outputs produced by the neurons 

after a certain number of iterations. These pulse outputs 

carry data about the input image, including the 

characteristics of the kidney stone. 

By examining the pulse outputs of the PCNN network, the 

kidney stone can be effectively classified and predicted. The 

PCNN network's ability to respond to stimuli and its self-

organizing nature contribute to its effectiveness in analyzing 

complex patterns and extracting meaningful features  from 

the segmented image. 

Therefore, proposed segmentation and classification 

provides a comprehensive and effective approach for kidney 

stone prediction. The optimized image segmentation 

improves the accuracy of identifying and segmenting kidney 

stones, while the PCNN classification algorithm leverages 

the self-organizing nature of neural networks to analyze and 

classify the segmented image, resulting in accurate and 

reliable predictions. 

5. Performance Evaluation 

The experimental results would typically involve running 

the optimized YOLOv7-based image segmentation and 

PCNN classification on the training dataset and evaluating 

the predictions made on the testing dataset. The evaluation 

metrics used could include accuracy, precision, recall, F1 

score, or other metrics depending on the specific objectives 

of the study. 

Accuracy: Accuracy measures the overall correctness of the 

predictions. 

 Formula: (𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)  

  (1) 

Where: 

   - TP: True Positive (correctly predicted positive 

instances) 

   - TN: True Negative (correctly predicted 

negative instances) 

   - FP: False Positive (incorrectly predicted 

positive instances) 

   - FN: False Negative (incorrectly predicted 

negative instances) 

Precision: It measures the proportion of correctly predicted 

positive instances out of all predicted positive instances. 

   Formula: 𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃)   

    (2) 

Recall: It measures the proportion of correctly predicted 

positive instances out of all actual positive instances. 

Formula: 𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁)   (3) 

gm1  

V1  
V2  

gm2  gs1  gs2  

Em  Es  Es  Em  

Y(t) 

g12 

C2  C1  
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F1 Score: It is a balanced metric that considers both 

precision and recall. 

   Formula: 2 ∗  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙) /

 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙) 

Specificity: It measures the proportion of correctly predicted 

negative instances out of all actual negative instances. 

   Formula: 𝑇𝑁 / (𝑇𝑁 +  𝐹𝑃)   

    (4) 

These metrics provide different aspects of the performance 

evaluation, allowing a comprehensive assessment of the 

proposed methodology's effectiveness in kidney stone 

detection and classification. 

The Figure 5 illustrates the various stages of the proposed 

methodology. The resulting image effectively represents the 

presence of stones within the kidney after applying image 

processing techniques. 

Table 1: performance metrics result of proposed technique 

for cyst detection 

Techniques 
Precision Recall 

(%) 

Accuracy 

(%) 

F1 

Score 

(%) 

Specificity 

(%) (%) 

Proposed  98.58 99.17 98.88 97.42 98.23 

UNet 94.07 93.02 95.52 95.45 96.12 

YOLOv7 93.48 92.1 95.05 93.15 95.55 

PCNN 92.14 91.09 93.9 92.29 94.21 

DenseNet 91.09 90.41 92.41 91.61 93.88 

ResNet 90.32 89.21 91.18 90.51 92.12 

CNN 90.08 88.28 90.3 89.87 90.55 

 

 

Fig 5. proposed simulation result 

The performance evaluation of various models for cyst 

detection reveals that the proposed  model stands out as the 

top-performer in terms of accuracy as shown in Figure 6. 

With an accuracy score of 98.58%, the proposed  model 

outperforms all other models, including UNet, YOLOv7, 

PCNN, DenseNet, ResNet, and CNN. This remarkable 

accuracy underscores the efficacy of the proposed  model  in 

correctly identifying cysts within CT images. Unlike 

conventional models, the proposed  model employs a unique 

and innovative approach, which appears to be particularly 

well-suited for the complex task of cyst detection. The 

confusion matrix and ROC plot of proposed model is shown 

in figure  7.  

 

Fig 6: visualization of performance for detecting cyst 

 

 

Fig.7. confusion matrix with roc plot for cyst detection 

Table 2 : performance metrics result of proposed 

technique for stone detection 

Techniques  Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

F1 

Score 

(%) 

Specificity 

(%) 

Proposed  99 98.50 97.90 98.70 99.10 

UNet 95.2 93.79 96.2 96.3 95.9 

YOLOv7 95.4 93.4 96 94.2 94.89 

PCNN 93.4 92 94.25 93.5 94.6 

DenseNet 92 91 92.8 92.55 94.6 

ResNet 92.56 91.4 92.89 92.5 93.5 
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CNN 89.65 87.56 89.56 88.56 88.89 

The evaluation of various models for stone detection in 

medical imaging tasks reveals that the proposed  model 

excels in terms of multiple performance metrics as shown in 

Figure 8. With a precision of 99%, recall of 98.50%, 

accuracy of 97.90%, and an impressive F1 score of 98.70%, 

the proposed  model demonstrates exceptional efficacy in 

stone detection. Additionally, it achieves a remarkable 

specificity of 99.10%, emphasizing its ability to minimize 

false positives. Comparatively, while other models such as 

UNet, YOLOv7, PCNN, DenseNet, ResNet, and CNN 

exhibit respectable performance, none can match the 

comprehensive performance exhibited by the proposed  

model. Its high precision underscores its ability to minimize 

false positives, while its robust recall ensures that it 

effectively identifies stones, making it a valuable tool in the 

diagnosis of urinary tract stones. The confusion matrix and 

ROC plot of proposed model is shown in figure 9. 

 

 

Fig 8. visualization of performance for detecting stone 

 

 

Fig 9. confusion matrix with roc plot for stone detection 

Table 3. performance metrics result of proposed technique 

for tumor  detection 

Techniques  Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

F1 

Score 

(%) 

Specificity 

(%) 

Proposed  98.20 97.70 97.60 98.10 98.30 

UNet 93.2 92.89 94.2 94.5 95.62 

YOLOv7 92.66 91.05 94.3 92.89 94.3 

PCNN 91.02 90.2 92.6 91.4 93.6 

DenseNet 90.7 89.45 91.3 90.26 92.77 

ResNet 89.66 88.0 90.3 89.4 91.3 

CNN 89.66 87.6 89.1 88.6 89.5 

The evaluation of various models for tumor detection in 

medical imaging tasks reveals that the proposed  model  

exhibits impressive performance across multiple critical 

metrics as shown in Figure 10 . With a precision of 98.20%, 

recall of 97.70%, accuracy of 97.60%, and a strong F1 score 

of 98.10%, the 'Proposed' model showcases exceptional 

efficacy in detecting tumors. Furthermore, it achieves a 

notable specificity of 98.30%, indicating its ability to 

minimize false positives. In comparison, while other models 

such as UNet, YOLOv7, PCNN, DenseNet, ResNet, and 

CNN demonstrate respectable performance in tumor 

detection, none can match the comprehensive performance 

exhibited by the proposed  model. Its high precision 

underscores its capability to minimize false alarms, while its 

robust recall ensures that it effectively identifies tumors, 

positioning it as a valuable tool in the early diagnosis and 

management of tumors. The confusion matrix and ROC plot 

of proposed model is shown in figure 11 . 

 

Fig.10.visualization of performance for detecting tumor 
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Fig.11. confusion matrix with roc plot for tumor detection 

6. Conclusion 

In this work, the kidney stone prediction is proposed using 

an EV optimized YOLOv7 for image segmentation and 

PCNN method for classification. This hybrid model has 

attained an accurate identification and localization of kidney 

stones in CT scan images. The proposed technique achieved 

superior results in the classification metrics. It demonstrated 

high precision (98.58%), recall (99.17%), accuracy 

(98.88%), and F1 score (97.42%), indicating its ability to 

accurately detect and classify kidney stones. Additionally, it 

exhibited a high specificity of 98.23%, highlighting its 

effectiveness in correctly identifying non-stone instances. 

These findings surpass the performance of other state-of-

the-art techniques such as AlexNet, UNet, YOLOv7, 

PCNN, DenseNet, ResNet, and CNN, in terms of precision, 

recall, accuracy, F1 score, and specificity. Therefore, the 

proposed approach is utilizing EV optimized YOLOv7 for 

segmentation and PCNN for classification, shows great 

promise for kidney stone prediction. Its superior 

performance in the evaluation metrics suggests its potential 

as a valuable tool for assisting medical professionals in 

accurate and efficient diagnosis of kidney stones. 
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