

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 676–684 | 676

Enhanced Software Defect Prediction Through Homogeneous Ensemble

Models

1
R. Mamatha, 2Dr. P. Lalitha Surya Kumari, 3Dr. A. Sharada

Submitted: 11/09/2023 Revised: 21/10/2023 Accepted: 08/11/2023

Abstract: The authors of this paper recommend employing state-of-the-art Machine Learning methods for fault prediction in computer

programmes. The Promise software engineering repository, where NASA stores its data, serves as an example. The basic objective of

software defect prediction is the early discovery of software flaws. Machine learning algorithms can help with this by making predictions

based on historical data. The initial experiments' results suffered from low precision and recall since they relied on outdated machine

learning methods. Modern machine learning methods such as Naive Bayes, Boosting, and Grid Search were incorporated to increase the

model's accuracy. The performance of the software defect prediction model has been greatly enhanced through the use of state-of-the-art

machine learning techniques. The precision and recall rates, two measures of how well a system can forecast errors, have also grown.

Naive Bayes, Boosting, and Grid Search are just a few of the modern machine learning methods that helped improve the software defect

prediction model. The algorithms' increased accuracy and recall rates show how effective they are at finding and predicting software

defects. The importance of using state-of-the-art machine learning methods to the task of defect prediction is emphasised. Using techniques

such as Naive Bayes, Boosting, and Grid Search can significantly increase the model's effectiveness. These methods have improved

software development processes by accelerating and better isolating bugs.

Keywords: effective, methods, Boosting, accelerating, isolating

1 Introduction

Identification during development: During the software

production process, software defects are identified by

developers and testers. This can happen during various

stages such as coding, integration, or system testing.

Defects are typically logged and tracked in a bug-tracking

system. Software defects can significantly impact the

productivity of the development team. Fixing defects

requires additional time and effort, diverting resources

from other tasks. It can lead to delays in the software

production timeline and increased costs. Quality

assurance: Software defects affect the quality of the

software. They can cause malfunctions, crashes, or

incorrect behavior, resulting in poor user experience.

Quality of the application of modern machine learning

methods such as Nave Bayes, Boosting, and Grid Search

aided in the improvement of the software fault prediction

model. y assurance activities, such as testing and

debugging, are performed to identify and rectify these

defects. Maintenance and support: After the software is

released, defects reported by users need to be addressed

through maintenance and support activities. This involves

investigating the reported issues, diagnosing the

underlying cause, and providing bug fixes or patches.

Software defects can consume a significant portion of the

maintenance efforts.

Customer satisfaction and reputation: Software defects

impact customer satisfaction and the reputation of the

software product and its development company. Frequent

defects can lead to frustration among users and tarnish the

image of the software. Conversely, a software product

with fewer defects is more likely to gain positive feedback

and maintain a good reputation. Identifying and fixing

software defects is part of an iterative improvement

process. Feedback from defect reports helps developers

enhance their understanding of the software, leading to

improved designs, better code quality, and more robust

development practices.

To mitigate the impact of software defects, software

development teams employ various strategies such as

code reviews, automated testing, continuous integration,

and quality assurance processes. The proposed study

suggests a machine learning paradigm that aims to

identify and rectify defects early in the software

production cycle, reducing their impact on productivity,

quality, and customer satisfaction.

In order to build a successful software system, it is

necessary to draw on a wide range of resources, each with

their own unique set of skills, knowledge, and expertise.

The software development tasks are intricate. Assigning

software development team members to certain projects

and tasks is a critical element of every project manager's

1Research Scholar, Department of CSE, Koneru Lakshmaiah

Education Foundation, Hyderabad-500075, Telangana, India.

mamatha.racharla@gmail.com

2Professor, Department of CSE, Koneru Lakshmaiah Education

Foundation, Hyderabad-500075, Telangana, India.

vlalithanagesh@gmail.com

3Professor, Department of CSE, G. Narayanamma Institute of

Technology & Science, Hyderabad, Telangana, India.

sharada@gnits.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 676–684 | 677

job. The best time for delivering a project depends on the

manager taking into account the available skill sets, the

interdependencies across activities, and the constraints on

available resources [1-4]. It has been managed in a

number of formats using a variety of optimisation

strategies with the goal of reducing total project duration

[3,5,7]. Allocation decisions made using these techniques

frequently factor in time and resource constraints. Instead,

the NP-Completeness of the allocation problem is

typically dealt with by employing the strategy of

traversing the optimisation space [3]. Managers of

projects have the option of using the automated SSSP

(Single Source Shortest Path) technique to streamline the

allocation process, which may be tailored to account for a

wide variety of project and resource variables.

Machine Learning (ML) techniques are employed in

Software Defect Prediction (SDP) to identify software

modules or components that are susceptible to failure.

The objective of SDP is to assist software developers in

efficiently allocating their resources for software testing

and maintenance, by prioritising the focus on potentially

flawed modules or components prior to the software's

release [21–24]. SDP models are constructed using

software characteristics such as software development

history, source code complexity, software cohesiveness,

and coupling. The software qualities mentioned are

quantified statistically to assess the quality and reliability

of software systems.

Machine learning techniques that take advantage of

software's features are used to build SDP models. Models

of SDPs have been built using supervised and

unsupervised machine learning techniques. It's the triple-

digits: 31-32-33. The major objective is to create precise

and accurate SDP models for foreseeing software issues.

The quality of the software metric datasets used to create

SDP models is crucial to the success of the models. The

predictive ability of SDP models is highly sensitive to the

software characteristics used in their construction [25, 26,

27, 28]. There may be a class imbalance problem because

SDP models' software properties are often complex and

involved. If there is a disproportionate number of faulty

cases compared to non-defective ones, then the SDP has a

class imbalance. The SDP model loses some of its

predictive power when there is a significant income gap

between participants in the programme. [34, 35].

A small group of developers completing the greatest

number of tasks (a bug, feature request, or task) in a

quantifiable manner may have impacts depending on both

how successfully the bug-fixing technique is completed

and how many bugs can be solved in a specific length of

time. When there are hundreds or even thousands of

defects in a repository, assigning team members to

problems becomes a major burden. It is much more

important to allocate the most capable developers to the

appropriate tasks through smart resource allocation. The

majority of bug triage techniques [17] rely on text

categorization. These methods, however, are plagued by

poor bug reporting, which might cause the triage process

to assign bugs to the incorrect developers [19], [20]. Low

recall levels are another issue with these methods [17],

[18]. In this study, the primary factor used to determine

how jobs are assigned is the project bug.

This study introduces a new framework for Software

Defect Prediction (SDP) that uses ensemble methods

(specifically Boosting) to enhance the prediction

performance of SDP models. The framework utilizes the

cat boost (CB) and XGboost (XB) algorithms as

classifiers, applied to pre-processed datasets consisting of

616 instances. The evaluation of the proposed techniques

is conducted using metrics such as accuracy, Area Under

Curve (AUC)) Region of Coverage (ROC), and Precision

Recall analysis (PR curve). This study's key contribution

is empirical validation of the effect of the homogeneous

ensemble on the prediction performance of SDP models.

The paper is divided into sections, as described below:

Section 2 provides a comprehensive analysis of pertinent

literature, with a specific focus on the issue of high

dimensionality in SDP. Section 3 elucidates the research

methodology employed in the study. Section 4 presents

and illustrates experimental findings and analyses.

Section 5 serves as the final conclusion of the research..

2 Related Work

The predictive power of Software Defect Prediction

(SDP) models has been shown to suffer when a class

imbalance problem is present. Overfitting and a lack of

confidence in SDP models are common results of class

imbalance. Scholars have proposed a number of

approaches, including ensemble methods, data sampling,

and cost-sensitive analysis, to address this issue.

Singh, Misra, and Sharma [9] examined the effectiveness

of ensemble methods, including voting and Bagging, for

predicting the severity of issues in order to rectify the class

imbalance present in the bug dataset. Ensemble

approaches performed better than individual classifiers,

indicating that this group's methodology may effectively

resolve class imbalance.

El-Shorbagy, El-Gammal, and Abdelmoez [10] used a

heterogeneous ensemble technique called stacking with

the SMOTE (Synthetic Minority Over-sampling

Technique) algorithm. The goal was to combine the

efficiency of different base classifiers to take use of the

benefits of dealing with minority class labels. In terms of

accurately classifying the minority group, their new

method surpassed prior approaches. The stacking

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 676–684 | 678

ensemble method requires a large number of permutations

of simple classifiers, which can be laborious and time-

consuming.

Balogun, Basri, Abdulkadir, Adeyemo, Imam, and Bajeh

[5] conducted an empirical study to assess the

predictability of SDP models using data sampling

techniques. The researchers examined the use of under-

sampling (Random Under-Sampling: RUS) and over-

sampling (SMOTE) methodologies across different

imbalance ratios. Experimental results indicate that the

presence of a class imbalance in SDP datasets has a

substantial influence on the prediction performance of

SDP models. In addition, they suggested employing the

SMOTE technique as a solution to the problem of class

imbalance in SDP. These findings align with the results

obtained by Yu, Jiang, and Zhang. [3].

Laradji, Alshayeb, and Ghouti [13] conducted a study to

examine the application of feature selection in

combination with ensemble approaches for SDP. Their

objective was to utilise ensemble approaches to tackle the

issue of class imbalance and eradicate feature redundancy

through the use of feature selection algorithms. Laradji,

Alshayeb, and Ghouti [13] found that incorporating

feature selection with ensemble approaches improved the

accuracy of SDP model prediction. The models improved

their performance by meticulously choosing pertinent

traits and minimising feature duplication.

The results show that class imbalance has a significant

impact on SDP models' ability to predict outcomes.

Experts have stressed the significance of addressing this

issue by employing an appropriate mixture of data

collection methods, classifiers, and ensemble approaches.

Based on their empirical research, Song, Guo, and

Shepperd [15] concluded that class imbalance reduces the

predictive accuracy of SDP models. The right

combination of data sampling methods and classifiers was

also stressed as crucial for maximising predicted

accuracy.

To emphasise the critical relevance of adopting data

sampling methods, Goel, Sharma, Khatri, and Damodaran

[3] all agreed that the class imbalance problem in SDP can

be effectively solved by implementing an appropriate data

sample methodology. After analysing the prediction

performance of seven different boosting ensemble

methods, Malhotra and Jain [14] concluded that data

sampling methods should be employed prior to using the

boosting ensemble methodology.

Several methods for resolving class differences in SDP

were compared by Wang and Yao [35]. They discovered

that ensemble strategies outperformed data sampling and

cost-sensitive approaches. The findings of Rodriguez,

Herraiz, Harrison, Dolado, and Riquelme [7] reinforce

this finding, showing that the combination of different

approaches can yield better results than the use of any of

them alone.

To identify critical source code metrics for defect

detection, Kumar, Misra, and Rath [36] used correlation

analysis and multivariate linear regression feature

selection. After that, neural networks and ensemble

methods were used to train the datasets. The results of

their study demonstrated the usefulness of ensemble

methods for Semantic Dependency Parsing (SDP),

particularly when combined with feature selection

procedures.

This research proposes a strategy for improving the

accuracy of SDP model prediction by integrating data

sampling with homogeneous ensemble methods (Bagging

and Boosting), specifically to deal with the problem of

class imbalance.

3 Methodology

3.1Classification Algorithm

The primary prediction models utilised in this study

consist of the Support Vector Machine (SVM) and

Random Forest (RF) algorithms. These algorithms have

been commonly employed in SDP experiments and have

consistently shown excellent predictive capabilities.

Furthermore, they have been demonstrated to exhibit

stability while handling datasets that are skewed [3, 5].

3.2Homogeneous Ensemble Methods

The boosting ensemble approach is a methodology that

trains a sequence of weak classifiers progressively on re-

weighted training data. Each weak classifier is trained to

concentrate on examples misclassified by the prior

classifiers. The boosting ensemble makes its final

judgment by combining the predictions of all weak

hypotheses using a majority voting procedure [17].

Boosting utilises weighted averages to enhance the

effectiveness of weak classifiers. During each iteration,

the weights assigned to the training samples are adjusted,

prioritising the misclassified data by increasing their

significance. Boosting aims to enhance the overall

performance of the ensemble by giving more emphasis on

incorrectly identified samples.

Furthermore, boosting also incorporates a feature

selection mechanism. Each weak classifier in the boosting

process decides which features or attributes are most

informative for the next iteration. This iterative feature

selection process helps the boosting ensemble to focus on

the most relevant features and improve the prediction

performance.

Overall, boosting ensemble combines the predictions of

multiple weak classifiers by assigning weights to their

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 676–684 | 679

outputs and using a majority voting mechanism. Through

the iterative training process and feature selection,

boosting goals to augment the performance of the

ensemble and create a stronger overall classifier.

3.3 Dataset of Software Defects

In this section, the software defect dataset used in the

study is discussed.

CM Dataset:

CM is a software defect prediction dataset developed by

NASA, utilizing the NASA Metrics Data Program (MDP).

It specifically targets a spacecraft instrument developed

by NASA, which is executed in the C programming

language. The dataset includes features extracted from

Halstead metrics, which provide insights into the

characteristics of the source code at the segment, function,

or method level. These metrics serve as valuable

indicators for predicting software defects in the CM1

dataset.

KC1 Dataset:

The KC dataset is a software defect prediction dataset

created by NASA, utilizing the NASA Metrics Data

Program (MDP). It specifically targets a storage

management project developed by NASA, which involves

receiving and processing ground data. The project is

implemented in the C++ programming language. The

dataset includes features derived from Halstead metrics,

which provide valuable information about the complexity

and characteristics of the code. These metrics are utilized

to build models for predicting software defects in the KC1

dataset.

KC2 Dataset:

The KC dataset is a software defect prediction dataset

created by NASA, utilizing the NASA Metrics Data

Program (MDP). It specifically focuses on the science

data processing portion of the KC1 project, which is

another project developed by NASA. The code in KC2 is

written in the C++ programming language and

incorporates third-party software libraries in addition to

the code from KC1. The dataset consists of 522 instances,

and the data is derived from Halstead metrics extracted

from the source code. These metrics provide valuable

insights into the complexity and characteristics of the

code, enabling the development of software defect

prediction models using the KC2 dataset.

PC Dataset:

NASA generated the PC dataset to anticipate software

defects using the NASA Metrics Data Program (MDP). It

focuses on flight software made for an earth-orbiting

satellite; a vital component developed by NASA. The

software is implemented in the C programming language.

The PC1 dataset consists of data derived from Halstead

metrics, which provide valuable insights into the

complexity and characteristics of the source code. These

parameters are used to develop models for predicting

software defects in the PC1 dataset, with the aim of

enhancing the reliability and performance of the flight

software.

3.4 Algorithms used:

Catboost: In classification tasks, CatBoost employs a

default encoding technique for categorical variables that

have a set of distinct values exceeding the minimum size

required for one-hot encoding. This encoding technique is

utilized to transform categorical features into numerical

features, facilitating their effective use in the classification

models built by CatBoost.

XGBoost: XGBoost uses gradient descent on decision

trees to build a series of models that are iteratively

integrated, with each successive model fixing the errors of

the preceding ones. This iterative approach allows

XGBoost to generate a final optimal model for the given

task. Notably, XGBoost exhibits remarkable efficiency in

terms of computational resource utilization and

processing speed. It efficiently utilizes available resources

while providing fast and effective model training and

prediction capabilities. This efficiency makes XGBoost a

popular choice for various applications where processing

large datasets or real-time predictions are critical

considerations.

To expedite the model training process, we employ GPUs

for both XGBoost and CatBoost algorithms. Leveraging

GPUs significantly accelerates the training time, enabling

us to complete our experiments within a practical

timeframe. Specifically, for XGBoost, we found that

explicitly setting the learning rate to 0.1 and constraining

the maximum depth of its constituent decision trees to 6

were necessary to achieve reasonable training times.

These parameter settings strike a balance between model

complexity and training efficiency, ensuring that the

training process is efficient without compromising the

model's performance. The use of GPUs and the carefully

selected parameter settings allow us to conduct our

experiments effectively and obtain meaningful results in a

feasible amount of time.

3.5 Performance Assessment Metrics in the Context of

software defect prediction:

 performance assessment metrics include:

True Positive (TP): The model correctly predicts a

software problem.

True Negative (TN): The model accurately predicts a non-

defective occurrence.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 676–684 | 680

False Positive (FP): A false alarm occurs when the model

predicts a software defect that does not exist.

False Negative (FN): When there is a software defect, the

model fails to predict it (missed detection).

These assessment measures have been widely used and

proved to be reliable in SDP studies [3,13,19].

Accuracy: Calculates the proportion of correctly classified

cases (TP and TN) to the total number of examples to

determine the overall correctness of the model's

predictions.

Precision is the ratio of correctly predicted faults (TP) to

the total number of instances predicted as defects (TP +

FP). It represents the model's ability to predict defects.

The proportion of accurately anticipated defects (TP) to

the total number of actual defects (TP + FN) is referred to

as recall. It represents the model's ability to discover

problems.

F1 rating: The harmonic mean of precision (the model's

accuracy in predicting flaws) and recall (the model's

ability to recognize problems) is used to calculate the F1

score. This balanced measure takes precision and recall

into account, making it particularly useful when there is a

class imbalance or when both false positives and false

negatives occur.

AUC-ROC (Area Under the Receiver Operating

Characteristic Curve): This metric measures the model's

ability to distinguish between defective and non-defective

cases at different probability levels. A higher AUC-ROC

value indicates better prediction performance.

4 Experimental Framework

In order to evaluate the performance of the suggested

approach to SDP, the following methods were

incorporated into the experimental framework of this

research:

Dataset Selection: The dataset was chosen from the

NASA MDP Promise repository. The specific dataset was

selected based on its size and relevance to the study.

Classifier Selection: SVM, Random Forest, Logical

regression, and Neural network classifiers were selected

based on their widespread use in SDP studies and their

potential to handle the dataset effectively and compared

with ensembled machine learning algorithms like EDA,

Boosting, Cat boost, XGBoost.

Evaluation Metrics: The performance of each classifier

was assessed based on parameters such as precision,

recall, and accuracy. These metrics offer insights into the

classifier's accuracy in correctly identifying instances and

its overall performance on the dataset.

Result Analysis: After evaluating the classifiers, the

results were analysed to regulate the strengths and

weaknesses of each algorithm. The researchers examined

the precision, recall, and accuracy values of each classifier

to understand their performance on the specific dataset.

Algorithm Suitability: Based on the results, conclusions

regarding the suitability of each algorithm for different

types of datasets is given. Factors such as the classifier's

accuracy, precision, recall, and overall performance are

considered to identify which algorithm performed best for

the given dataset.

Figure 1 illustrates the framework for predicting software

defects.

Fig.1: Outline for software defect prediction

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 676–684 | 681

5 Results

Popular methods such as SVM, Random Forest, Logistic

Regression, and Neural Networks were chosen to assess

the effectiveness of different classifiers in SDP studies.

These classifiers were selected due to their prevalent use

in the field and their potential to effectively handle the

dataset.

Ensemble machine learning algorithms were adopted to

improve the model's performance even further. Ensemble

methods like such as EDA, Boosting, CatBoost, and

XGBoost combine multiple individual models to create a

more powerful predictive model. Upon applying the

ensemble algorithm to the dataset, significant

improvements in the performance of the models are

observed. The ensemble techniques allowed us to pull the

strengths of each individual classifier, leading to enhanced

accuracy and predictive power. By combining the

predictions from multiple models, bias, variance, and

overfitting were able to reduced resulting in more robust

and reliable predictions.

Overall, incorporating ensemble algorithms alongside the

chosen classifiers proved to be a beneficial technique for

the SDP study. This approach not only expanded the range

of techniques used but also significantly improved the

performance of the models, enabling to achieve more

accurate and reliable results for the given dataset.

The graph below depicts A classification model's

performance across all classification thresholds. This

graph illustrates two parameters: the True Positive Rate

and the False Positive Rate. The percentage of false

positives. Figures 5.1 and 5.2 show that the model has

strong discriminatory power and distinguishes between

positive and negative events across various classification

levels. The lift curve, depicted in Fig 5.3, is a graphical

depiction that aids in determining the effectiveness of a

binary classification model for targeting positive cases.

Finally, Figure 5.4 depicts the overall performance of the

binary classification model in terms of precision and

recall.

Fig 5.1: Convex ROC Curves for the models

Fig 5.2: ROC Curve Analysis for the models

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 676–684 | 682

Fig 5.3: Lift Curves

Fig 5.4: Precession recall

6 Conclusion

This article shows an SDP method that has been tested in

the real world using the uniform ensemble (Bagging and

Boosting). It was shown in the research that the method

can improve prediction performance while also making

the base classifiers better at prediction. This study will

look into SDP methods further to improve ensemble

parameters and the level of data sampling..

References:

[1] Tsai, H.-T., H. Moskowitz, and L.-H. Lee, Human

resource selection for software development projects

using Taguchi’s parameter design. European Journal

of Operational Research, 2003. 151(1): p. 167-180.

[2] Di Penta, M., M. Harman, and G. Antoniol, The use

of search‐based optimization techniques to schedule

and staff software projects: an approach and an

empirical study. Software: Practice and Experience,

2011. 41(5): p. 495-519.

[3] Goel, L., Sharma, M., Khatri, S.K., Damodaran, D.:

Implementation of data sampling in class imbalance

learning for cross project defect prediction: an

empirical study. In: 2018 Fifth International

Symposium on Innovation in Information and

Communication Technology (ISIICT), pp. 1–6.

IEEE (2018)

[4] Peixoto, D.C., G.R. Mateus, and R.F. Resende. The

Issues of Solving Staffing and Scheduling Problems

in Software Development Projects. in Computer

Software and Applications Conference

(COMPSAC), 2014 IEEE 38th Annual. 2014. IEEE.

[5] Balogun, A.O., Basri, S., Abdulkadir, S.J.,

Adeyemo, V.E., Imam, A.A., Bajeh, A.O.: Software

defect prediction: analysis of class imbalance and

performance stability. J. Eng. Sci. Technol. 14,

3294–3308 (2019)

[6] Alba, E. and J.F. Chicano, Software project

management with GAs. Information Sciences, 2007.

177(11): p. 2380- 2401.

[7] Rodriguez, D., Herraiz, I., Harrison, R., Dolado, J.,

Riquelme, J.C.: Preliminary comparison of

techniques for dealing with imbalance in software

defect prediction. In: Proceedings of the 18th

International Conference on Evaluation and

Assessment in Software Engineering, pp. 1–10

(2014)

[8] Uddin, J., Ghazali, R., Deris, M.M., Naseem, R.,

Shah, H.: A survey on bug prioritization. Artif Intell

Rev 47(2), 145–180 (2017). DOI 10.1007/s10462-

016-9478-6. URL http://link.springer.

com/10.1007/s10462-016-9478-6

[9] Singh, V., Misra, S., Sharma, M.: Bug severity

assessment in cross-project context and identifying

training candidates. J. Inf. Knowl. Manag. 16,

1750005 (2017)

[10] El-Shorbagy, S.A., El-Gammal, W.M., Abdelmoez,

W.M.: Using SMOTE and heterogeneous stacking in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 676–684 | 683

ensemble learning for software defect prediction. In:

Proceedings of the 7th International Conference on

Software and Information Engineering, pp. 44–47

(2018)

[11] Ferrucci, F., M. Harman, and F. Sarro, Search-Based

Software Project Management, in Software Project

Management in a Changing World, G. Ruhe and C.

Wohlin, Editors. 2014, Springer Berlin Heidelberg.

p. 373-399.

[12] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo,

“Automatic bug triage using semi-supervised text

classification,” in Proc. Intl. Conf. Software

Engineering & Knowledge Engineering (SEKE 10),

2010, pp. 209–214.

[13] Laradji, I.H., Alshayeb, M., Ghouti, L.: Software

defect prediction using ensemble learning on

selected features. Inf. Softw. Technol. 58, 388–402

(2015)

[14] Singh, V., Misra, S., Sharma, M.: Bug severity

assessment in cross-project context and identifying

training candidates. J. Inf. Knowl. Manag. 16,

1750005 (2017)

[15] Song, Q., Guo, Y., Shepperd, M.: A comprehensive

investigation of the role of imbalanced learning for

software defect prediction. IEEE Trans. Softw. Eng.

45, 1253–1269 (2018).

[16] A. Tamrawi, T. Nguyen, J. Al-Kofahi, and T.

Nguyen, “Fuzzy set and cache-based approach for

bug triaging,” in Proceedings of the 19th ACM

SIGSOFT symposium and the 13th European

conference on Foundations of software engineering.

ACM, 2011, pp. 365–375.

[17] Sun, B., Chen, S., Wang, J., Chen, H.: A robust

multi-class AdaBoost algorithm for mislabeled noisy

data. Knowl.-Based Syst. 102, 87–102 (2016) [18] J.

Anvik, “Automating bug report assignment,” in

Proceedings of the 28th international conference on

Software engineering. ACM, 2006, pp. 937–940.

[18] Yang, X., Lo, D., Xia, X., Sun, J.: TLEL: a two-layer

ensemble learning approach for justin-time defect

prediction. Inf. Softw. Technol. 87, 206–220 (2017)

[19] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R.

Premraj, and T. Zim- ¨ mermann, “What makes a

good bug report?” in Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations

of software engineering. ACM, 2008, pp. 308–318.

[20] Goel, L., Sharma, M., Khatri, S.K., Damodaran, D.:

Implementation of data sampling in class imbalance

learning for cross project defect prediction: an

empirical study. In: 2018 Fifth International

Symposium on Innovation in Information and

Communication Technology (ISIICT), pp. 1–6.

IEEE (2018)

[21] Hamdy, A., El-Laithy, A.: SMOTE and Feature

Selection for More Effective Bug Severity

Prediction. Int. J. Softw. Eng. Knowl. Eng. 29, 897–

919 (2019)

[22] Iqbal, A., Aftab, S.: A classification framework for

software defect prediction using multifilter feature

selection technique and MLP. Int. J. Mod. Educ.

Comput. Sci. 12(1), 18–25 (2020).

https://doi.org/10.5815/ijmecs.2020.01.03

[23] Chang, C.K., M.J. Christensen, and T. Zhang,

Genetic algorithms for project management. Annals

of Software Engineering, 2001. 11(1): p. 107-139.

[24] Izadi, M., Ganji, S., Heydarnoori, A., Gousios, G.:

Topic recommendation for software repositories

using multi-label classification algorithms (2020)

[25] Ghotra, B., McIntosh, S., Hassan, A.E.: A large-

scale study of the impact of feature selection

techniques on defect classification models. In: 2017

IEEE/ACM 14th International Conference on

Mining Software Repositories (MSR), pp. 146–157.

IEEE (2017)

[26] Xu, Z., Liu, J., Yang, Z., An, G., Jia, X.: The impact

of feature selection on defect prediction

performance: an empirical comparison. In: 2016

IEEE 27th International Symposium on Software

Reliability Engineering (ISSRE), pp. 309–320. IEEE

(2016)

[27] Gupta, A., Suri, B., Misra, S.: A systematic literature

review: code bad smells in java source code. In:

Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol.

10408, pp. 665–682. Springer, Cham (2017).

https://doi.org/10.1007/978-3-319-62404-4_49

[28] J. Anvik, L. Hiew, and G. Murphy, “Who should fix

this bug?” in Proceedings of the 28th international

conference on Software engineering. ACM, 2006,

pp. 361–370.

[29] D. Cubrani ˇ c and G. C. Murphy, “Automatic bug

triage using text categorization,” in In SEKE 2004:

Proceedings of the Sixteenth International

Conference on Software Engineering. Citeseer,

2004, pp. 92–97.

[30] Balogun, A., Oladele, R., Mojeed, H., Amin-

Balogun, B., Adeyemo, V.E., Aro, T.O.:

Performance analysis of selected clustering

techniques for software defects prediction. Afr. J.

Comput. ICT 12, 30–42 (2019)

[31] Ghotra, B., McIntosh, S., Hassan, A.E.: A large-

scale study of the impact of feature selection

techniques on defect classification models. In: 2017

IEEE/ACM 14th International Conference on

Mining Software Repositories (MSR), pp. 146–157.

IEEE (2017)

[32] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R.

Premraj, and T. Zim- ¨ mermann, “What makes a

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 676–684 | 684

good bug report?” in Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations

of software engineering. ACM, 2008, pp. 308–318.

[33] J.-W. Park, M.-W. Lee, J. Kim, S. won Hwang, and

S. Kim, “Costriage: A cost-aware triage algorithm

for bug reporting systems.” in AAAI, W. Burgard

and D. Roth, Eds. AAAI Press, 2011.

[34] El-Shorbagy, S.A., El-Gammal, W.M., Abdelmoez,

W.M.: Using SMOTE and heterogeneous stacking in

ensemble learning for software defect prediction. In:

Proceedings of the 7th International Conference on

Software and Information Engineering, pp. 44–47

(2018)

[35] Kumar, L., Misra, S., Rath, S.K.: An empirical

analysis of the effectiveness of software metrics and

fault prediction model for identifying faulty classes.

Comput. Stand. Interfaces 53, 1–32 (2017)

[36] Ms. Nora Zilam Runera. (2014). Performance

Analysis On Knowledge Management System on

Project Management. International Journal of New

Practices in Management and Engineering, 3(02), 08

- 13. Retrieved from

http://ijnpme.org/index.php/IJNPME/article/view/2

8

[37] Ghazaly, N. M. . (2020). Secure Internet of Things

Environment Based Blockchain Analysis. Research

Journal of Computer Systems and Engineering, 1(2),

26:30. Retrieved from

https://technicaljournals.org/RJCSE/index.php/jour

nal/article/view/8

