

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 128–137 | 128

The Study of Software Engineering for Development and Maintenance

of Software Systems

Elturabi Osman Ahmed

Submitted: 10/10/2023 Revised: 29/11/2023 Accepted: 10/12/2023

Abstract: In the realm of software engineering either software defect identification has grown in importance as a research avenue to

improve software reliability. Program dependability is improved by optimizing testing resources and helping developers discover possible

issues with the use of program defect predictions. It is essential to apply Software Engineering (SE) procedures to crucial and complex

systems, such as networking and security systems. Security attackers are drawn to WSNs (Wireless Sensor Networks) due to their

widespread use in army as well as civilian networks.. Maintenance effort has been found to increase significantly as a result of this

deterioration impact, also known as the porosity effect. Errors in the way software requirements are processed are a major cause of software

project failure. In order to determine the degree to which a software requirements engineer's capabilities align with industry expectations,

this work suggests an empirical software engineering-based method for evaluating such skills. From that point forward, we make an

evaluation approach in view of fuzzier TOPSIS that can deal with the subjectivity and fluffiness remembered for maintainability appraisals.

An Industry 5.0 programming improvement business contextual investigation outlines the appropriateness and adequacy of our proposed

philosophy. The contextual analysis results feature the maintainability benefits and inconveniences of various programming draws near.

The review's decisions give computer programming leader’s significant data that will assist them with pursuing very much educated choices

on manageability.

Keywords: Fuzzy TOPSIS, Software Engineering (SE), Security Attackers, Software Development, Wireless Sensor Networks (WSNs).

1. Introduction

Engineering-related literature many factors impact how

cost-effective maintenance activities are. The quality of the

code is one of the main cost factors. Upkeep methods have

been found to antagonistically affect the nature of the code.

It has been found that upkeep systems make code more

"tumultuous" generally speaking, increment coupling,

decline seclusion, and make a void between the real code

and documentation. Thus, support methodology normally

brings about inflating costs over the long run [1]. The

writing on exclusive programming gives an exhaustive

investigation of this a compromise among execution and

cost.

Entropy is a broadly utilized variable to gauge the general

decay of program quality. Entropy is an intense hypothetical

variable that consolidates a few features of value

disintegration to work with the assessment of their general

effect on the expenses and practicality of a product

application. Entropy is normally described according to a

working point of view utilizing the underlying parts of code,

including shared objects, coupling, seclusion, and technique

calls between classes [2]. Most examinations in the field

focus on what entropy means for specialized viability, with

little consideration paid to what entropy means for costs.

Research contributions do, however, agree on the causal

chain between entropy, durability, and expenses for

maintenance.

Following quite a while of huge change, the programming

business is proceeding to develop with the send-off of

Industry 5.0. The most recent modern insurgency is

portrayed by the intermingling of advanced and actual

frameworks, man-made consciousness, and huge

information examination. This presents programming

techniques with exceptional open doors as well as

difficulties. In a consistently impacting world,

maintainability has arisen as a critical element that requests

assessment and consideration. With regards to Industry 5.0,

evaluating the maintainability of strategies for programming

is basic as organizations endeavour to coordinate their tasks

with harmless to the ecosystem targets [3]. Maintainability

in programming connects with various components, like

social, monetary, and ecological worries.

It includes encouraging long-term economic viability,

maximizing resource utilization, reducing carbon

emissions, and advancing moral values. However, assessing

sustainability is a challenging task because it involves

several interconnected criteria and subjective judgments.

Since standard evaluation procedures often fail to capture

the inherent uncertainties and imprecisions associated with

viability assessments, more sophisticated methodologies are

needed [4].

*1 Assistant Professor, Department of CS & IT, Al-Baha University,

Al-Baha, Kingdom of Saudi Arabia.

Corresponding Author: turturtur2002@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 128–137 | 129

The Ministry of Commerce and Information Technology's

Operation Inspection Coordination Bureau released the

"2020 Applications and Computing Service Industry

Scientific Bulletin," which states that the industry employs

7.047 million people, a 3.1% increase from the previous

year, and that there are over 40,000 businesses in the

software and IT services sector that are larger than the

designated size. One essential component of software

engineering is Software Requirements Engineering (SRE)

[5]. Users and developers of software have to agree upon

software requirements, which must also be clearly and

properly stated. Additionally, this validates the

qualifications of the software requirements engineers.

Utilizing verifiable imperfection information to prepare

model boundaries and produce a deep rooted model is the

objective of programming deformity gauging innovation

headways [6]. From that point onward, this model is used to

expect programming that is obscure. Since the amount of

programming bugs can be anticipated, programming

evaluation assets are focused on the product modules with

the best number of imperfections, working with the fastest

critical thinking.

Research projects in the field of software development have

discovered that requirements activities are frequently the

source of software system faults and shortcomings. The

emergence and ongoing advancement of SRE can be

attributed to the necessity of using scientific methods to

solve these issues. In university SRE courses, instructors

direct students' knowledge and skill development according

to the program of study and textbooks; most training

materials are predicated on the general notion of mental

laws in the world of academia [7]. Thus, when it comes to

the role position and skill needs of requirement engineers in

IT markets, practitioners in adjacent businesses and

educators in schools have distinct cognitive differences.

Due to the difference, students are unable to graduate from

the course and achieve the level requirements set by the

market for real work.

When creating software systems, particularly large-scale

systems, software engineer (SE) is a crucial discipline. SE

is interested in every step of the software manufacturing

process. This methodical methodology is referred to as

"software analysis, design assessment, execution,

evaluation, maintenance, and reengineering" [8]. Thus, it is

evident that designing software is a crucial aspect of

problem-solving. Control over software functionality,

quality, and resources is ensured by SE. As a result, it

guarantees both demand satisfaction and full software

development [9].

Systems that operate over wireless networks have raised

very serious security concerns. Recent years have seen

developments in digital electronics, wireless

communications, and micro-electronic systems technology

that have made it possible to create Wireless Sensor

Networks (WSNs) [10]. Hundreds to thousands of

wirelessly connected sensor nodes make up the self-

organizing network known as a WSN. These wireless

sensors come in a compact design, are inexpensive, low-

power, multifunctional, and have short communication

ranges. The sensor nodes possess the ability to sense, gather,

process, and communicate in an independent way [11].

Fluffy TOPSIS was chosen as the strategy for examination

in our exploration on the grounds that to its clear advantages

in taking care of the difficulties related with maintainability

assessments in the programming the area of Industry 5.0.

Given the perplexing exchange of various supportability

viewpoints, fluffy TOPSIS permits us to characterize and

evaluate these elements such that conventional fresh

strategies like fluffy AHP wouldn't have the option to

adequately quantify [12]. Furthermore, fuzzy TOPSIS

offers a more thorough assessment since it automatically

considers the benefits and drawbacks of alternatives.

This attribute is critical in assessments of sustainability,

where potential disadvantages of software engineering

practices are as significant as benefits. Fuzzy TOPSIS is a

perfect tool for our research in the context of Industry 5.0,

when software engineering methods are getting more

sophisticated and interconnected. It is excellent at handling

the complex interactions between numerous criteria and

alternatives [13]. This choice is emphasized in our work to

demonstrate the openness and rationale behind the

technique selections. This study builds on existing research

and makes use of fuzzy TOPSIS's benefits to establish a

comprehensive and effective framework for evaluating

sustainable in the software engineering profession industry,

especially in the context of Industry 5.0.

Determine the significance of different software

requirements engineer abilities as required by the industry

using segmentation of words operations, then compare this

significance with the software requirements engineer

abilities [14]. It can help software requirements engineers

advance their skills. While some recent works simply

categorize requirement engineers' abilities as either

requirements engineering (RE) skilled ability or non-RE

ability, our research has two main findings: (1) it has divided

requirement engineers' abilities based on SRE activities,

enabling a quantitative analysis of their abilities; and (2) it

has proposed an ability evaluation technique for the

software requirements engineers [15].

1.1 Objectives of the study

• To provide people with the information and abilities

required for the successful and efficient creation of

high-quality software.

• To transfer expertise in project management

techniques and software development-related tools.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 128–137 | 130

• To educate people about the dynamic nature of

software creation, particularly the need to adapt to

changing requirements and technologies.

• Realizing that maintenance takes up a large percentage

of a software system's life cycle and stressing the

significance of making systems flexible and long-

lasting.

2. Related Work

In 2006 [16], the phrase "crowdsourcing" was first used to

refer to a newly developed distributed approach to problem-

solving including online labourers. It has been extensively

researched and used ever since to assist in software

engineering. We attempt to cover all of the literature on

crowdsourced in software engineering by providing an

extensive overview of the subject in this paper. After going

over several definitions of crowdsourcing, we define

crowdsourcing software engineering and create a taxonomy

for it. Next, we provide an overview of software engineering

industry crowdsourcing practices along with related case

examples. We also examine the crowdsourcing domains,

tasks, and applications in software engineering, as well as

the platforms and parties that are involved in implementing

solutions using crowdsourced software engineering.

The information technology industry [17] is very interested

in incorporating artificial intelligence (AI) capabilities into

services and software as a result of recent developments in

machine learning. Organizations have had to adapt their

development methods in order to achieve this goal. We

present the results of a study we carried out where we

watched Microsoft software teams as they created AI-based

products. We take into account a nine-step workflow

method that is based on past experiences creating data

science tools and AI apps (such search and natural language

processing). We discovered that different Microsoft teams

integrated this method of working into already-existing,

highly developed, Agile-like software engineering

techniques, offering valuable insights into a number of

critical engineering obstacles that enterprises may encounter

while developing extensive Artificial Intelligence (AI)

products for the market. To overcome these obstacles, we

gathered some Microsoft Teams best practices.

In an attempt to investigate [18] the connection between the

fields of software engineering and systems engineering,

experts from academia, business, and government convened

for a workshop to discuss the situation as it stands, recognize

areas of mutual reliance, identify pertinent issues, and make

suggestions for resolving those issues concerning four main

areas: 1) Development Approaches, 2) Technical, 3) People,

and 4) Education. The workshop discussions,

recommendations, and the suggested project's launch are

presented in this document.

Refactoring is the practice [19] used to enhance the design

of current code by making changes to its internal framework

without affecting its external behavior. It is one of the most

popular approaches for enhancing the overall performance

of existing software systems. Several other factors should

also be taken into account, such as minimizing the amount

of code changes, retaining the meaning of the design of the

software rather than just its behavior, and preserving

consistency with previously executed changes, even though

it is crucial to recommend changes that enhance both the

quality and the structure of the system. We present a multi-

objective search-based method in this paper to automate the

refactoring recommendation.

The application of Grounded Theories (GT) [20] has shown

to be highly beneficial in a number of disciplines, including

education, management theory, nursing, and medical

sociology. Nevertheless, GT is a sophisticated approach that

differs significantly from the conventional hypothetic-

deductive research model since it is founded on an inductive

paradigm. Some supposedly GT research experiences

method slurring, where investigators adopt a random subset

of GT techniques that are not identifiable as GT, because

there's at least three different kinds of GT. In the following

article, we outline the GT variations and pinpoint the

essential GT practices. Next, we examine how grounded

theory is applied in software engineering. 52 of the 98

publications that mention GT specifically state that they

utilize it, with the remaining 46 mentioning GT just in

passing. Our selection process was thorough and

methodical.

The importance of sound requirements engineering [21] in

ensuring better, on-time, and cost-effective software and

system project delivery is becoming more widely

acknowledged. Emerging software tools are enabling

working engineers to enhance their requirements

engineering practices. Without extensive instruction, these

tools are typically difficult to use. With a deliberate focus

on software-intensive systems, Requirements Engineers for

The software and Systems, which is Fourth Edition aims to

offer a thorough treatment of both the theoretical and the

practical aspects of finding, analysing, modelling, verifying

testing, and creating requirements for software and systems

of all kinds. For the benefit of working engineers, it

incorporates a range of formal approaches, social models,

and contemporary requirements writing strategies. Senior

and graduate students studying software or systems

engineering, as well as professional software engineers, are

the target audience for this book.

Today's world is dependent on the computer [22], which is

utilized extensively in a variety of sectors like business,

education, manufacturing, and so forth. When it comes to

helping solve lengthy, complicated issues quickly and

efficiently, computers save time. Many businesses create

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 128–137 | 131

software programs to make work easier for governments,

banks, offices, etc. since these functions require software

programs to handle them. Furthermore, software has been

utilized for problem-solving and information analysis for

more than 40 years. The primary objective of software

engineering is to create a suitable task to generate high-

quality applications. Typically, clients go to computer and

software experts for help in handling and solving their

issues. A variety of models are frequently employed in the

development of software applications.

Social machines' main goal [23] is to streamline social

interactions by utilizing computers to do administrative

tasks. A Socio Technical System (STS) is what we

understand a social machine to be: a software-supported

system where autonomous principals, like people and

organizations, interact to share data and services. Social

processes are only partially realized in interactions between

people due to the technical focus of existing methods to

social machines and their insufficient support for their

meanings. We argue that, in order to address the

transparency of the Web or the independence of its

administrators, a fundamental reconsideration is required in

order to embrace responsibility. To capture the social

foundation of STSs, we present Interaction-Oriented

Software Engineering (IOSE), a paradigm designed

specifically for this purpose.

Whereas systematic reviews concentrate [24] on acquiring

and synthesizing evidence, systematic maps studies are

employed to structure a study field. The 2008 guidelines are

the latest ones regarding systematic mapping. Numerous

recommendations on how to enhance Systematic Literature

Reviews (SLRs) have been offered since then. It's important

to assess how researchers carry out the systematic mapping

process and determine how the recommendations should be

revised in light of the knowledge gained from the systemic

maps and SLR regulations that are currently in place. To

ascertain the methods used in the systematic maps process

(such as search, study selection, data analysis, and

presentation); to identify areas for improvement in the

procedure's execution and update the guidelines

appropriately.

Since requirements engineering [25] has just recently

become popular in agile software development, there is still

much to learn and understand about this issue. Further

investigation is necessary for a full understanding how this

process functions in the agile world. This study aims to map

the requirements engineering field within an agile

environment, highlighting the primary research subjects and

highlighting areas in need of further investigation. It also

aims to pinpoint the challenges professionals have while

implementing agile requirements engineering. After a

thorough mapping investigation, 2171 papers were first

found; they were then further reduced to 104 by using

analysis and exclusion criteria.

3. Methodologies

3.1. A Hierarchical Framework for Assessment

The methodology used in the field of software engineering

to evaluate sustainability is described in this section. Two

subsections contain this part: the fluffy TOPSIS process and

the design of progressive system for assessment. In the first

place, the evaluation's various levelled structure gives a

system to sorting and orchestrating the assessment norms

expected to decide how economical programming

techniques are [26]. Since it considers a large number of

supportability related factors, this various levelled structure

empowers a full examination. Besides, the exhibition of a

few computer programming approaches regarding

economically is contrasted with one another utilizing the

fluffy TOPSIS strategy as a dynamic instrument. By

integrating multicriteria decision-making processes with

fuzzy set theory, the fuzzy TOPSIS method addresses

uncertainty and ambiguity in the assessment process.

With the use of these standards, methods for software

engineering will be thoroughly assessed and compared,

facilitating better decision-making and promoting the

adoption of environmentally friendly procedures across the

industry [27]. Following a literature review and discussions

with subject experts, a number of evaluation criteria are

listed in Table 1.

Table 1 Distinct Evaluation Criteria that have been

identified.

Criteria Description

Environmental

Impact (SC1)

This model surveys the natural

supportability of computer

programming processes. It considers

factors including energy use, fossil fuel

by-products, squander age, and the

usage of supportable assets.

Social

Responsibility

(SC2)

This criterion focuses mostly on the

ethical and societal implications of

software engineering approaches. It

considers factors including community

involvement, fair labour standards,

privacy and information security, and

inclusivity and diversity.

Resource Efficiency

(SC3)

This criterion evaluates the efficiency

with which resources are employed in

the software engineering procedures. It

considers topics like efficient use of

computational resources, optimal

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 128–137 | 132

resource allocation, and optimized

code and algorithms.

Economic Viability

(SC4)

This criterion examines the viability of

software engineering approaches in the

long run. Among the factors it

considers are long-term financial

viability, cost-effectiveness, and return

on investment.

3.2 Identification of Alternatives

Here, we outline the process for determining options while

accounting for emerging industry trends, technological

advancements, and characteristics unique to Industry 5.0.

Through the rigorous examination and analysis of all of

these alternatives, we hope to establish a comprehensive

evaluation framework that will assist software engineering

organizations in making informed decisions about

environmentally friendly methods in the rapidly evolving

Industry 5.0 environment [28]. Table 2 lists the several

options that were chosen for this study's assessment.

Table 2 Various alternatives were identified for the

assessment.

Alternatives

Descriptions

Agile Methodologies

(A1)

This substitute includes agile

approaches like Extreme

Programming (XP), Scrum, and

Kanban.

Cloud-Native

Development (A2)

This substitute symbolizes the

adoption of cloud-ready architectures

and technologies.

DevOps (A3)

This substitute represents the DevOps

methodology, which combines

software development and operations.

Traditional

Waterfall Model

(A4)

This alternative adheres to the

traditional sequential technique of

software development, meaning that

each phase (needs, design, computer

science, testing, and deployment) is

completed before moving on to the

next.

Sustainable

Software

Engineering

Practices (A5)

This choice is a group of techniques

selected for their focus on

sustainability.

The fuzzy TOPSIS technique flow diagram utilized in this

research study is displayed in Figure 1.

Fig. 1 Flow chart for the fuzzy TOPSIS method [28].

4. Results

Segment 4 presents the appraisal philosophy that uses the

fluffy TOPSIS strategy to break down supportable in the PC

computer programming area inside the system of Industry

5.0 [29]. This part tries to give a top to bottom examination

of the other option and their rankings to enlighten how well

each acts comparable to maintainability models. The results

obtained will be supplied, examined, and appreciated in

order to enhance comprehension of the benefits and

Start

Input Criteria

Nomination Matrix

Calculate Normalize Matrix

Normalize

Fuzzyfication Matrix

Normalize

Weight

Dan Ranking

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 128–137 | 133

drawbacks of each option and to direct decision-making

procedures about sustainable software engineering methods.

Step 1 Make a matrix of choices.

In this research investigation, the four criteria and five

options were ranked using the fuzzy TOPSIS approach.

Table 3 below lists the different criteria kinds and the

weights that go with them.

Table 3 Qualities of the standards [29].

S. No. Name Type Weight

1 SC1 + (0.268,0.236,0.237)

2 SC2 + (0.167,0.269,0.169)

3 SC3 + (0.591,0.267,0.212)

4 SC4 + (0,269,0.497,0.691)

The fuzzy scale used in the model is displayed in Table 4

below.

Table 4 Variable scale.

Code
Linguistic

Terms
L M U

1 Very low 1 1 3

2 Low 1 5 5

3 Medium 3 3 1

4 High 4 1 9

5 Very high 6 8 2

Fig. 2 Variable scale.

It is important to note that in cases where many experts took

part in the examination, the matrix in Table 5 below gives

the average ratings determined by all experts.

Table 5 Matrix of decisions.

Alternat

ive
SCI SC2 SC3 SC4

A1
(2.64,1.56,2.

26)

(4.89,5.64,2

.64)

(4.89,4.16,4

.39)

(6.31,7.16,5

.46)

A2
(4.45,2.64,2.

91)

(5.89,2.69,4

.69)

(5.69,8.69,5

.69)

(8.16,7.16,5

.36)

A3
(2.69,0.164,

1.46)

(5.69,8.97,2

.59)

(7.49,5.69,5

.64)

(5.64,4.26,5

.46)

A4
(2,41,8.69,4.

59)

(8.97,5.67,1

.34)

(8.49,5.69,0

.19)

(1.16,5.32,4

.65)

A5
(3.49,4.97,5.

59)

(8.69,2.64,2

.69)

(0.67,5.16,3

.46)

(5.16,5.36,6

.16)

 Step 2Make the choice matrix that has been normalized.

The following relation can be used to calculate the

normalised choice matrix while taking the positive and

negative ideal solutions into account:

𝑟 𝑖𝑗̃ = (
𝑎𝑖𝑗

𝐶𝑗
∗ ,

𝑏𝑖𝑗

𝐶𝑗
∗ ,

𝑐𝑖𝑗

𝐶𝑗
∗) ; 𝐶𝑗

∗ = 𝑚𝑎𝑥𝑖𝑎𝑖𝑗,𝑃𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑑𝑒𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ..1

𝑟 𝑖𝑗̃ = (
𝑎𝑗̅̅ ̅

𝐶𝑗
∗ ,

𝑎̅𝑗

𝐶𝑗
∗ ,

𝑎𝑗̅̅ ̅

𝐶𝑗
∗) ; 𝐶𝑗

∗ = 𝑚𝑎𝑥𝑖𝑎𝑖𝑗 ;𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑑𝑒𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ..2

Table 6 below shows the choice matrix that has been

normalized.

Table 6 A choice network that has been standardized.

Alterna

tive
SCI SC2 SC3 SC4

A1
(4.89,2.69,4.

69)

(4.89,5.64,

2.64)

(4.89,4.16,4.

39)

(6.31,7.164,

5.46)

A2
(8.49,5.69,0.

19)

(8.69,2.64,

2.69)

(5.69,8.97,2.

59)

(8.16,5.36,6.

16)

A3
(5.49,5.69,0.

191)

(5.69,2.64,

2.69)

(0.69,8.97,2.

59)

(6.16,5.36,6.

169)

A4
(2.49,5.69,5.

647)

(2.97,5.67,

1.34)

(5.89,2.69,4.

697)

(2.69,8.97,2.

59)

A5
(3.49,5.69,0.

19)

(3.69,2.54,

2.69)

(5.69,8.97,2.

59)

(3.16,5.36,6.

16)

Step 3 Create the choice matrix that is weighted and

normalized.

The accompanying recipe can be utilized to work out the

weighted standardized choice network by increasing the

0

2

4

6

8

10

0 1 2 3 4 5 6 7

M U

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 128–137 | 134

heaviness of every measure by the suitable standardized

fluffy choice framework.

𝑣̃ = 𝑟𝑖𝑗. 𝑤𝑖𝑗̃ ...3

Below is an illustration of the weighted normalized decision

matrix, Table 7.

Table 7 Making use of a normalized, weighted decision

matrix. [30].

Alternat

ive
SCI SC2 SC3 SC4

A1
(1.89,2.69,4

.69)

(6.89,5.64,2.

64)

(6.89,4.16,4

.39)

(6.31,7.16,5

.46)

A2
(9.49,5.69,0

.19)

(2.69,2.64,2.

691)

(9.69,8.97,2

.59)

(3.16,5.36,6

.16)

A3
(3.49,5.69,0

.19)

(6.69,2.64,2.

69)

(0.69,8.97,2

.59)

(9.16,5.36,6

.16)

A4
(5.49,5.69,5

.64)

(4.97,5.67,1.

34)

(6.89,2.69,4

.69)

(3.69,8.97,2

.59)

A5
(6.49,5.69,0

.19)

(9.69,2.54,2.

69)

(0.69,8.97,2

.59)

(1.16,5.36,6

.16)

For the other options, Fuzzy Positive Ideal Arrangement

(FPIS) and Fuzzy Negative Ideal Arrangement (FNIS) have

the accompanying definitions:

𝐴∗ = {𝑣1̃, 𝑣2̃, … . , 𝑣𝑛̃ , } =

{(
𝑚𝑎𝑥

𝑗 𝑣𝑖𝑗|𝑖 ∈ 𝐵) , ((
𝑚𝑎𝑥

𝑗 𝑣𝑖𝑗|𝑖 ∈ 𝐶))}

 4

𝐴− = {𝑣1̃, 𝑣2̃, … . , 𝑣𝑛̃ , } =

{(
𝑚𝑎𝑥

𝑗 𝑣𝑖𝑗|𝑖 ∈ 𝐵) , ((
𝑚𝑎𝑥

𝑗 𝑣𝑖𝑗|𝑖 ∈ 𝐶))}

 ... 5

The optimal solutions, both positive and negative, are

shown in Table 8 below.

Table 8 The optimal solutions, both positive and negative.

 Positive Ideal Negative Ideal

SC1 (0.467,2.491,0.169) (5.261,1.491,1.467)

SC2 (0.429,2.122,5.691) (2.491,0.691,2.167)

SC3 (2.649,2.469,2.469) (2.649,4.267,4.164)

SC4 (5.986,4.657,1.694) (5.694,2.658,1.168)

𝑆𝑖
∗ = ∑ 𝑑𝑛

𝑗=1 (𝑣1̃, 𝑣2̃)𝑖 = 1,2 … , 𝑚 …6

𝑆𝑖
− = ∑ 𝑑𝑛

𝑗=1 (𝑣1̃, 𝑣2̃)𝑖 = 1,2 … , 𝑚 …7

𝑔𝑎𝑝 𝑎𝑚𝑜𝑛𝑔𝑑𝑣(𝑀1,̃ 𝑀2,̃) = √
1

3
 [(𝑎1 − 𝑎2)2 + (𝑏1 −

𝑏2)2 + (𝑐1 − 𝐶2)2

 …8

Table 9 Distancing yourself from both ideal and bad

solutions.

Distance from the

idealized state

separation from the

negative Perfect

A1 0.134 0.197

A2 0.498 0.297

A3 0.167 0.597

A4 0.297 0.542

A5 0.929 0.691

Fig. 3 Distancing yourself from both ideal and bad

solutions.

The choices are positioned beneath in Table 10 as per their

closeness coefficient, with the most ideal choice being the

one that is generally like the fluffy positive ideal

arrangement and the uttermost away from the fluffy

negative ideal arrangement.

Table 10 Coefficient of Closeness.

 Ci Rank

A1 0.492 1

A2 0.264 3

A3 0.149 4

A4 0.865 2

A5 0.897 5

0

0.2

0.4

0.6

0.8

1

A1 A2 A3 A4 A5

Distance from the idealized state

separation from the negative Perfect

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 128–137 | 135

Fig. 4 Coefficient of Closeness

1.1 Evaluation via Comparison

Validating the results of this study article regarding the

evaluation of long-lasting environmental sustainability in

the computer software construction sector within the context

of Industry 5.0 requires comparing fuzzier TOPSIS and

Analytical Hierarchy Method (AHP) methodologies.

Table 11 Results of a comparative analysis.

Rank Order 1 2 3 4 5

AHP A1 A3 A5 A2 A4

Fuzzy

Topsis
A1 A3 A2 A5 A4

The findings highlight how important it is to consider

sustainability issues and incorporate them into decision-

making processes. The results also demonstrate the potential

of cloud-native development, agile methodologies, DevOps,

and sustainability software engineering methods for

promoting sustainability and addressing social, economic,

and environmental issues. These insights can be put to use

by researchers, industry experts, and politicians to support a

more environmentally conscious software engineering

surroundings in Industry 5.0, implement best practices, and

make informed decisions. Further study, validation, and

refinement of the findings may be conducted in the future to

support the continuous development and enhancement of

environmentally conscious software engineering

techniques.

5. Discussions

Software engineering is undergoing a major shift as a result

of the quickly emerging Industry 5.0 paradigm, which is

characterized by cutting-edge technologies, dynamic

information sharing, and the integration of cyber and

physical systems. Including sustainability into software

engineering methods is a big problem in the wake of these

major transformations. To confirm that software

engineering practices align with the environmental and

social goals of Industry 5.0, a thorough assessment approach

that gauges the sustainability performance of the practices

is needed. The complicated nature of environmental

sustainability in software development methods within

Industry 5.0 are currently outside the scope of any

systematic methodology found in academia. In an effort to

close this gap, our research offers a state-of-the-art method

based on fuzzy TOPSIS and skilfully navigates the

complexities of sustainability analysis within the evolving

Industry 5.0 scenario.

6. Conclusions

The programming business' feasibility in the bigger setting

of the Programming Business 5.0 was assessed in this study

utilizing the fluffy TOPSIS approach. By utilizing this

dynamic cycle, we had the option to survey and fathom the

presentation of various potential outcomes, for example, the

traditional cascade model, deft strategies, DevOps, cloud-

local turn of events, and economical computer programming

procedures. The aftereffects of the review advance our

insight into maintainability computer programming

philosophies and their expected applications to ecological,

social, and financial issues. The outcomes featured how

cloud-local turn of events, DevOps, and dexterous strategies

might advance supportability through upgrading assets,

quicker conveyance cycles, and improved versatility. Future

examinations in this field might resolve these issues and

proposition new points of view on the best way to

investigate maintainability in the PC computer

programming industry. In the beginning, more inclusive and

standardized criteria may be developed to take into

consideration various facets of sustainability, including

energy conservation, carbon emissions, the impact on

society, and moral dilemmas. Second, advanced modelling

techniques and data analytics approaches could be used to

improve the review process's accuracy and objectivity.

Future works

Further, longitudinal studies can be conducted to assess the

long-term sustainability effects of different solutions and

identify possible trade-offs or synergy over time.

References

[1] S. F. Suhel, V. K. Shukla, S. Vyas, and V. P. Mishra,

“Conversation to automation in banking through

chatbot using artificial machine intelligence

language,” in Proceedings of the 8th International

Conference on Reliability, Infocom Technologies and

Optimization (Trends and Future Directions)

(ICRITO), IEEE, Noida, India, June 2020.

[2] P. Balaji and K. Chidambaram, “Cancer diagnosis of

microscopic biopsy images using a social spider

optimisation-tuned neural network,” Diagnostics, vol.

12, no. 1, p. 11, 2021.

0

1

2

3

4

5

6

A1 A2 A3 A4 A5

Ci Rank

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 128–137 | 136

[3] A. Bangash, H. Sahar, A. Hindle, and K. Ali, “On the

time-based conclusion stability of cross-project defect

prediction models,” Empirical Software Engineering,

vol. 25, no. 6, pp. 1–38, 2020.

[4] L. Gong, S. Jiang, L. Bo, L. Jiang, and J. Qian, “A

novel class-imbalance learning approach for both

within-project and cross-project defect prediction,”

IEEE Transactions on Reliability, vol. 69, no. 1, pp.

40–54, 2020.

[5] R. Yogesh, A. K. Dubey, R. R. Arora, and A. Mathur,

“Fruit defect prediction model (fdpm) based on three-

level validation,” Journal of Nondestructive

Evaluation, vol. 40, no. 2, pp. 1–12, 2021.

[6] G. S. Sriram, “Challenges of cloud compute load

balancing algorithms,” International Research Journal

of Modernization in Engineering Technology and

Science, vol. 4, no. 1, pp. 1186–1190, 2022.

[7] H. Li, M. Shabaz, and R. Castillejo-Melgarejo,

“Implementation of python data in online translation

crawler website design,” International Journal of

System Assurance Engineering and Management, vol.

2021, p. 7, 2021.

[8] G. Esteves, E. Figueiredo, A. Veloso, M. Viggiato,

and N. Ziviani, “Understanding machine learning

software defect predictions,” Automated Software

Engineering, vol. 27, no. 3-4, pp. 369–392, 2020.

[9] G. S. Sriram, “Security challenges of big data

computing,” International Research Journal of

Modernization in Engineering Technology and

Science, vol. 4, no. 1, pp. 1164–1171, 2022.

[10] X. Huang, V. Jagota, E. Espinoza-Muñoz, and J.

Flores-Albornoz, “Tourist hot spots prediction model

based on optimized neural network algorithm,”

International Journal of System Assurance

Engineering and Management, vol. 13, pp. 63–71,

2022.

[11] J. Roberts, I.-H. Hann, and S. Slaughter,

“Communication networks in an open source software

project,” International Federation for Information

Processing, vol. 203, pp. 297–306, 2006.

[12] V. Basili, L. Briand, S. Condon, Y. Kim, W. L. Melo,

and J. D. Valett, “Understanding and predicting the

process of software maintenance releases,” in

Proceedings of the 18th International Conference on

Software Engineering, pp. 464–474, March 1996.

[13] Y. Zhao, H. B. Kuan Tan, and W. Zhang, “Software

cost estimation through conceptual requirement,” in

Proceedings of the International Conference on

Quality Software, pp. 141–144, 2003.

[14] B. Boehm, A. W. Brown, R. Madachy, and Y. Yang,

“A software product line life cycle cost estimation

model,” in Proceedings of the International

Symposium on Empirical Software Engineering

(ISESE ’04), pp. 156–164, August 2004.

[15] X. Ran, X. Zhou, M. Lei, W. Tepsan, and W. Deng,

“A novel k-means clustering algorithm with a noise

algorithm for capturing urban hotspots,” Applied

Sciences, vol. 11, no. 23, p. 11202, 2021.

[16] Mao, K., Capra, L., Harman, M., &Jia, Y. (2017). A

survey of the use of crowdsourcing in software

engineering. Journal of Systems and Software, 126,

57-84.

[17] Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H.,

Kamar, E., ... & Zimmermann, T. (2019, May).

Software engineering for machine learning: A case

study. In 2019 IEEE/ACM 41st International

Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP) (pp. 291-300).

IEEE.

[18] Pyster, A., Adcock, R., Ardis, M., Cloutier, R., Henry,

D., Laird, L., ... & Wade, J. (2015). Exploring the

relationship between systems engineering and

software engineering. Procedia Computer Science, 44,

708-717.

[19] Ouni, A., Kessentini, M., Sahraoui, H., Inoue, K., &

Deb, K. (2016). Multi-criteria code refactoring using

search-based software engineering: An industrial case

study. ACM Transactions on Software Engineering

and Methodology (TOSEM), 25(3), 1-53.

[20] Stol, K. J., Ralph, P., & Fitzgerald, B. (2016, May).

Grounded theory in software engineering research: a

critical review and guidelines. In Proceedings of the

38th International conference on software engineering

(pp. 120-131).

[21] Laplante, P. A., &Kassab, M. (2022). Requirements

engineering for software and systems. Auerbach

Publications.

[22] Alshamrani, A., &Bahattab, A. (2015). A comparison

between three SDLC models waterfall model, spiral

model, and Incremental/Iterative model. International

Journal of Computer Science Issues (IJCSI), 12(1),

106.

[23] Chopra, A. K., & Singh, M. P. (2016, April). From

social machines to social protocols: Software

engineering foundations for sociotechnical systems. In

Proceedings of the 25th International Conference on

World Wide Web (pp. 903-914).

[24] Petersen, K., Vakkalanka, S., &Kuzniarz, L. (2015).

Guidelines for conducting systematic mapping studies

in software engineering: An update. Information and

software technology, 64, 1-18.

[25] Curcio, K., Navarro, T., Malucelli, A., &Reinehr, S.

(2018). Requirements engineering: A systematic

mapping study in agile software development. Journal

of Systems and Software, 139, 32-50.

[26] W. Deng, X. X. Zhang, Y. Q. Zhou et al., “An

enhanced fast non-dominated solution sorting genetic

algorithm for multi- objective problems,” Information

Sciences, vol. 585, pp. 441–453, 2022.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 128–137 | 137

[27] S. Ouhbi, A. Idri, J. L. Fernández-Alemán, and A.

Toval, “Requirements engineering education: a

systematic mapping study,” Requirements

Engineering, vol. 20, no. 2, pp. 119–138, 2015.

[28] Ansari, M.T.J.; Pandey, D.; Alenezi, M. STORE:

Security threat oriented requirements engineering

methodology. J. King Saud Univ.-Comput. Inf. Sci.

2022, 34, 191–203.

[29] E. Q. Wu, M. Zhou, D. Hu et al., “Self-paced dynamic

infinite mixture model for fatigue evaluation of pilots'

brains,” IEEE Transactions on Cybernetics, vol. PP,

pp. 1–16, 2021.

[30] H. Cui, Y. Guan, H. Chen, and W. Deng, “A novel

advancing signal processing method based on coupled

multi-stable stochastic resonance for fault detection,”

Applied Sciences, vol. 11, no. 12, p. 5385, 2021.

