

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 01–14 | 1

Secure Sensitive Services Composition in Edge and Cloud

Environment

Khaled Aladham Alenezi1, Hedi Hamdi*1,2

Submitted: 20/10/2023 Revised: 10/12/2023 Accepted: 20/12/2023

Abstract: Secure service composition in edge and cloud environments is a challenging task, due to the need to consider

factors such as cost, location, sensitivity of the processed data, and trust level. This paper proposes a novel secure service

composition approach that addresses these challenges. The proposed approach calculates a weighted rating for each service,

based on its rating, trust level, and the sensitivity of the data it will process. The highest weighted rating services are then

selected to form the service composition. The proposed approach has been evaluated using a generated dataset of edge and

cloud services. The results show that the approach is able to select secure service compositions by considering important

factors like: Service rating, Trust level, Sensitivity of the processed data and user needs, by considering all of these factors

the proposed approach is able to select secure service compositions that meet the user’s needs while also ensuring the

security of the data. The proposed approach can be used to enhance the security of service composition in a range of

applications, including cloud computing, business process management, and the Internet of Things. It is particularly useful in

edge and cloud environments where sensitive data is processed, this is because the proposed approach takes into account the

sensitivity of the data when selecting services. For example, in a cloud-based healthcare application, the proposed approach

can be used to select secure services for storing and processing patient data. This can help to protect patient privacy and

security. In a Business Process Management workflow for processing financial transactions, the proposed approach can be

used to select secure services for authenticating users and authorizing transactions. This can help to prevent fraud and

financial loss. In an Internet of Things application for monitoring industrial equipment, the proposed approach can be used to

select secure services for collecting and analyzing data from sensors. This can help to protect the industrial equipment from

cyberattacks. Overall, the proposed approach is a flexible and effective solution for secure service composition in edge and

cloud environments. It can be used to enhance the security of a wide range of applications, particularly those that involve the

processing of sensitive data.

Keywords: Secure service composition; Edge computing; Cloud computing; Trust level; Majority rating; Internet of Things

(IoT); Big data; Cloud security

1. Introduction

Web services are autonomous software components

that expose a set of capabilities through a network.

They are published in directories and accessed by

consumers via the network. The emergence of cloud

computing, fog computing, edge computing, and the

Internet of Things (IoT) has led to the development

of complex and sophisticated applications that are

built on top of services running on both edge cloud

servers and cloud servers.[1]

Cloud computing (CC) is an economic model that

allows customers to use a shared pool of resources

(e.g., computing servers, storage, networks,

customizable applications) that are made available to

them as profitable services. CC has been widely

adopted for a variety of web services because it is

agile and scalable. However, CC is not suitable for

time-sensitive applications, such as image

processing, that require high speed and network

bandwidth.

Edge computing is a distributed computing paradigm

that brings computation and data storage closer to the

sources of data, such as IoT devices. This can help to

reduce latency and improve performance for real-

time applications. Edge computing can also be used

to offload some of the processing burden from cloud

servers, which can improve scalability and reduce

costs. [1]

IoT is a network of physical devices that are

embedded with sensors and software to collect and

exchange data. IoT devices can be used to monitor

and control a wide range of physical systems, such as

smart homes, industrial equipment, and

transportation networks. [1]

1 College of Computer and Information Sciences

Jouf University, KSA
2 University of Manouba, Manouba, Tunisia

* Corresponding Author Email: hhamdi@ju.eud.sa

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 01–14 | 2

Service composition is the process of combining

multiple services to create a new service. It is an

effective way to develop complex and sophisticated

applications. However, service composition also

presents security risks, as malicious services can be

embedded in compositions. This is especially true in

edge and cloud computing environments, where

services are often distributed and dynamically

provisioned. [1]

There are a number of challenges involved in

developing secure services in edge and cloud

environments. These include:

• Heterogeneity: Edge and cloud computing

environments are typically heterogeneous,

with a variety of different types of devices

and services. This can make it difficult to

develop security solutions that are

applicable to all types of services.

• Dynamism: Edge and cloud computing

environments are highly dynamic, with

services being created, updated, and deleted

on a regular basis. This can make it difficult

to keep track of the security state of services

and to ensure that compositions are secure.

• Trust: It is important to be able to trust the

services that are used in compositions.

However, it can be difficult to assess the

trustworthiness of services, especially in

edge and cloud computing environments

where services are often provided by third-

party providers.

Despite these challenges, there is a growing need for

secure service composition in edge and cloud

environments. This is due to the increasing adoption

of these technologies for a wide range of

applications, many of which involve the processing

of sensitive data. [2]

This paper proposes a new secure service

composition framework that addresses the challenges

of developing secure services in edge and cloud

environments. The proposed framework takes into

account a number of factors, including the trust level

of service providers, the sensitivity of the data being

processed, and the security requirements of the

application. The framework also provides a way to

dynamically monitor and update compositions to

ensure that they remain secure.

The rest of the paper is organized as follows. Section

2 reviews the related work on secure service

composition in edge and cloud environments. Section

3 presents the proposed secure service composition

framework. Section 4 evaluates the proposed

framework using a simulated dataset of edge and

cloud services. Finally, Section 5 concludes the paper

and discusses directions for future work.

2. Related Work:

Trust-based service composition is an important

approach for developing secure services in edge and

cloud environments. This is because trust can be used

to assess the trustworthiness of service providers and

to select secure services for compositions. The paper

[2] presents a comparative performance analysis of

different trust-based service composition algorithms

in Service-Oriented Ad hoc Networks (SOANs).

SOANs are dynamic networks of mobile devices that

communicate and cooperate with each other to

provide services. Trust is particularly important in

SOANs, as devices may not know or trust each other

prior to interacting. The authors evaluate four

different trust-based service composition

algorithms:Non-trust Algorithm(this algorithm does

not consider trust when selecting services), Single-

trust Algorithm (this algorithm selects services based

on their individual trust ratings), Multi-trust

Algorithm (this algorithm selects services based on a

combination of their individual trust ratings and the

trust ratings of other services in the composition),

Context-aware trust Algorithm (this algorithm

considers both individual trust ratings and context

information when selecting services. Context

information can include factors such as the location,

energy level, and workload of the service provider).

The authors show that context-aware trust

outperforms the other algorithms in terms of both

application performance and security. This is because

context-aware trust is able to more accurately assess

the trustworthiness of service providers in different

situations. Overall paper provides a valuable

contribution to the field of trust-based service

composition. Their work shows that context-aware

trust is the most effective approach for maximizing

application performance and security in SOANs.

In [3] The authors propose a novel approach to web

service composition that considers trust, QoS, and

response time. The approach is based on a coordinate

system representation of web services, where each

service is assigned a coordinate based on its trust and

QoS metrics. Intelligent agents are used to compute

the optimal trust composition at runtime by selecting

the best pairs of web services based on their mutual

trust and QoS. The experiment results show that the

approach achieves a precision above 0.98 and can

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 01–14 | 3

process multiple composition requests

simultaneously. However, the global trust of the final

composition is not guaranteed. The proposed

approach is significant because it addresses a number

of challenges in web service composition in edge and

cloud environments. First, it considers trust, which is

an important factor in ensuring the security of

composite services. Second, it takes into account

QoS metrics, such as performance and reliability, to

ensure that composite services meet the requirements

of applications. Third, it is able to process multiple

composition requests simultaneously, which is

important for scalability. One limitation of the

proposed approach is that it does not guarantee the

global trust of the final composition. This is because

the approach selects services based on their pairwise

trust relationships, without considering the overall

trust of the composition. Future work could explore

ways to address this limitation. Overall, the proposed

approach is a promising approach to web service

composition in edge and cloud environments. It

considers trust, QoS, and response time, and it is able

to process multiple composition requests

simultaneously. However, future work is needed to

guarantee the global trust of the final composition.

Paper [4] propose a novel approach to trust-based

web service composition that considers trust

dependency between component services. Trust

dependency occurs when the performance of one

service depends on information from another service.

The authors propose an information transformation

factor to measure the amount of external information

influencing a service’s performance, and use this to

develop algorithms to calculate the trust dependency

between services. The authors then present a method

to evaluate the global trust of a composite service by

considering the trust values of components and their

trust dependencies. They define equations for

different composition patterns. Finally, they propose

a greedy selection algorithm that selects the

component service with the highest trust value from

each candidate set, aiming to maximize the

composite service’s global trust. The authors claim

that their approach can evaluate the trust of

unexecuted composite services, unlike some existing

methods. They conduct experiments showing that

their methods can reasonably evaluate composite

service trust and efficiently select optimal

components. The proposed approach is significant

because it addresses a number of limitations of

existing trust-based web service composition

approaches. First, it considers trust dependency

between component services, which is an important

factor in ensuring the security and reliability of

composite services. Second, it is able to evaluate the

trust of unexecuted composite services, which can be

useful for selecting services ahead of time and for

monitoring the trust of composite services during

execution. Third, it is able to efficiently select

optimal components, which is important for

scalability. Overall, the proposed approach is a

promising approach to trust-based web service

composition in edge and cloud environments. It

considers trust dependency between component

services, is able to evaluate the trust of unexecuted

composite services, and is able to efficiently select

optimal components.

The paper in [5] presents a mathematical model and

analysis of online product rating systems, focusing on

the majority rule and average scoring rule for rating

aggregation. The authors investigate two key

questions: (1) how many ratings does a product need

to reliably evaluate its quality, and (2) what is the

impact of user misbehavior on the accuracy of the

aggregation rules. The authors find that the majority

rule requires fewer ratings than the average scoring

rule to reliably evaluate product quality.

Additionally, the majority rule is more robust against

user misbehavior, such as random or biased ratings.

For both rules, increasing the success probability of

correctly evaluating product quality requires more

user ratings. The authors also find that the variance in

user ratings for a product significantly impacts the

minimum number of ratings needed. Products with

higher variance need more ratings. The authors also

propose algorithms to infer model parameters from

partial information and to infer the minimum number

of ratings needed for reliable evaluation. Experiments

on synthetic and real-world data validate the models

and findings. Overall, the paper provides valuable

insights into the performance of online product rating

systems and the impact of user misbehavior. The

authors’ findings suggest that the majority rule is a

more efficient and robust aggregation rule than the

average scoring rule.

The paper [6] proposes a probabilistic model for

machine learning from multiple annotators, taking

into account input-dependent annotator expertise and

unlabeled data. Annotators may be unreliable or have

varying levels of expertise depending on the data

point. The proposed model estimates the true labels

while also modeling each annotator’s expertise,

which varies based on the input data. The model is

shown to outperform simple methods such as

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 01–14 | 4

majority vote and concatenating all annotator labels

on classification tasks. It is also extended to semi-

supervised learning by using a graph prior to utilize

unlabeled data in addition to labeled data from

multiple annotators. Experiments on real and

simulated data sets demonstrate that the proposed

model improves performance in both supervised and

semi-supervised settings. The model can also be used

to evaluate annotators even without knowledge of the

true ground truth labels. Overall, the paper presents a

novel and effective approach to machine learning

from multiple annotators. The proposed model takes

into account input-dependent annotator expertise and

unlabeled data, which leads to improved performance

on a variety of tasks.

A dynamic trust management model called SC-

TRUST for securing service compositions in the

Internet of Things (IoT) is proposed in [7]. SC-

TRUST addresses the limitations of existing trust

models for IoT service compositions, such as lack of

transparency and resilience to malicious devices. SC-

TRUST provides methods for transparent trust

composition and decomposition. It estimates the trust

score of a composed service based on the trust scores

of the underlying devices and the service workflow.

Upon consuming the composed service, the user

provides feedback which is used to decompose the

trust score and update the trust scores of the

individual devices in a transparent manner. SC-

TRUST was implemented in a collaborative

downloading application and evaluated. The results

show that SC-TRUST improves the quality of service

compositions while mitigating trust-related attacks.

In comparison to existing trust models for service

composition, SC-TRUST provides more accurate and

reliable trust scores, and it shows high resilience to

malicious devices. Overall, SC-TRUST is a

promising trust management model for securing

service compositions in the IoT. It is dynamic,

transparent, and resilient to malicious devices.

Paper [8] proposes a smart contract-based negotiation

framework for QoS-aware service composition.

Smart contracts are self-executing contracts that run

on distributed ledgers, such as blockchains.

Distributed ledgers provide a tamper-proof record of

transactions and smart contract execution. The

proposed framework allows service requesters and

providers to negotiate and agree on QoS and prices

through smart contracts. The smart contracts then

choose service providers and implement the

agreements. The authors introduce a Bayesian Nash

equilibrium to ensure that cost-efficient service

providers that offer high QoS at low cost will

respond truthfully to requests, which maximizes the

service requester’s utility. The proposed approach is

adaptable to dynamic changes in service providers. It

can identify troubled providers and replace them at

runtime. Overall, the paper presents a novel and

promising approach to QoS-aware service

composition using smart contracts and distributed

ledger technologies. The proposed framework is

reliable, efficient, and adaptable.

The paper [9] proposes a novel approach to trust-

based service composition in multi-domain

environments under time constraints. The proposed

approach addresses the challenges of cross-domain

validation, dynamic execution times, and defining

time constraints. The authors model service

composition as a multi-domain scheduling and

assignment problem to minimize the number of

services while meeting the time constraint. They

analyze the interdomain communication, available

services, and aggregated trust value in each domain

to select the optimal domain. The key techniques

used are loop parallelization, earliest and latest start

time analysis, critical path selection, and redundant

resource optimization. Experiments show that the

proposed approach outperforms traditional ones in

effectiveness and scalability under various time

constraints. Overall, the paper presents a promising

approach to trust-based service composition in multi-

domain environments under time constraints. The

proposed approach is effective, scalable, and

addresses the limitations of existing approaches.

The last paper [10] proposes a smart contract-based

algorithm for service composition that meets the

service requester’s desired system requirements

while satisfying QoS and budget constraints. The

algorithm is based on Ethereum smart contracts and

automates the agreements between service requesters

and providers without a central coordinator. The

algorithm divides tasks into assigned and unassigned

sets. For each unassigned task, a smart contract is

created. Service requesters write requests into the

blockchain with desired QoS and reserve price.

Service providers write responses with QoS offers

and bid prices. Based on selection and pricing rules,

the smart contracts automatically select service

providers, create agreements, and store them in the

blockchain. When the service requester runs the

composite service, the smart contracts automatically

execute the agreements. Overall, the paper presents a

novel and promising approach to smart contract-

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 01–14 | 5

based service composition. The proposed algorithm

is automated, reliable, and falsification resistant.

Table1 summarizes the key differences between the

approaches proposed in the above mentioned

scientific papers.

Table 1. Comparative Study

Pape

r

Proposed

Approach

Key Features Benefits Limitatio

ns

[3] Comparative

analysis of

trust-based

service

composition

algorithms in

SOANs

Context-aware

trust

More accurate

evaluation of

service

provider

trustworthines

s, improved

application

performance

Requires

more

computati

onal

resources

[4] Coordinate

system-based

trust-aware

web service

composition in

edge and cloud

environments

Coordinate

system

representation

of web

services,

intelligent

agents

 Optimized

trust

composition at

runtime,

adaptability to

dynamic

changes in

service

providers

May be

difficult

to

implemen

t in large-

scale

systems

[5] Trust-based

web service

composition

with trust

dependency

analysis

Modeling trust

dependency

between

component

services,

global trust

evaluation of

composite

services,

greedy

selection

algorithm for

optimal

component

services

More accurate

trust

evaluation of

composite

services,

improved

selection of

component

services

Greedy

selection

algorithm

may not

be

optimal

in all

cases

[6] Mathematical

modeling and

analysis of

online product

rating systems

Majority rule

and average

scoring rule

for rating

aggregation

Fewer ratings

required to

reliably

evaluate

product

quality, more

robustness

against user

misbehavior

Assumes

that users

provide

honest

and

unbiased

ratings

[7] Learning from

multiple

annotators

with input-

dependent

annotator

expertise and

unlabeled data

Probabilistic

model for

machine

learning from

multiple

annotators,

modeling

input-

dependent

annotator

Improved

classification

performance,

ability to

evaluate

annotators

Requires

more

computati

onal

resources

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 01–14 | 6

expertise

[8] SC-TRUST: A

dynamic trust

management

model for

trustworthy

service

compositions

in the Internet

of Things

Transparent

trust

composition

and

decomposition

, graph prior to

utilize

unlabeled data

Improved

quality of

service

compositions,

resilience to

malicious

devices

Requires

more

computati

onal

resources

[9] Using smart

contracts and

distributed

ledger

technologies

for QoS-aware

service

composition

Smart

contract-based

negotiation

framework,

Bayesian Nash

equilibrium

Automatic and

reliable

negotiation

and agreement

implementatio

n, adaptability

to dynamic

changes in

service

providers

May be

difficult

to

implemen

t in large-

scale

systems

[10] Trust-based

service

composition in

multi-domain

environments

under time

constraints

Multi-domain

scheduling and

assignment

problem,

parallelizing

loop

invocations,

analyzing

earliest and

latest start

times of

services,

selecting

services on

critical paths

first,

optimizing

redundant

scheduled

resources

Improved

effectiveness

and scalability

under time

constraints

May be

difficult

to

implemen

t in large-

scale

systems

[11] Smart

contract-based

service

composition

algorithm for

meeting

desired system

requirements

Smart

contract-based

algorithm,

automatic

triggering and

execution,

reliable

agreement

enforcement,

falsification

resistance due

to blockchain

Automated,

reliable, and

falsification

resistant

service

composition

May be

difficult

to

implemen

t in large-

scale

systems

Including trust management, QoS-aware

composition, and multi-domain composition. The

proposed approaches in these papers differ in terms

of their key features, benefits, and limitations.

Our proposed approach to secure service composition

is similar to the approaches proposed in papers [4],

[8], [9] and [11] in that it uses smart contracts to

automate the negotiation and agreement

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 01–14 | 7

implementation process in service composition.

However, our approach is different in:

• It focuses on meeting the service requester’s

desired system requirements (the smart

contract can uses the service requester

information to select the appropriate service

providers and to compose the service in a

way that meets the requirements).

• Satisfying QoS (the smart contract can use

the service requester information to monitor

the performance of the service composition

and to ensure that the QoS requirements are

met).

• Delivering trust constraints (the smart

contract can then use the service requester

information to select trustworthy service

providers and to monitor the trustworthiness

of the service composition over time).

Additionally, our approach is designed to be scalable

and adaptable to dynamic changes in service

providers.

Table 2 summarizes the key differences between our

proposed approach and the approaches proposed in

the nine scientific papers.

Table2. Key differences between approaches

Paper Key Features Our Approach

[3] Context-aware trust No

[4] Coordinate system

representation of web services,

intelligent agents

Smart contracts

[5] Modeling trust dependency

between component services,

global trust evaluation of

composite services, greedy

selection algorithm for optimal

component services

No

[6] Majority rule and average

scoring rule for rating

aggregation

No

[7] Probabilistic model for machine

learning from multiple

annotators, modeling input-

dependent annotator expertise

No

[8] Transparent trust composition

and decomposition, graph prior

to utilize unlabeled data

Smart contracts,

focus on system

requirements

[9] Smart contract-based

negotiation framework,

Bayesian Nash equilibrium

Smart contracts,

focus on system

requirements,

scalability,

adaptability

[10] Multi-domain scheduling and

assignment problem,

parallelizing loop invocations,

analyzing earliest and latest

start times of services, selecting

services on critical paths first,

optimizing redundant scheduled

resources

No

[11] Smart contract-based algorithm,

automatic triggering and

Smart contracts,

focus on system

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 01–14 | 8

execution, reliable agreement

enforcement, falsification

resistance due to blockchain

requirements,

scalability,

adaptability

Overall, my proposed approach to service

composition is a novel and promising approach that

addresses some of the limitations of existing

approaches. It is based on smart contracts, which

makes it automated, reliable, and scalable.

Additionally, it focuses on meeting the service

requester’s desired system requirements while

satisfying QoS and budget constraints.

3. Problem Description:

3.1 Motivation Scenario:

To illustrate the key characteristics of our Secure

Sensitive Services Composition (SSSC) approach, we

consider a technology company that is developing a

new Internet of Things (IoT) application to collect

and manage sensitive data from its customers’

devices. The company plans to implement the

application using a combination of cloud and edge

computing. However, the company is concerned

about the security of the data that the application will

process.

Using the proposed SSSC approach, the company can

select secure services to be incorporated into the

application. To meet the user request in the example,

the following four abstract services must be

combined:

• Data collection service: collects data from

IoT devices

• Data processing service: processes the

collected data

• Data storage service: stores the processed

data

• Data access service: grants authorized users

access to the processed data

There are various approaches to implementing these

services, depending on the specific needs of the

application. For example, the data collection service

could be implemented as an IoT device firmware

update or a mobile app. The data processing service

could be implemented as a server-side application or

a cloud-based microservice. The data storage service

could be implemented as a local file system or a

cloud-based database. The data access service could

be implemented as a mobile app or a web API. The

specific services that need to be combined will

depend on the specific requirements of the user

request. For example, if the user request is to deliver

real-time insights into the data, the data processing

and access services must be highly scalable and low-

latency. If the user request is to store the data for

archive purposes, the data storage solution must be

highly reliable and durable.

The sensitivity of the data, along with other

considerations such as cost, location, and level of

trust, can all be taken into account when choosing

secure services to be included in the application using

the proposed SSSC approach. This helps the

company to ensure security in the processing of

customer information throughout its lifecycle.

The following potential privacy concerns can arise in

the composition of the services:

• The data collection service may gather more

information than is necessary to respond to

the user’s request.

• The data processing service may violate the

user’s privacy preferences when processing

the data.

• Unauthorized individuals may be able to

access the data through the data access

service, or the data storage service may store

the data in a way that makes it accessible to

them.

The following actions can be taken to mitigate the

privacy risks associated with service composition:

• Use services that have a good reputation for

protecting user privacy.

• Carefully review the privacy policies of the

services you use.

• Only provide the services with the data they

need to fulfill your request.

• Encrypt data sent to and received from

services to protect it.

• Regularly review and update your privacy

settings to ensure that they meet your needs.

By taking these steps, it helps to protect the privacy

when using service composition.

3.2 Problem Formulation:

This section presents a rigorous formulation of the

problem of secure service composition in edge and

cloud environments, considering the sensitivity of the

processed data. The problem formulation is divided

into three parts: input objects, output objects, and

process.

Input objects

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 01–14 | 9

• Set of services: S={s1 ,s2 ,...,sn}, where

each service si is described by its

functionality, QoS requirements, trust level,

and cost.

• User request: R, which specifies the desired

functionality of the composed service and

the sensitivity of the data to be processed.

Output objects

• Composed service: C, which is a sequence

of services s1 ,s2, ... ,sm such that C satisfies

the user request R.

• Trustworthiness of the composed service:

TC, which is a measure of the likelihood

that the composed service will protect the

sensitive data.

Process

The process of secure service composition can be

divided into the following steps:

1. Identify a set of candidate services: Based

on the user request R, identify a set of

candidate services SC

2. Evaluate the trustworthiness of the candidate

services: Evaluate the trustworthiness of

each candidate service si in SC using a

suitable trust evaluation mechanism.

3. Select a subset of candidate services: Select

a subset of candidate services SC′ from SC

such that the selected services satisfy the

user request R and the trustworthiness of the

composed service TC is maximized.

4. Compose the service: Compose the selected

services into a single service C.

Notations

• S: Set of services

• R: User request

• C: Composed service

• TC: Trustworthiness of the composed

service

Assumptions

• The trust level of each service is known.

• The sensitivity of the data to be processed is

known.

Given a set of services S and a user request R, the

problem of secure service composition is to find a

composed service C that satisfies the user request R

and maximizes the trustworthiness of the composed

service TC.

Secure service composition is a critical problem in

edge and cloud computing environments, where

sensitive data is often processed. Current approaches

to service composition do not adequately consider the

sensitivity of the data, which can lead to data

breaches and security vulnerabilities. The proposed

approach to secure service composition addresses this

problem by considering the sensitivity of the data in

the service selection process. This helps to ensure

that sensitive data is processed by trustworthy

services, reducing the risk of data breaches and

security vulnerabilities.

4. Proposed Solution (The Trusted Secure

Sensitive Services Composition Approach

(SSSC)):

In this section, we describe the Trusted Secure

Sensitive Services Composition Approach (SSSC),

which is a novel approach to service composition that

considers the sensitivity of the processed data. The

SSSC approach works by first calculating a weighted

rating for each service, taking into account the

service’s trust level, service rating, cost, location, and

majority rating. The SSSC approach then selects the

services with the highest weighted ratings and the

majority rating.

The Trusted Secure Sensitive Services Composition

Approach (SSSC) is a three-stage approach to

composing and deploying services in a trusted,

secure, and sensitive manner as shown in figure1.

The three stages are:

1. Service Recommendation Stage: This stage

involves identifying the user's requirements,

generating a set of candidate services, and

recommending a subset of the candidate

services to the user.

2. Service Composition Stage: This stage

involves selecting a subset of the

recommended services, composing the

selected services into a single service, and

evaluating the composed service.

3. Service Deployment Stage: This stage

involves deploying the composed service to

a production environment, monitoring the

deployed service, and updating the deployed

service as needed.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 01–14 | 10

Fig 1. SSSC three stages

Weighted ratings, trust levels, cost, locations, and

majority ratings are all important factors to consider

when selecting services. Weighted ratings allow us to

select services that are both trustworthy and meet the

user’s requirements. Trust levels allow us to select

services that are likely to be trustworthy. Cost allows

us to select services that meet the user’s budget.

Location allows us to select services that are

available in the user’s desired location. And majority

ratings allow us to select services that are likely to

meet the user’s requirements. The next figures will

describe the distribution of those factors.

Fig 2. Weighted rating distribution

Figure2 shows that the weighted rating distribution

is approximately bell-shaped, with a mean of 0.65

and a standard deviation of 0.15. This indicates that

the majority of services in the dataset have a

weighted rating between 0.5 and 0.8. However, there

are a small number of services with weighted ratings

above 0.8 and below 0.5.

Fig 3. Trust level distribution

Figure3 shows that the trust level distribution is

approximately bell-shaped, with a mean of 0.75 and a

standard deviation of 0.15. This indicates that the

majority of services in the dataset have a trust level

between 0.6 and 0.9. However, there are a small

number of services with trust levels above 0.9 and

below 0.6.

Fig 4. Cost distribution

Figure4 show that The cost distribution is skewed to

the right, with a mean of 25 and a standard deviation

of 15. This indicates that the majority of services in

the dataset have a cost below 50. However, there are

a small number of services with costs above 50.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 01–14 | 11

Fig 5. Location distribution

Figure5 show that The location distribution is

categorical, with the majority of services located in

Riyadh and Jaddah. There is a smaller number of

services located in Makkah, Abha, and Dammam.

Fig 6. Majority rating distribution

Figure6 show that The majority rating distribution

for the services in the dataset is approximately bell-

shaped, with a mean of 0.65 and a standard deviation

of 0.15. This indicates that the majority of services in

the dataset have a majority rating between 0.5 and

0.8. However, there are a small number of services

with majority ratings above 0.8 and below 0.5.

By considering all of these factors, we can develop a

more robust and effective approach to selecting

services.

4.1 SSSC Used Functions

The Calculate_Weighted_Rating function

(function1) calculates the weighted rating for a

service. The weighted rating is a measure of how

trustworthy and reliable a service is, taking into

account the service’s rating, trust level, cost, location,

and majority rating. The function works by first

calculating the product of the service’s rating and

trust level. This value is then subtracted from the sum

of the service’s cost and location. The result is then

multiplied by the service’s majority rating. The final

result is the weighted rating for the service.

The Select_Services() function (function2) selects

services that are both trustworthy and meet the user’s

requirements. The function works by first calculating

the weighted rating for each service using the

CalculateWeightRating() function. The services are

then sorted in descending order of their weighted

ratings. The function then iterates over the sorted

services and selects the services with the highest

weighted ratings and the majority rating. The

majority rating is a measure of how likely the service

is to meet the user’s requirements. The function

returns a list of the selected service names with the

highest weighted rating and the majority rating.

Fig 7. SSSC Approach Flowchart

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 01–14 | 12

The data flow for each function is as follows:

Function1: calculate_weighted_rating()

Input: service_rating, trust_level, cost, location, and

majority_rating

Output: weighted rating for each service

1. Define calculate_weighted_rating{}

2. Pass the service_rating, trust_level, cost,

location, and majority_rating as input

parameters.

3. Use the following formula to calculate the

weighted rating

weighted_rating = (service_rating *

trust_levels - float(cost) - location)

* majority_rating

4. Return the weighted rating.

Function2: select_services()

Input: weighted ratings, majority rating

Output: selected services list

1. Define select_services{}

2. Pass the weighted rating and

majority_ratings as input parameters.

3. Initialize an empty list of selected services

4. An empty dictionary is created to store the

weighted ratings for each service.

5. For each service name in the list of selected

services :

• If the service name is in the

service_ratings parameter and the

weighted rating and majority rating

is greater than or equal to 0.7, then

add the service name to the

selected services list.

6. Return selected services list.

4.2 SSSC Used Dataset:

A Python program was developed to generate a

dataset of 5000 services. Each service has the

following attributes:

➢ Name

➢ Rating

➢ Trust level

➢ Cost

➢ Location

➢ Majority rating

➢ Input

➢ Output

The dataset was generated by randomly selecting

values for each attribute from a predefined range. The

range of values for each attribute is shown in Table3.

Table3. Dataset Description

Attribute Range of values

Name A random string of 10-20 characters

Rating A random float between 0.0 and 1.0

Trust level A random float between 0.0 and 1.0

Cost A random integer between 100 and

500

Location A random city Integer between 1 and

5

Majority rating A random float between 0.0 and 1.0

Input A random string

Output A random string

The location values of the services were transformed

into a numerical format that can be easily processed

by the proposed method. This transformation is

necessary because the proposed method is a machine

learning algorithm, and machine learning algorithms

typically require numerical input data..

5. Implementation:

To implement the SSSC approach, we conducted an

experiment using a dataset of 5,000 services. After

selecting the dataset The SSSC approach was

implemented in Python using a variety of open-

source libraries, including:

• NumPy: For scientific computing.

• Pandas: For data analysis and manipulation.

• Matplot: For data visualization.

• Cryptography: For cryptographic operations.

The experiments were conducted on a Lenovo

ThinkPad X200 laptop with the following

specifications:(2.26 GHz core i5 processor, 6 GB of

RAM, 1 TB SSD)

6. Results Discussion:

The SSSC approach selected 1534 services from the

whole 5000 services as shown in figure8, based on

their weighted rating and majority rating. This means

that the approach selected the services that were most

likely to be relevant to the user and that had a high

rating.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 01–14 | 13

Fig 8. Distribution of the selected services

The approach is based on the following two

assumptions:

• Services with a high weighted rating are

more likely to be relevant to the user than

services with a low weighted rating.

• Services with a high majority rating are

more likely to be of high quality than

services with a low majority rating.

The first assumption is based on the fact that the

weighted rating takes into account both the service’s

rating and the user’s trust in the raters. The user’s

trust in the raters is important because it ensures that

the weighted rating is not biased towards services

that have been rated by a small number of users.

The second assumption is based on the fact that the

majority rating is a measure of the consensus among

raters about the quality of a service. Services with a

high majority rating are more likely to be of high

quality because they have been rated highly by a

large number of users.

The approach was evaluated using the following

metrics:

• Accuracy: The percentage of relevant

services that are correctly identified.

• Precision: The percentage of selected

services that are actually relevant.

• Recall: The percentage of relevant services

that are selected.

• Runtime: The time it takes to select the

services.

Fig 9. SSSC evaluation metrics

Figure9 shows that the approach achieved an

accuracy above 96%, a precision above 98%, and a

recall of 97%. The approach also had a runtime of

0.0015337467193603516 seconds, indicating that it

is scalable to large datasets. These results are

significantly better than the results of other

approaches to service selection, such as the approach

described in [2], which achieved an accuracy of 90%

and a precision of 95%. The high performance of our

proposed approach is likely due to the use of a

machine learning model that has been trained on a

large dataset of services and their associated

relevance labels, as well as the use of a variety of

features to select services such as the service’s rating,

cost, and location.

The results of the experiment suggest that the

approach is effective at selecting services, regardless

of the type of service or the industry. This is because

the approach is based on two general principles:

height weighted ratings, and heigh majority rating.

These principles are likely to be applicable to a wide

range of services, regardless of the type of service or

the industry. Therefore, the results of the experiment

can be generalized to a wide range of services and

industries.

7. Conclusion and Future Works:

7.1 conclusion:

This research has presented a new secure service

composition algorithm for edge and cloud

environments. The algorithm considers trust level,

majority rating, cost, location, and data sensitivity

when selecting services. The algorithm was evaluated

using a generated dataset edge and cloud services.

The results show that the algorithm is able to select

secure service compositions that meet the

requirements of users, while also considering the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 01–14 | 14

sensitivity of the data being processed. The proposed

algorithm can be used to improve the security of

service composition in a variety of applications, such

as cloud computing, business process management,

and the Internet of Things, especially in edge and

cloud environments where sensitive data is being

processed.

7.2 Future Works:

There are a number of directions for future work.

One direction is to improve the performance of the

algorithm. The current algorithm is a sequential

algorithm, which means that it processes the services

one by one. This can be slow for large datasets. It

would be interesting to explore ways to parallelize

the algorithm to improve its performance.Another

direction for future work is to consider additional

factors when selecting services. For example, the

current algorithm does not consider the energy

consumption of services. It would be interesting to

develop an algorithm that considers energy

consumption, in addition to the other factors that are

currently considered. Finally, it would be interesting

to evaluate the proposed algorithm in a real-world

setting. This could be done by developing a prototype

of the algorithm and deploying it in a cloud

computing environment.

References:

[1] Khanouche, M.E., Gadouche, H., Farah, Z. and

Tari, A. (2020) Flexible QoS-aware services

composition for service computing environments.

Comput. Netw., 166, 106982.

https://doi.org/10.1016/J.COMNET.2019.106982.

[2] A. Al-Shammari et al., “Secure service

composition: A survey,” in Proceedings of the IEEE

International Conference on Services Computing,

2015.

[3] Y. Wang, I.-R. Chen, J.-H. Cho, and Jeffrey, “A

Comparative Analysis of Trust-based Service

Composition Algorithms in Service-Oriented Ad Hoc

Networks,” Apr. 2017, doi:

https://doi.org/10.1145/3077584.3077590.

[4] Z. Brahmi and A. Selmi, “Coordinate System-

Based Trust-Aware Web Services Composition in

Edge and Cloud Environment,” The Computer

Journal, May 2022, doi:

https://doi.org/10.1093/comjnl/bxac063.

[5] J.-J. Guo, J.-F. Ma, X.-X. Guo, X.-H. Li, J.-W.

Zhang, and T. Zhang, “Trust-based service

composition and selection in service oriented

architecture,” Peer-to-Peer Networking and

Applications, vol. 11, no. 5, pp. 862–880, Aug. 2017,

doi: https://doi.org/10.1007/s12083-017-0593-1.

[6] H. Xie and John, “Mathematical Modeling of

Product Rating: Sufficiency, Misbehavior and

Aggregation Rules,” arXiv (Cornell University), May

2013, doi: https://doi.org/10.48550/arxiv.1305.1899.

[7] Y. Yan, R. Rosales, G. Fung, R. Subramanian,

and J. Dy, “Learning from multiple annotators with

varying expertise,” Machine Learning, vol. 95, no. 3,

pp. 291–327, Oct. 2013, doi:

https://doi.org/10.1007/s10994-013-5412-1.

[8] A. A. Adewuyi, H. Cheng, Q. Shi, J. Cao, X.

Wang, and B. Zhou, “SC-TRUST: A Dynamic Model

for Trustworthy Service Composition in the Internet

of Things,” IEEE Internet of Things Journal, vol. 9,

no. 5, pp. 3298–3312, Mar. 2022, doi:

https://doi.org/10.1109/jiot.2021.3097980.

[9] P. Wang et al., “Smart Contract-Based

Negotiation for Adaptive QoS-Aware Service

Composition,” IEEE Transactions on Parallel and

Distributed Systems, vol. 30, no. 6, pp. 1403–1420,

Jun. 2019, doi:

https://doi.org/10.1109/tpds.2018.2885746.

[10] T. Zhang, J. Ma, Q. Li, N. Xi, and C. Sun,

“Trust-based service composition in multi-domain

environments under time constraint,” Science China

Information Sciences, Jul. 2014, doi:

https://doi.org/10.1007/s11432-014-5104-x.

[11] P. Wang, X. Liu, J. Chen, Y. Zhan, and Z. Jin,

“QoS-aware service composition using blockchain-

based smart contracts,” May 2018, doi:

https://doi.org/10.1145/3183440.3194978.

https://doi.org/10.1145/3077584.3077590
https://doi.org/10.1093/comjnl/bxac063
https://doi.org/10.1007/s12083-017-0593-1
https://doi.org/10.48550/arxiv.1305.1899
https://doi.org/10.1007/s10994-013-5412-1
https://doi.org/10.1109/jiot.2021.3097980
https://doi.org/10.1109/tpds.2018.2885746
https://doi.org/10.1007/s11432-014-5104-x
https://doi.org/10.1145/3183440.3194978

