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Abstract: Maharashtra, located in the western part of India, experiences diverse climatic conditions owing to its vast geographical 

expanse. Seasonal patterns, such as the monsoon rains and dry summers, significantly impact the weather dynamics. This research 

includes primary data of Maharashtra State Monthly Dataset spanning from 2001 to 2022. Central to our approach is the integration of 

the expectation maximization optimization technique for data cleaning, addressing the challenges of noise and inconsistencies within 

the dataset. The primary objective is to enhance the robustness and accuracy of the weather data, laying a foundation for more reliable 

anomaly detection. Leveraging state-of-the-art algorithms such as One-Class SVM, Isolation Forest, LSTM Autoencoders, and 

Autoencoders, the research scrutinizes their efficacy in identifying anomalies within the complex temporal and spatial patterns inherent 

to Maharashtra's climate. The integrated data cleaning approach emerges as a novel aspect of this research, revealing its positive impact 

on refining the deep learning models' performance. Visualizations aid in intuitively understanding the detected anomalies and their 

implications for weather analysis. The results and discussion sections meticulously compare the outcomes of each algorithm, offering 

insights into their strengths and limitations. This approach provides a robust framework for anomaly detection in Maharashtra's weather 

data, enabling enhanced climate trend analysis, early detection of irregularities, and improved decision-making for disaster preparedness 

and resource allocation in the face of changing weather patterns. 
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1. Introduction 

Climate plays a major role in shaping a region's socio-

economic and ecological landscape, making accurate 

and timely weather forecasts [1] crucial for industries 

such as agriculture, disaster management, energy 

production, and transportation. Maharashtra, a diverse 

and populous state in India, is no exception to the 

profound impacts of weather variability and extreme 

events on its society and economy. Maharashtra 

experiences a wide range of weather conditions due to 

its geographical expanse, which spans the western 

coastline of the Arabian Sea to the central Deccan 

Plateau and the eastern Ghats. 

Maharashtra's economy heavily relies on agriculture, 

making it imperative to provide accurate predictions 

of rainfall and temperature for informed decision-

making by farmers. Unpredictable weather patterns 

brought on by climate change have an effect on water 

resources and agriculture. Weather forecasts are 

important to the energy sector because they affect wind 

energy generation and hydropower [2]. Furthermore, 

weather data are needed for infrastructure 

development and urban planning to be resilient to 

extreme events. Given these justifications, it is clear 

that spatiotemporal analysis is necessary. 

Spatio-temporal data refers to information that varies 

both in space (location) and time (period) [3]. It 

depicts the dynamic character of phenomena at 

various times and locations across space. Maps, 

satellite photos, sensor readings, weather reports, and 

other data can all be used to depict spatiotemporal 

data. A comprehensive understanding of weather 

phenomena allows for a more accurate representation 

of both its temporal dynamics and geographical 

distribution. Deep learning presents a viable substitute 

for comprehending and forecasting these changes with 

greater accuracy since it can comprehend intricate and 

dynamic relationships in data. Using deep learning 

techniques to analyze spatiotemporal weather data 

may be a solution to these needs. [4]. With its ability 

to capture intricate patterns and dependencies in 

data, deep learning can improve weather predictions 

significantly. Deep learning models, like 

convolutional neural network (CNN), recurrent neural 

network (RNN) and Long Short-Term Memory 

(LSTM) are capable of capturing the intricated 
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patterns and dependencies in data, resulting in 

improved accuracy and reliability of weather 

predictions 

2. Related Work 

An overall review of the work in spatiotemporal 

analysis provides us information about various 

machine learning and deep learning approaches used 

in research which includes Long Short-Term Memory 

model (LSTM), Gated Recurrent Unit (GRU), 

Convolutional Neural Network-LSTM (CNN-LSTM), 

Spatio-Temporal Graph Convolutional Network 

(STGCN) and Geographic Semantic Temporal 

Hypergraph Convolutional Network etc. 

In [5], the authors proposed LSTM with a new 

architecture for spatiotemporal analysis for real life 

prediction using ocean dataset which consists of three 

different dataset which was collected through sensors 

and attributes such as current velocity, temperature, 

and dissolved oxygen were considered. 

The authors in [6] implemented deep learning models 

such as CNN, Graph CNN, RNN, LSTM, AE/SAE, 

RBM, and Seq2Seq models for Spatio Temporal data 

mining (STDM) on spatiotemporal including 

predictive learning, classification, estimation, 

representation learning and inference, anomaly 

detection, and others. A variety of domains, such as 

transportation, on-demand services, human mobility, 

climate and weather, location-based social networks 

(LBSN), crime analysis, and neuroscience, were 

represented by the applications of deep learning 

techniques for STDM. 

Chunrui Wu et al. [7] summarized outlier detection 

for spatiotemporal data as data collection has become 

easier detecting the outlier becomes essential for real 

world application such as geophysical exploration and 

geological disaster monitoring. The proposed model 

used various clustering, classification and deep 

learning methods and also reviews spatial and 

temporal outlier mining methods for different types of 

datasets. 

Authors in [8] proposed a system for spatio-temporal 

prediction of climate and other environmental features 

using deep learning. They divided the spatiotemporal 

signal in stochastic spatial coefficients and fixed 

temporal bases which rebuilds irregular distributed 

measurements and uses any regression algorithm for 

spatial prediction of stochastic coefficients. 

Framework establishes a positive approach in 

identifying temporal, spatial, and spatio-temporal 

dependencies in data that is simulated and real-world 

data. 

Convolutional Long Short-Term Memory 

(ConvLSTM) and the Graph Convolutional Network 

(GCN) was used in [9] to predict hourly 

meteorological, wildfire, remote sensing satellite, and 

ground-based sensor data combined to provide 

spatiotemporal PM2.5 in Los Angeles County. It 

created images of the dense meteorological graphs 

using unsupervised graph representation learning 

algorithms for ConvLSTM's input. 

A novel deep graph-based structure is presented in 

[10] for solving the STLF problem. CNN and GRU 

are used for feature extraction and feature 

understanding implemented on an actual dataset of 

Shiraz, Iran. The new technique is compared with 

CNN, MLP, and KNN.The authors concluded that 

new graph-based structure was more efficient as 

compared to regular techniques used as it provides 

more accuracy. 

Climatic factors for cereal crop yields are studied in 

[11] with the data of the eastern plateaus zone for 6 

regions. The Mann Kendall test and pooled OLS 

regression method is used for determining the suitable 

climate for crops. There were no apparent trends in 

this region's cereal yields whereas temperature and 

precipitation had different effects on cereal yields. A 

weather– yield relationship is observed which can be 

studied and evaluated further. 

In [12] the author proposed HetSPGraph with LSTM 

model for drought forecasting. It identified spatial 

correlations in drought data that changes with time 

and spatio-temporal correlation is obtained which is 

used as an input for temporal drought forecasting. 

HetSPGraph model was observed to be a flexible 

approach for analyzing multivariate TS. 

The first paper that used Autoformer and LogSparse 

Transformer is [13,21] for wind forecasting as an 

updated function for GNN, these techniques were 

compared with Multi-Layer Perceptron (MLP) and 

Long Short-Term Memory (LSTM) models and it was 

concluded that the novel approach with Transformer 

and autoformer outperformed LSTM and MLP 

models. 

The authors of [14] used multiple iterative imputation 

using autoencoder-based LSTM for forecasting 

concentration on air pollutants, which also included an 

LSTM autoencoder for identifying and eliminating 

outliers from the dataset followed by forecasting 

PM2.5 concentration using a multivariate LSTM. A 

comparison was carried out between various models 

like 1D convolutional neural network (CNN), gated 

recurrent unit (GRU) and long short-term memory 

(LSTM) and it was concluded that imputation for 

anomaly removal helped to increase the accuracy for 

forecasting air pollution. 
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With the help of real data from Cyber-physical system 

(CPS) considering controlled and physical attacks as 

anomalies the authors of [15] proposed an 

Approximate Projection Autoencoder (APAE) which 

uses autoencoders to create two defenses for attacks 

that include one novel approach for improvising 

robustness by adversarial impact by using optimizing 

latent representations by better reconstruction output. 

It was concluded that combining defenses improves 

attack identification. 

In [16] author proposed two different autoencoders for 

combination learning of node and attributes 

embedding, to detect anomalies on attributed 

networks on several real-world datasets, it was found 

that AnomalyDAE performs better than the state- of-

the-art techniques at the moment. 

The authors of [17] concentrated on the problem of 

detecting the Anomaly for Indoor Air Quality (IAQ) 

which was previously tried to be tackled with the help 

of machine learning algorithms for anomaly detection 

which had several drawbacks this was rectified by 

using deep learning approach for anomaly detection 

which consists of a hybrid model with a combination 

of Long short-term memory (LSTM) and autoencoder 

This approach outperformed the previous models and 

obtained an outstanding accuracy. 

In paper [18] author used Recurrent neural network 

(RNN) which is called Bidirectional Long Short-Term 

Memory (BLSTM) in order to find the quality 

intervals based on forecasts to obtain high coverage 

probability and narrow interval widths for wind speed 

interval prediction in order to predict the 

characteristics of wind energy. 

The literature review covers various machine and deep 

learning algorithms that can be used for anomaly 

detection for spatio- temporal as well as other data. 

Researchers have examined the efficacy of these 

algorithms across diverse fields, including industrial 

systems, finance, cybersecurity, and healthcare. In 

order to improve anomaly detection accuracy, the 

review also covered hybrid approaches, parameter 

tuning, and optimization techniques. Furthermore, it's 

possible that current research has concentrated on 

solving issues with these algorithms' interpretability, 

scalability, and imbalanced datasets. For the most 

recent developments and discoveries in the field of 

anomaly detection using these algorithms, it is 

therefore imperative to refer to the most recent 

literature. 

3. Proposed Methodology 

A. Outline of the methodology 

 

Fig 1: Proposed Flow 
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As described in the Figure 1, spatiotemporal analysis 

of Maharashtra weather dataset is conducted as part of 

this research project with the goal of identifying subtle 

patterns and trends in the meteorological data in both 

the space and time dimensions. To identify 

irregularities and outliers within this primary dataset 

hence leveraging the power of deep learning. The 

utilization of deep learning methodologies holds 

promise for capturing intricate relationships and subtle 

variations in weather patterns, enabling us to discern 

anomalies that may signify significant deviations from 

the norm. This study contributes to the evolving field 

of Spatio-temporal analysis by integrating advanced 

machine learning techniques to enhance our 

understanding of Maharashtra's weather dynamics and 

to fortify our ability to identify anomalous events that 

may have far-reaching implications for climate 

monitoring and prediction. Furthermore, upon the 

successful identification and removal of outliers 

through our deep learning-based anomaly detection 

approach, we lay the foundation for more robust and 

accurate weather forecasting. By eliminating spurious 

data points that could otherwise distort predictive 

models, we enhance the reliability of the dataset, thus 

facilitating more precise and efficient forecasting of 

weather conditions in Maharashtra. 

B. Dataset 

The dataset used in this research was obtained from the 

India Meteorological Department (IMD), Pune, a 

reputable government organization in India. IMD 

operates a network of weather stations, observatories, 

and instruments throughout India, including the state 

of Maharashtra. The dataset encompasses a 

comprehensive collection of weather-related 

parameters, recorded on a monthly basis, and spans 

multiple stations across the state of Maharashtra. It 

spans a duration from the year 2001 to 2021 and then 

some data for 2022 and 2023 and comprises a 

comprehensive collection of meteorological 

parameters recorded across all weather stations 

throughout the state of Maharashtra. These parameters 

include rainfall, temperature, wind speed, evaporation, 

sunshine hours, gull intensity, dust levels, and storm 

occurrences etc. along with latitudes and longitudes of 

the respective stations. Table I shows the list of 

parameters included in the dataset. Figure 2 

demonstrates the analysis for weather distribution by 

district. 

 

Table 1: Features of Dataset 

INDEX Index Number of station 

MN Month 

MMAX Mean Maximum Temp (deg C) 

MMIN Mean Minimum Temp (deg C) 

NO No of Observations 

TMRF Total Rainfall in the Month (mm) 

MWS Mean Wind Speed (kmph) 

MEVP Mean Evaporation (mm) 

MSSH Duration of Sunshine (hrs.) 

LATITUDE Latitude of the Station 

LONGITUDE Longitude of the Station 
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Fig 2: Weather Distribution by District 

In accordance with ethical and legal standards, 

appropriate permissions and access rights were 

obtained from IMD, Pune through their data supply 

portal https://dsp.imdpune.gov.in/ to utilize their 

meteorological dataset for this research. 

Additionally, any necessary data preprocessing and 

quality control procedures were implemented to ensure 

the dataset's integrity and suitability for analysis. 

C. Preprocessing 

Considering Temporal weather data of Maharashtra 

state, there were 49 features which had null values 

which needed to be tackled. As this is a time-series data 

the following optimization imputations are 

implemented. 

Optimization Imputation Technique: Expectation 

Maximization 

Expectation-Maximization (EM) is a statistical 

algorithm commonly used for handling missing or null 

values in time-series data. The algorithm alternates 

between two main steps: Expectation and 

Maximization. When missing data are present in a 

statistical model, the EM algorithm attempts to estimate 

the parameters with the highest likelihood. Below are 

the steps employed in the algorithm: 

1. Initialization: The process begins with an initial set 

of parameter estimates for the time-series model. 

Additionally, missing values are initialized with 

suitable starting values or estimates. 

θ0 represents the time-series model's initial parameter 

estimates. 

2. Expectation Step (E-step): Based on the observed 

data and the current parameter estimates, the algorithm 

determines the expected values of the missing data at the 

E-step. Specifically, the observed data is used as a 

conditional probability distribution to compute missing 

values. The missing values are updated subsequent to 

the conditional probabilities being calculated. 

Q(θ∣θt) = Emissing [log L(θ;observed,imputed)∣observed, 

θt] (1) 

Here, Q - expected log-likelihood function, θ - 

parameter vector, and 

θt - current parameter estimates. 

Given the current parameter estimates and the observed 

data, the expectation is taken for the missing data. 

E(missing∣observed,θt) (2) 

3. Maximization Step (M-step): In the M-step, the 

likelihood function is maximized while accounting for 

both the imputed and observed data. The time-series 

model's parameters are updated by combining imputed 

and observed data. In order to find parameter values 

that maximize the likelihood of both observed data and 

imputed data, the optimization problem will be solved 

as part of this step. 

θt+1=arg maxθ Q(θ∣θt) (3) 

4. Convergence Check: Convergence is checked by 

assessing the change in parameter estimates between 

consecutive iterations. If the change falls below a 

https://dsp.imdpune.gov.in/
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predefined threshold or a maximum number of 

iterations is reached, the algorithm is considered to have 

converged. Otherwise, the E-step and M-step are 

repeated. Check if or if a predefined maximum number 

of iterations is reached, where ϵ is a small threshold. 

∥θt+1−θt∥<ϵ (4) 

5. Iterative Refinement: Steps 2 to 4 are iteratively 

performed until convergence is achieved. The iterative 

nature of the algorithm allows for the refinement of 

parameter estimates and imputed values over 

successive iterations. Additionally, imputation 

techniques of mean, mode, median were also utilized 

and a clean dataset is observed. 

D. Feature Selection 

The feature space's volume increases exponentially with 

the number of features which can lead to the curse of 

dimensionality, making it challenging to build accurate 

and efficient models, especially when the number of 

samples is limited. The dataset contained 49 features 

for all the districts in the Maharashtra state. Enabling 

feature selection significantly improve computational 

efficiency by reducing the number of features without 

sacrificing predictive performance. To assess the 

interdependence among features, a correlation matrix 

was computed for the entire dataset. The correlation 

matrix provided a pairwise correlation coefficient for 

each pair of features, ranging from -1 to 1. Values 

closer to 1 indicate a strong positive correlation, values 

-1 indicate a strong negative correlation, and values 0 

indicate no linear correlation. This coefficient 

quantifies the linear relationship between variables. To 

focus on highly correlated features, a threshold of 0.5 

was set. Features with absolute correlation coefficients 

greater than this threshold were considered highly 

correlated as shown in the Figure 3. The final set of 

features was determined by computing the correlation 

matrix for the selected features and retaining only those 

features with significant correlations. Table 2 gives the 

list of features obtained after feature selection. 

 

Table 2: Selected Features 

MMAX Mean Maximum Temp (deg C) 

MMIN Mean Minimum Temp (deg C) 

HMAX Highest Maximum Temp (deg C) 

LMIN Lowest Minimum Temp (deg C) 

NO No of Observations 

TMRF Total Rainfall in the Month (mm) 

HVYRF Heaviest 24 hrs. Rainfall (mm) 

Humidity Humidity 

MWS Mean Wind Speed (kmph) 

MEVP Mean Evaporation (mm) 

MSSH Duration of Sunshine (hrs.) 

LATITUDE Latitude of the District 

LONGITUDE Longitude of the District 

INDEX Index number of the station 

DISTRICT District Name 

 

Along with the selected columns, we also include district names, latitude and longitude of the regions. 
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Fig 3: Heatmap of selected Features 

E. Proposed System 

1. Models Used: 

Leveraging the capabilities of machine learning and 

deep learning, a diverse set of algorithms are applied 

to the dataset, including One Class SVM, Isolation 

Forest, Autoencoders and Long Short-Term Memory 

based Autoencoders (LSTM) to model complex spatial 

and temporal relationships in the weather data. One-

Class SVM is specifically used to identify anomalies 

by learning a hyperplane that divides normal instances 

from the rest. Isolation Forest is used because it 

partitions the dataset randomly, which allows it to 

isolate anomalies. By encoding and reconstructing the 

data, autoencoders a neural network-based technique 

captures intricate patterns and relationships in the 

data, with anomalies being detected based on high 

reconstruction errors. Furthermore, complex spatial 

and temporal relationships in the weather data are 

modeled using Long Short-Term Memory (LSTM) 

based Autoencoders, which makes them especially 

useful for capturing anomalies in spatiotemporal 

patterns. Combining these algorithms allows for a 

thorough approach to anomaly detection, taking into 

account the dataset's temporal and spatial 

complexities. The proposed system for the anomaly 

detection in the spatio-temporal data as explained in 

the Figure 

4. The working of these models is explained below: 

 

Fig 4: Proposed Methodology 

1.1. One-Class SVM: 

A particular kind of support vector machine intended 

for anomaly detection is the One-Class Support Vector 

Machine (OCSVM) [19]. OCSVM is trained solely on 

normal data, in contrast to traditional SVMs that are 

trained on both normal and abnormal data. Its objective 

is to identify a model of typical behavior and identify 

any departure from this model as an anomaly. One-



International Journal of Intelligent Systems and Applications in Engineering  IJISAE, 2024, 12(12s), 169–182 |  176 

Class SVM (OCSVM) algorithm works well since it 

can represent the typical patterns in the data and 

identify deviations as anomalies. Learning a decision 

boundary that captures the data's typical behavior is 

necessary for One-Class. SVM (OCSVM) to detect 

anomalies in spatiotemporal meteorological data. The 

following are the crucial steps: 

i. Training: OCSVM is trained solely with typical 

spatiotemporal meteorological data examples. It 

gains the ability to define a hyperplane, or a 

collection of hyperplanes, that spans most of the 

typical patterns found in the data. The form and 

flexibility of the decision boundary are determined 

by the selection of the kernel function, also known 

as the radial basis function or RBF kernel, and its 

parameters, such as gamma. One important 

hyperparameter in OCSVM is the nu parameter. It 

manages the trade-off between identifying data 

points as outliers and having a smooth decision 

boundary. It displays an upper bound for the 

fraction of margin errors and a lower bound for 

the fraction of support vectors. 

ii. Testing and Anomaly Detection: The model can 

give new instances of anomaly scores once it has 

been trained. The degree of deviation between the 

instance and the learned normal behavior is 

indicated by the anomaly score's magnitude. For 

every data point, the decision function yields a 

decision value. Generally speaking, an outlier 

(anomaly) is indicated by a negative value, while 

an inlier (normal) is indicated by a positive value. 

iii. Threshold Setting: A threshold is set to categorize 

instances as normal or anomalous based on the 

anomaly scores on a validation set. Anomalies are 

those instances where the scores are higher than 

the cutoff. 

1.2. Isolation forest: 

Another popular algorithm for anomaly detection is 

isolation forest [20], which is an ensemble-based 

anomaly detection algorithm that is particularly 

effective for high-dimensional datasets, such as 

spatiotemporal data. The foundation of the algorithm 

is the notion that anomalies are simpler to identify in 

the feature space than typical occurrences. The 

following describes how to use Isolation Forest for 

spatiotemporal weather data anomaly detection: 

i. Isolation Tree Construction: A random subsample 

of the data (with replacement) is used for every 

tree in the ensemble. To divide the data, a random 

feature is chosen at each node of the tree. Until 

each instance is isolated in its own leaf node, the 

data is recursively divided into two subsets. It is 

anticipated that anomalies will be isolated faster 

than typical cases. 

ii. Model Training: Separate constructions are made 

of several isolation trees. The accuracy of the 

anomaly scores tends to increase with the number 

of trees in the ensemble. 

iii. Anomaly Score Calculation: The average path 

length in the tree ensemble is used to compute an 

anomaly score for every instance. Shorter average 

path lengths suggest that the instance is more 

likely to be an anomaly because they make it 

simpler to isolate. 

iv. Anomaly Detection: A threshold is utilized to 

identify anomalies. Anomalies are defined as 

instances with anomaly scores greater than the 

cutoff. Every instance is predicted by the model to 

be either an outlier (an anomaly) or an inlier 

(normal). 

1.3. Autoencoders 

Neural network architectures known as autoencoders 

are useful for anomaly detection and unsupervised 

learning. Autoencoders are a useful tool for learning a 

compact representation of normal patterns in 

spatiotemporal data. They can be used to identify 

anomalies by evaluating deviations from this learned 

representation. The following describes the use of 

autoencoders for spatiotemporal weather data anomaly 

detection: 

i. Model Architecture: The input data is compressed 

into a lower-dimensional representation (latent 

space) by the autoencoder's encoder component. It 

has one or more dense layers with ReLU-like 

activation functions. The compressed 

representation is used by the decoder to 

reconstruct the input data. It is an inverted mirror 

of the encoder's structure. 

ii. Training: Only typical feature selected 

spatiotemporal weather data instances are used to 

train the autoencoder. The normal patterns are first 

encoded and then decoded by the autoencoder. 

Utilizing the mean squared error loss function and 

a suitable optimizer (such as Adam), compile the 

autoencoder model. 

iii. Reconstruction error: After training, use the 

autoencoder to reconstruct the input data. For 

every instance, calculate the mean squared error 

between the input data and the reconstructed 

output. 

iv. Anomaly Detection: Establish a threshold for the 

error in reconstruction. Reconstruction errors 

greater than this cutoff are regarded as anomalies. 
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Depending on whether an instance's 

reconstruction error is above or below the 

threshold, categorize it as abnormal or normal. 

1.4. LSTM-Autoencoders 

A network architecture mainly used for sequence-

to-sequence learning is (LSTM autoencoder, 

which can be used for anomaly detection in 

spatiotemporal data. 

Below is an overview of the proposed model how 

anomaly detection using LSTM autoencoders operates: 

i. Encoder: The temporal data input sequence is 

processed by the encoder portion of the LSTM 

autoencoder, which then compresses it into a 

fixed-size latent representation. The encoder uses 

LSTM layers to identify patterns and temporal 

dependencies in the input sequence. 

ii. Latent Representation: A compressed, lower-

dimensional representation of the input sequence 

is called the latent representation. It records the 

data's key characteristics and temporal patterns. 

iii. Decoder: The LSTM autoencoder's decoder 

component uses the latent representation to try and 

piece together the original input sequence. The 

decoder also employs LSTM layers to produce a 

sequence that, in theory, ought to resemble the 

input sequence. 

iv. Training: The weather data is used to train the 

autoencoder. The mean squared error (MSE) 

between the input and the reconstructed output 

must be kept to a minimum. In order to reduce the 

reconstruction 

v. error, the input sequences are fed into the model 

during the training phase, and the weights are 

updated. 

 

Fig 5: LSTM-Autoencoders 

Anomaly Detection: After training the LSTM 

autoencoder on the weather data, it can be used for 

anomaly detection in the following way: 

i. Reconstruction Error: Sequence reconstruction 

can be done with the model once it has been 

trained. The mean squared error (MSE) between 

the input sequences and them reconstructed 

counterparts is computed in order to identify 

anomalies. Higher reconstruction error sequences 

are regarded as anomalies. 

ii. Thresholding: A threshold is set on the 

reconstruction error. Anomalies are identified by 

comparing the MSE values with a predefined 

threshold. Data points with MSE above the 

threshold are considered anomalies. 

iii. Anomaly Detection: The anomalies are visualized 

with respect to various features, such as ‘Index’, 

'YEAR,', ‘MN’, 'District,' 'Latitude,' and 

'Longitude.' 

In summary, the above section concluded different 

machine learning and deep learning models that we 

implemented, Autoencoders and LSTM autoencoders 

are based on neural networks, whereas One-Class 

SVM and Isolation Forest are classic machine learning 

algorithms. One-Class SVM, an approach that uses a 

learned hyperplane to identify anomalies; Isolation 

Forest, an unsupervised method that isolates 

anomalies by random partitioning; Autoencoders, 

neural network-based unsupervised models that 

encode and reconstruct data, with anomalies detected 

through high reconstruction errors; and LSTM 

Autoencoders, which use recurrent neural networks for 

sequence data and are especially useful in time series 

anomaly detection, are just a few of the algorithms 

used in anomaly detection. Since each algorithm has 
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unique properties, the appropriateness of each depends 

on the properties of the data and the particular 

requirements for detection. 

4. Experimental Results 

The study explored various machine learning and deep 

learning including One-Class SVM, Isolation Forest, 

Autoencoders and LSTM-Autoencoders. The Figure 6 

shows the visualization of loss and validation loss 

obtained by performing various epochs which was 

carried out to obtain minimum loss. Following this, 

the performance of each model and the number of 

anomalies detected are respectively are shown in the 

below Table 3. 

 

Fig 6: (A). Epochs Vs Loss for Autoencoders, (B). Epochs Vs Loss for LSTM Autoencoders 

 
 

Fig 7: (A.) Reconstruction Errors for Autoencoders, (B). Reconstruction Errors for LSTM Autoencoders 

In Figure 7 (A.) The reconstruction errors are visualized 

using the histogram which explains that the ranges of 

reconstruction errors for Autoencoders is between 0.02 

to 0.05 whereas in (B) the reconstruction errors of 

LSTM-AE ranges from 0.0015 to 

0.12 which concludes that the visualization in fig(A) is 

right skewed while the visualization in fig(B) is equally 

distributed resulting to obtain appropriate 

reconstruction error which can further be used to decide 

the value of threshold. 

The Table 3 shows the comparative analysis of various 

models like One class SVM, Isolation Forest, 

Autoencoder and LSTM autoencoders where 

parameters like validation loss mean construction error, 

threshold and number of anomalies detected were noted. 

One class SVM and Isolation Forest did not detect the 

appropriate number of anomalies. On comparison it was 

observed that Autoencoders detected anomalies but was 

sensitive to noisy data therefore anomalies detected 

were not accurate whereas LSTM autoencoder had 

detected anomalies accurately where threshold was 

considered as 0.5638 and 0.5733 respectively 

 

 

 

 

 



International Journal of Intelligent Systems and Applications in Engineering  IJISAE, 2024, 12(12s), 169–182 |  179 

Table 3: Comparative Analysis of applied Models 

 

. 

 

Fig 8: Anomalies detected with respect to Index, Year, Month, Latitude, Longitude, Districts 

Figure 8 visualizes the representation of anomalies 

with scatter plots with respect to Index, Year, Month 

Latitude, Longitude and Districts. These scatter plots 

contribute to a holistic understanding of anomaly 

distribution across spatial locations, district and time. 

Whereas Figure 9 is a 3D representation of the 
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respective features which helps understanding the 

spread of anomaly. These 3D plots offer advance 

visualizations of anomalies providing 

multidimensional perspective among district, spatial 

coordinates and temporal dynamics. 

 

Fig 9: 3D representation of the respective reconstruction errors 

 

Fig 10 (A): Anomalies detected by autoencoders    Fig 10 (B): Anomalies detected by LSTM-Autoencoders 

There were around 751 anomalies detected by 

autoencoders as shown in the Figure 10 (A) whereas 

the number of anomalies detected by LSTM-

Autoencoders were 455. The difference in the 

anomalies found by the two models indicates that 

autoencoders are sensitive to finding noisy or odd 

patterns in the dataset. The observed variations in 

anomaly detection results are probably due to the 

unique traits and advantages of LSTM-Autoencoder 

model, particularly in capturing spatial and temporal 

dependencies. Additional examination of the 

characteristics of the anomalies and the performance 

indicators of each model may shed light on how well 

each one captures and identifies anomalous occurrences 

in the data. 

 

5. Conclusion 

In conclusion, this research presents a holistic approach 

to Spatio-temporal analysis and anomaly detection in 

the Maharashtra weather dataset, with a specific focus 

on enhancing forecasting capabilities. Through 

meticulous feature selection and data pre- processing, 

we curated a refined dataset that captures the intricacies 

of meteorological dynamics in the region. Leveraging 

the power of Long Short-Term Memory (LSTM) based 

autoencoders, our anomaly detection methodology 

demonstrated effectiveness in identifying and 

eliminating outliers. Improved accuracy and resilience 

show that the successful removal of anomalies cleared 

the path for the creation of more dependable forecasting 

models. In order to show the spatial distribution of 

anomalies and give a more nuanced understanding of 

how weather irregularities manifest in different parts of 
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Maharashtra, we conducted visualizations at the district 

level. The inclusion of station-level temporal 

visualizations in this spatial analysis allows for a 

comprehensive examination of the temporal patterns 

associated with detected anomalies. Incorporating 

visualizations not only facilitates the interpretation of 

detected anomalies but also enhances the intuitive 

understanding of the spatiotemporal dynamics of the 

dataset. The clear and understandable depiction of 

anomalous weather events provided by these graphics 

can be beneficial to meteorologists, policymakers, and 

stakeholders alike. The data acquired from this research 

may improve weather forecasting, guarantee more 

precise forecasts, and support the building of climate 

resilience in the face of changing environmental 

challenges. 

6. Future Work 

This study provides opportunities for more research in a 

number of areas. First, examining the integration of 

additional data sources such as satellite imagery or 

remote sensing could enhance the precision and detail 

of the spatiotemporal analysis. Techniques for anomaly 

detection can be made better. Adjusting 

hyperparameters, exploring ensemble methods, and 

experimenting with different deep learning 

architectures can all help improve the anomaly 

detection model's sensitivity and specificity. Analyzing 

comparisons with other states or regions could yield 

important information about how generalizable the 

anomaly detection and forecasting techniques created 

for Maharashtra are. 
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