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Abstract: Path planning is crucial for robotics, enabling robots to find collision-free routes from their current positions to target positions. 

The Artificial Potential Field (APF) approach utilizes attractive and repulsive fields to guide robots towards targets while avoiding 

obstacles. However, the conventional APF's repulsive potential equation can yield suboptimal results due to local minima. To address 

this, a novel method called Multi-Objective Evolutionary Artificial Potential Field (MOE-APF) is introduced. MOE-APF modifies the 

repulsive potential equation and employs the membrane computing and Genetic Algorithm (GA) to optimize a new set of APF 

parameters. The fitness function considers multiple objectives: path length, smoothness, success rate, and safety. A comparison with a 

recent method called Membrane Evolutionary Artificial Potential Field (memEAPF) shows that MOE-APF significantly enhances path 

quality, optimization time, and success rate across various environments. MOE-APF's versatility allows it to tackle path planning 

challenges involving non-holonomic robots, multiple robots, industrial manipulators, and dynamic obstacles. 

Keywords: Genetic Algorithms, Optimization, Artificial Potential Field; Path Planning; Mobile Robots. 

1. Introduction 

Path planning for mobile robots in indoor environments 

is a crucial aspect of autonomous navigation. With the 

rapid advancements in robotics and artificial 

intelligence, mobile robots are increasingly being 

deployed in various indoor settings such as warehouses, 

hospitals, and manufacturing facilities [1]. The goal of 

path planning is to enable these robots to efficiently and 

safely navigate through complex and dynamic 

environments, avoiding obstacles and optimizing their 

trajectories [2]. 

Path planning approaches can be classified into classical, 

heuristic [3, 4], and Learning-based approaches [5, 6]. 

Learning-based approaches use machine learning to 

learn path planning from data [7], by imitation [8], or 

using Reinforcement Learning models [9]. Hybrid 

classic and heuristic path planning [10] combines the 

strengths of both classic and heuristic algorithms to 

optimize path-finding in complex scenarios. Classic 

algorithms [11], such as Dijkstra’s algorithm or A* 

search[12], provide a systematic and thorough 

exploration of the search space, guaranteeing an optimal 

solution. However, they can be computationally 

expensive and struggle with large-scale environments. 

On the other hand, heuristic algorithms [13], like Genetic 

Algorithms (GA) or Simulated Annealing, introduce 

randomness and heuristics to efficiently explore the 

search space and quickly converge towards near-optimal 

solutions. By integrating these two approaches, hybrid 

approaches [14] can leverage the efficiency and 

convergence speed of heuristics while ensuring the 

optimality provided by classic algorithms. Hybrid 

approaches strikes a balance between computational 

efficiency and solution quality, making it suitable for 

real-time path planning applications in dynamic and 

complex environments. 

Amongst classic approaches, Artificial Potential field 

(APF) has recently gained more popularity due to its 

elegant mathematical model. However, it has some 

inherent limitations that affect its performance [15]. A 

review of previous studies addressed these limitations 

either by modifying the field equations or by integrating 

another algorithm is introduced in [16]. This paper 

introduces a novel method called Multi-Objective 

Evolutionary Artificial Potential Field (MOE-APF), 

where a multi-objective meta-heuristic algorithm is 

employed for automatic tuning of the modified APF 

parameters.  

The remainder of this paper is organized as follows. In 

section 2, the conventional APF approach is described. 

In section 3, the memEAPF method is explained and its 
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limitations are discussed. The proposed MOE-APF 

method is described in section 4. Section 5 contains an 

investigation for hyper-parameter selection of the 

proposed MOE-APF method. The simulation results and 

the analysis are discussed and an overview of path 

quality in different test environments is provided in 

section 6. The paper is concluded in section 7. 

2. Related Work 

APF was first introduced in by Khatib [17] based on 

artificial forces exerted by attractive field of target 

position and repulsive fields of obstacles. The total 

resultant force controls the MR towards its target 

position while repelling it away from obstacles. The total 

potential field and the force applied to the MR are 

calculated, respectively, by: 

𝑈𝑡𝑜𝑡𝑎𝑙(𝑞) = 𝑈𝑎𝑡𝑡(𝑞) + 𝑈𝑟𝑒𝑝(𝑞),, (1) 

𝐹(𝑞) = −𝛻𝑈𝑡𝑜𝑡𝑎𝑙 , (2) 

where 𝑈𝑡𝑜𝑡𝑎𝑙(𝑞) is the total potential field applied on the 

MR at position 𝑞 = [𝑥, 𝑦], 𝑈𝑎𝑡𝑡 is the target attractive 

field, and 𝑈𝑟𝑒𝑝 is the total repulsive field exerted by 

obstacles, and 𝐹(𝑞) is the total resultant force exerted on 

the MR.  

Both attractive and repulsive field equations contain 

proportional constants (ka and kr) that affect the 

generated path. The traditional practice of depending on 

the user to change these gains by try and error is a 

limitation of the classic APF method [14]. Moreover, the 

probability that the MR may fall in a local minimum 

position due to the equilibrium of fields is a common 

problem inherent in the APF method. The limitations of 

the classical APF approach were discussed in [15], which 

were categorized into four main problems; trap situations 

due to local minima (cyclic behavior), no passage 

between closely spaced obstacles, oscillations in the 

presence of obstacles, and oscillations in narrow 

passages. 

Several modifications were made to enhance the 

effectiveness of the APF path planning method. In one 

category, the repulsive potential field equation was 

modified by adding the relative distance between the MR 

and the target position into the repulsive field equation 

so that there is a single global minimum at the target 

position [18]. The modified force exerted by an obstacle 

on the MR at position q can be calculated by: 

𝐹𝑂(𝑞) = 𝑘𝑟 (
1

𝜌
−

1

𝜌0
) ×

1

𝜌2 × (𝑞𝑡 − 𝑞), (3) 

where the subscript o denotes the obstacle, 𝑘𝑟 is the 

repulsive proportional constant, 𝜌 is the shortest distance 

between the MR and obstacle, 𝜌0 is the distance of 

influence for the obstacle, and 𝑞𝑡 is the target position.  

In a second category, meta-heuristic algorithms 

including GA [19], Particle Swarm Optimization (PSO) 

[20, 21], Ant Colony Optimization (ACO) [22], and 

Membrane Evolutionary Algorithm [23] were employed 

to optimize the APF parameters. Specifically, these 

algorithms were used to fine-tune the attractive 

proportional (𝑘𝑎), repulsive proportional (𝑘𝑟), and step 

size (𝜂) parameters, resulting in improved path planning 

performance. In a third category, a rotational component 

was introduced to the repulsive field, guiding the mobile 

robot along the contour of obstacles rather than simply 

repelling it away [24-26]. In addition, the Wall-

Following (WF) method was used to enable the MR to 

escape from local minima positions by following the 

obstacle contour or simply by adding a virtual force 

component that repel the MR away from this position 

[18, 27]. These modifications collectively enhance the 

ability of the APF algorithm to navigate through complex 

environments and optimize path calculation. 

Recently, the APF was employed with different 

modifications in many applications. In [28], the Dynamic 

Artificial Potential Field (D-APF) was employed for 

Unmanned Aero Vehicle (UAV) to follow Ground 

Moving Targets (GMT). Both attractive and repulsive 

functions in D-APF were modified to include the relative 

distance and speed between the UAV and both of the 

target and obstacles. In [29], the Black Hole Potential 

Field (BHPF) was employed with a Reinforcement 

Learning (RL) model to solve the local stable points in 

multi-target environments such as warehouses. The 

attractive potential field was combined with the black-

hole domains so that attractive force guides the MR to 

the nearest target directly without being affected by other 

targets’ fields. The RL model enhanced the adaptability 

of the MR to the changes of obstacles types and the 

dynamic targets. In [30], a modified ACO algorithm was 

employed with a dynamic step-size selection mechanism 

to improve the APF performance. An initial path was 

generated using a global known map. Following that, a 

local planner was applied to avoid unknown obstructions 

detected by the USV sensors along the initial path. In 

[31], the Virtual Potential Field Detection Circle Model 

(VPFDCM) was introduced. The VPFDCM was based 

on an adaptive selection of the detection radius of 

obstacles around the MR. In addition, a Long Short Term 

Memory (LSTM) model is employed to predict the next 

state of dynamic obstacles based on saved information 

from previous observations. A reward was evaluated 
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based on safety factors and was used in a Q-Learning 

algorithm to optimize the VPFDCM.  

In [32], the Predictive Artificial Potential Field (PAPF) 

was introduced. The key idea behind the PAPF was the 

prediction of local target positions that minimize energy 

consumption by reducing the MR steering actions. An 

initial path was generated and a selection strategy was 

employed to predict the position of next local target. A 

new path was calculated to guide the MR to the local 

target instead of the main target. The PAPF managed to 

generated smooth paths with minimized steering actions. 

In addition, for local trap positions, a heavy particle 

called top quark was placed in the local minimum 

position to repel the MR away.  

The proposed method in this study is based on the 

memEAPF method introduced in [23]. The novelty of the 

proposed method is that it includes multiple objectives in 

the evaluation of the calculated paths. In addition, the 

repulsive field is modified to include a rotational 

component which helps increasing the success rate of 

solutions generated by the GA and membrane 

computing.  The next section describes the previous 

memEAPF method and the key strength and weakness 

points. 

3. Previous MEMEAPF 

In [23], an enhanced APF algorithm  called Membrane 

Evolutionary Artificial Potential Field (memEAPF) is 

introduced. The memEAPF combined membrane 

computing with the GA to optimize the APF parameters 

which were 𝑘𝑎, 𝑘𝑟, and  𝜂. The attractive field of the 

target position is calculated by: 

𝑈𝑎𝑡𝑡(𝑞) =
1

2
𝑘𝑎(𝑞𝑡 − 𝑞)2. (4) 

The total the repulsive field exerted by the obstacles is 

calculated by: 

𝑼𝒓𝒆𝒑(𝒒) = ∑ 𝑼𝒐(𝒒)𝒐 , (5) 

where 𝑼𝒐(𝒒) = {
𝟏

𝟐
𝒌𝒓 (

𝟏

𝝆
−

𝟏

𝝆𝟎
)

𝟐

𝝆 ≤ 𝝆𝟎

𝟎 𝝆 > 𝝆𝟎

 (6) 

In the memEAPF, the set of solutions, called population 

[33], is divided into subgroups, called membranes. Each 

elementary membrane contained arrays of multisets of 

objects, called individuals, comprising sets of 

parameters, which were the proportional gains and step 

size. The memEAPF employed a one-level membrane 

structure with rules such as membrane merger and 

division. The membrane merger played a beneficial role 

in enhancing information communication among 

individuals, while the membrane division contributed to 

improving the search capability. Evolution rules 

consisting of merge, communication, and divide stages 

governed the behavior of the elementary membranes. 

The computational process consisted of several steps. In 

the first step, each elementary membrane evolved the 

individuals within it using an evolutionary artificial 

potential field (EAPF). Where the GA applied evolution 

cycles with path length resulting from the APF as the 

fitness value of every individual solution. Each 

individual solution was represented by a set of 

parameters [𝑘𝑎, 𝑘𝑟 , 𝜂]. The primary objective of this 

stage was to identify the best individual solution within 

each elementary membrane. 

In the second step, all the elementary membranes merged 

into a single membrane, which contained all the 

individuals. Communication rules were applied. Initially 

the rules separated the best individual from each 

elementary membrane to identify the global best 

individual [𝑘𝑎, 𝑘𝑟 , 𝜂]𝑏𝑒𝑠𝑡. A copy of this global best 

individual was then transmitted to the skin membrane to 

preserve the current global best solution. The 

communication process continued within the merged 

membrane, facilitating the exchange of information 

among the elementary membranes that would be formed 

in the subsequent step. Throughout the merger process, 

each subpopulation was maintained. The worst 

individuals, constituting a portion of the subpopulation, 

were replaced by copies of the best individuals to 

enhance the subpopulation within each elementary 

membrane. 

The memEAPF demonstrated the capability to generate 

feasible paths in both static and dynamic environments, 

undergoing testing in both sequential and parallel 

implementations. However, the optimization process 

proved to be excessively time-consuming, exceeding 300 

seconds in certain test scenarios for two reasons. First, 

the step size was an optimization parameter, which could 

be selected in small values. Small step size resulted in a 

large number of configuration points to be calculated 

along the paths. Second, the conventional field equations 

made it easy to fall in local minima. Therefore, the 

memEAPF suffered from an increase in the fail rate. 

Accordingly, the memEAPF required a large number of 

generations to guarantee finding parameters that could 

generate a feasible path. In addition, using a fixed 

distance of influence in the memEAPF method increased 

the fail probability to pass through narrow passages. 

These limitations make the memEAPF not suitable for 

real-time applications. 

The evolutionary algorithm employed a sole criterion for 

selecting the best solutions, which was the path length. 
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The absence of path smoothness as a selection criterion 

in the fitness function gave rise to oscillations in the 

resulting paths. In this paper, the shortcomings of the 

memEAPF are addressed by exploring a more 

convenient path planning method. The proposed MOE-

APF method incorporates multiple objectives, which are 

minimizing the optimization time and path length, and 

improving path smoothness, path safety, and success rate 

in finding feasible paths that overcome the local minima 

positions. 

4. The Proposed MOE-APF Method 

The MOE-APF method is based on a modified APF 

repulsive field together with an evolutionary algorithm 

that optimizes a different set of APF parameters. To 

overcome the local minima and increase the success rate, 

the repulsive potential field is modified by adding two 

factors. The first factor, which was proposed in [18], is 

adding the relative distance between the robot and the 

target position to ensure that there is only one global 

minimum at the target position. The second factor, which 

was proposed in [25, 27], is adding a rotation matrix with 

angle 𝜃𝑟 so that the obstacle forces the MR to rotate 

around it rather than just repelling the MR away from it. 

The rotation angle used by Li [25] was set to zero or 60 

based on a detection criteria for a local minima position. 

In [26], the rotation angle was set for each obstacle 

separately to either 90 or -90 based on the angle between 

the MR trajectory and the vector from the MR and the 

obstacle centroid. 

In the proposed MOE-APF method, both factors are 

incorporated. The rotation angle is added to the 

optimization parameter that the evolutionary algorithm 

tries to get the best fit value. Moreover, to reduce 

computation time and enhance the path quality, a limited 

view angle of 
𝜋

3
 is set so that only obstacles lying between 

the robot and the target will affect the MR movement. 

The new repulsive force exerted by an obstacle can be 

calculated by: 

𝐹⃑𝑜(𝑞) = {
|
cos(𝜃𝑟) − sin(𝜃𝑟)

sin(𝜃𝑟) cos(𝜃𝑟)
| × 𝑘𝑟 (

1

𝜌
−

1

𝜌0

) ×
1

𝜌2
× ‖𝑞𝑡 − 𝑞‖ ×

𝑞𝑂𝑅⃑⃑ ⃑⃑ ⃑⃑ ⃑

‖𝑞𝑂𝑅⃑⃑ ⃑⃑ ⃑⃑ ⃑‖
𝑖𝑓 |𝜃𝑅𝑂−𝑅𝑇| <

𝜋

3
 𝑎𝑛𝑑 𝜌 ≤ 𝜌0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (7) 

where 𝜃RO−RT is the angle between the vector from the 

MR to the target and the vector from the MR to the 

obstacle, and 𝑞𝑂𝑅⃑⃑ ⃑⃑ ⃑⃑ ⃑ is the vector from the obstacle position 

to the MR position. 

Solving the local minima problem increases the success 

rate for the APF algorithm, which in turn reduces the 

number of generations required to converge to a feasible 

path. Moreover, the need for adapting the step size to 

each environment does not exist anymore. Instead, a 

fixed value can be used based on a statistical 

investigation. The selection of step size is discussed in 

the next section. 

The membrane computing and GA are used to optimize 

a different set of APF parameters, which are the 

attractive field proportional 𝑘a, the repulsive field 

proportional 𝑘𝑟, the distance of influence for obstacles 

𝜌0, and the rotational angle of repulsive field 𝜃𝑟. In the 

MOE-APF method, the distance of influence is added to 

the set of optimization parameters so that the algorithm 

can choose a small value in narrow passage cases and the 

MR can move smoothly towards the target position. 

The fitness function used by the evolutionary algorithm 

in MOE-APF is modified to consider multiple objectives, 

which are path length, path smoothness, success rate, and 

path safety. The modified fitness function can be 

calculated by:  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑙 + 𝑟 + 𝐶𝑓 + 𝐶𝑐 (8) 

, where 𝑙 is the path length, 𝑟 is the path roughness, 𝐶𝑓 is 

the fail penalty, and 𝐶𝑐 is the collision penalty.  

The fail penalty and the collision penalty are large 

constants equal to 200 and 400 respectively. The fail 

penalty is added to the fitness value in case the resulting 

path cannot reach the target position. Similarly, the 

collision penalty is added to the fitness value in case the 

resulting path intersects any of the obstacles. Both 

penalty constants are added to the fitness value to mark 

the set of APF parameters [𝑘𝑎, 𝑘𝑟 , 𝜌0, θr] that would 

result in bad solutions and so it will be eliminated in the 

selection stage of the evolutionary algorithm. The multi-

objective path planning was introduced in [34] and 

included path length, path smoothness, and path safety. 

Path smoothness was calculated in terms of the absolute 

difference in orientation between two successive 

configuration points along the path. Meanwhile the path 

safety was calculated in terms of the minimum distance 

between the MR and closest obstacle along the path. In 

the proposed MOE-APF, the path safety is added as a 

constant number to reduce the computation complexity, 

and the path length and path roughness are calculated by: 

𝑙 = ∑ |𝑞𝑖+1 − 𝑞𝑖|
𝑁−1
𝑖=1 ,  (9) 

 𝑟 = ∑ (𝜃𝑖+1 − 𝜃𝑖)
2𝑁−1

𝑖=1 , (10) 

where 𝜃𝑖 is the MR heading angle with regard to the 

environment frame at configuration point number 𝑖, and 

𝑁 is the total number of configuration points in the 

resulting path. 

The change in heading angle is squared in roughness 

calculation because the absolute value is not a good 

indicator for path smoothness as can be shown in Fig 

1.The three paths shown in Fig 1 have the same value of 
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total absolute change of orientation. However, it is 

obvious that path (a) is the best trajectory for the MR, 

path(b) is intermediate, while path (c) is the worst. This 

is because the sudden change in orientation means that 

the MR should stop and applies a steering command. It 

then continues the path and this will take more travel 

time. The settings of the MOE-APF and the memEAPF 

are shown in Table 1. 

 

 

 (a) (b) (c)  

Fig 1. Shows three paths with equal total absolute change of orientation equals to 
𝛑

𝟐
, while summation of squared 

change is 0.352 for path (a), 0.822 for path (b), and 2.47 for path (c). 

Table 1: Settings of the memEAPF and the proposed MOE-APF method 

Parameter The memEAPF method The proposed MOE-APF method 

Optimized parameters 𝑘𝑎, 𝑘𝑟 , 𝑎𝑛𝑑 𝜂 𝑘𝑎, 𝑘𝑟 , 𝜌0 𝑎𝑛𝑑 𝜃𝑟 

Fixed parameters 𝜌0 = 2𝑟𝑜 , 𝑎𝑛𝑑 𝜃𝑟 = ±
𝜋

2
 𝜂 = 0.4 𝑚 

Number of membranes 2, 4, 8, and 16 2 

Total population size 16 in each membrane 64 in total 

Selection rate 0.5 0.2 

Mutation rate 0.2 0.15 

Number of generations 100 10 

Max configuration points 2000 50 

Range of 𝑘𝑎 and 𝑘𝑟  [0, 10] [0, 5] 

Fitness function Path length Path length, roughness, and safety 

5. Investigating the Selection of Hyper-

Parameters 

5.1.  Selection of step size 

A comprehensive test is conducted to study the effect of 

step size on path quality in terms of path length, 

optimization time, path smoothness, success rate and 

path safety. A range from 0.05 to 1.00 meter with 

separation 0.05 meter is examined against the set of 12 

test environments. A score function is used to evaluate 

the performance of each step size value. The score 

function includes the set of performance measures, 

which can be calculated by: 

where 𝑙𝜂 , 𝑡𝜂 , and 𝑟𝜂  are the normalized path length, 

normalized optimization time, and normalized path 

roughness respectively evaluated for a step size 𝜂. 𝐹𝜂 and 

𝐶𝜂 is the number of fails and collision cases for a step 

size 𝜂. 𝐹 and 𝐶 are the total number of fails and collision 

cases for all tested step size values.   

𝑠𝑐𝑜𝑟𝑒(𝜂) =  √𝑙𝜂
2 + 𝑡𝜂

2 + 𝑟𝜂
2 + 10 × (

𝐹𝜂

𝐹
+

𝐶𝜂

𝐶
) 

, 
(11) 
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A total of 3000 independent runs of the MOE-APF are 

conducted for each step size value divided equally for 

each test environment. For each run, the same initial 

population is used with all step size values so that the 

only varied factor is the step size itself. The average path 

length, average optimization time, and average path 

roughness are recorded in 

Table 2 with the number of fails and collision cases. The 

minimum, maximum, and range values are calculated to 

get the normalized value of each performance measure in 

each test case. The normalized value of some 

performance measure (𝑝) can be calculated by: 

𝒑𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 =
𝒑−𝒑𝒎𝒊𝒏

𝒑𝒎𝒂𝒙−𝒑𝒎𝒊𝒏 
. (12) 

To figure out how the step size affects path safety, Fig 2 

shows how a large step size can lead to a higher collision 

probability. The red circles represent the obstacle, the 

small green circle represents the target position, and the 

rectangles represents the MR at successive time instants. 

The dashed line represents the limit distance of influence 

(ρ0) for the repulsive field exerted by the obstacle.  Fig 2 

(a) shows a scenario where the resultant potential field at 

a position outside the distance of influence can guide the 

MR towards the obstacle. Therefore, making a large step 

in this direction will cause a collision. Meanwhile, a 

small step size, as shown in Fig 2 (b), allows the MR to 

recalculate its direction once it becomes inside the 

distance of influence of the obstacle before reaching the 

obstacle. 

  

(a) large step size (b) small step size 

Fig 2: shows the effect of large step size on collision probability of the MR 

Table 2 shows the resultant performance measures, along 

with the corresponding score value calculated by (11) for 

each step size. As shown in the results in 

Table 2, a small step size results in shorter and smoother 

paths. However, there is an increase in the number of 

failed cases due to the local minima. In addition, the 

optimization time significantly increases due to the large 

number of configuration points in the path. On the other 

hand, a large step size improves the optimization time 

and the success rate. This is because a large step size 

enables the MR to cross local minima spots that may 

appear along the path. However, a large step size 

increases path roughness and path length. This is because 

large step size leads to a significant change in field 

distribution between every two successive configuration 

points. As a result, the MR suffers from a sudden change 

in orientation at every position, which, in turn, increases 

the path roughness. To sum up, there is a tradeoff 

between the performance measures that are considered in 

this study. The score value calculated by (11) is shown 

in Fig 3 to give an overview about the performance of 

each step size. 

Table 2: Performance measures of memEAPF for each tested value of step size. 

 Step size Path 

length 

Optimization 

time 

Path 

roughness 

Passed 

Cases 

Failed 

Cases 

Collision Score 

 0.05 7.492 1.307 0.702 2975 24 1 4.544 
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Fig 3: The relation between score value and the step size 

Though the conducted investigation, it can be concluded 

that a step size of 0.4 meters gives the best performance 

in terms of path length, path smoothness, optimization 

time, success rate, and path safety. This value is used in 

all upcoming tests. 

5.2. Selection of hyper-parameters for meta-

heuristic algorithms 

A comprehensive test is done to select the best hyper-

parameters for the proposed MOE-APF using 

MATLAB. The MOE-APF algorithm is evaluated by 

varying the number of membranes, selection rate, and 
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 0.1 7.555 0.750 0.783 2987 12 1 2.377 

 0.15 7.526 0.552 0.697 2986 12 2 2.279 

 0.2 7.554 0.458 0.750 2993 4 3 1.218 

 0.25 7.591 0.398 0.885 2994 5 1 1.292 

 0.3 7.628 0.361 0.885 2998 1 1 0.764 

 0.35 7.705 0.331 1.033 2997 3 0 1.250 

BEST 0.4 7.712 0.312 0.851 2999 0 1 0.735 

 0.45 7.766 0.291 0.977 2998 1 1 1.111 

 0.5 7.788 0.277 0.948 2997 1 2 1.236 

 0.55 7.764 0.262 0.906 2996 0 4 1.231 

 0.6 7.785 0.251 0.959 2998 0 2 1.098 

 0.65 7.811 0.235 0.952 2994 1 5 1.631 

 0.7 7.772 0.233 1.088 2996 0 4 1.456 

 0.75 7.792 0.226 1.237 2990 0 10 2.390 

 0.8 7.856 0.221 1.166 2985 4 11 3.079 

 0.85 7.761 0.201 0.977 2986 1 13 2.476 

 0.9 7.779 0.189 1.072 2993 0 7 1.792 

 0.95 7.779 0.195 1.105 2992 0 8 1.950 

 1 7.901 0.205 1.230 2989 1 10 2.697 

Min  7.492 0.189 0.697     

Max  7.901 1.307 1.237     

Range  0.409 1.118 0.540     
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mutation rate. The tested range for each varied hyper-

parameter is recorded in Table 3

Table 3: The range of each varied hyper-parameter of meta-heuristic algorithms 

Hyper-parameter Minimum value Maximum value Step 

Number of membranes 2 4 2 

Selection rate 0.10 0.50 0.05 

Mutation rate 0.05 0.80 0.05 

 

A total of 69120 independent runs are conducted with 

240 runs for each unique set of hyper-parameters 

(selection rate, mutation rate, number of membranes) 

distributed equally over the 12 test environments. The 

results indicate that setting the step size to 0.4 meters 

reduces the probability of fails and collisions to 0.00032 

so that fail and collision cases can be considered as 

outlier cases and neglect their part in score equation. The 

new score value in this test is calculated as: 

𝒔𝒄𝒐𝒓𝒆(𝒑) =  √𝒍𝒑
𝟐 + 𝒕𝒑

𝟐 + 𝒓𝒑
𝟐 , (13) 

where 𝑝 is the hyper-parameter for which the score is 

calculated. 

The performance measures obtained using this score 

function is recorded in Table 4 and Table 5, showcasing 

the results for each hyper-parameter range of values. 

Furthermore, Fig 4 and Fig 5 are added to visualize the 

performance measures, allowing for a comparative 

analysis of the hyper-parameters performance and an 

easy selection of best value. 

Table 4 and Fig 4 show the calculated score for each 

tested selection rate value. Each value of recorded path 

length, optimization time and path roughness is an 

average of 7680 runs. The results show that increasing 

the selection rate narrows the selection of parents, 

reducing diversity and leading to lower-quality solutions. 

Meanwhile, setting the selection rate to low percentage 

maintains a few good parents in next generations. A 

selection rate of 0.2 is proved to be optimal because it 

maintains a diverse population, allowing for exploration 

of the solution space and avoiding local optima. 

Therefore, there is a balance between exploration and 

exploitation, resulting in high-quality solutions 

 

Table 4: Performance measures of MOE-APF for each tested value of selection rate. 

 
Selection 

rate 

Path 

length 

Optimization 

time 

Path 

roughness 

Passed 

cases 

Failed 

cases 

Collision 

cases 
Score 

 0.1 7.715 0.403 1.152 7667 2 11 0.742 

 0.15 7.715 0.406 1.213 7675 1 4 1.015 

Best 0.2 7.714 0.413 1.010 7678 0 2 0.362 

 0.25 7.709 0.421 1.085 7680 0 0 0.739 

 0.3 7.712 0.423 1.118 7678 0 2 0.892 

 0.35 7.722 0.427 1.026 7679 0 1 0.877 

 0.4 7.727 0.428 1.105 7679 1 0 1.093 

 0.45 7.748 0.433 0.991 7678 0 2 1.414 

 0.5 7.740 0.429 1.011 7679 1 0 1.201 

Min  7.709 0.403 0.991     

Max  7.748 0.433 1.213     

Range  0.039 0.029 0.222     
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The mutation rate in GA is a critical parameter that 

affects the exploration of the search space and the 

diversity of the population. Table 5 shows the recorded 

performance measures for each tested mutation rate 

together with the score value calculated by equation (13). 

Each value of recorded path length, optimization time 

and path roughness is an average of 4320 independent 

runs. The results indicate that increasing the mutation 

rate beyond 0.15 decreases the quality of the solutions. 

This occurs because a higher mutation rate leads to 

excessive exploration, causing the algorithm to lose the 

beneficial genetic information acquired through previous 

generations. Consequently, the population may struggle 

to converge towards optimal solutions and may exhibit 

reduced performance. Meanwhile, decreasing the 

mutation rate below 0.15 results in bad exploration and 

maintaining the same properties of initial parents through 

all generations.  Therefore, the results prove that a 

mutation rate of 0.15 achieves a balance between 

exploration and exploitation. This balance allows for the 

introduction of new genetic material while preserving the 

valuable information needed for high-quality solutions in 

a GA. Fig 5 visualizes the calculated score for each tested 

mutation rate value 

 

Table 5: Performance measures of MOE-APF for each tested value of mutation rate 

 
Mutation 

rate 

Path 

length 

Optimization 

time 

Path 

roughness 

Passed 

cases 

Failed 

cases 
Collision Score 

 0.05 7.746 0.376 1.340 4310 0 10 1.269 

 0.1 7.696 0.383 1.102 4317 0 3 0.552 

Best 0.15 7.679 0.397 1.012 4319 1 0 0.421 

 0.2 7.675 0.407 0.889 4319 0 1 0.443 

 0.25 7.674 0.406 1.051 4317 0 3 0.566 

 0.3 7.705 0.416 1.009 4317 1 2 0.722 

 0.35 7.693 0.419 1.003 4319 0 1 0.703 

 0.4 7.728 0.423 0.875 4320 0 0 0.881 

 0.45 7.730 0.429 1.053 4320 0 0 1.040 

 0.5 7.721 0.431 1.105 4319 1 0 1.050 

 0.55 7.731 0.435 1.003 4320 0 0 1.070 

 0.6 7.744 0.436 1.017 4320 0 0 1.172 

 0.65 7.755 0.438 1.135 4319 1 0 1.357 

 

Fig 4: Bar chart of score value calculated for each tested selection rate 
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 0.7 7.767 0.441 1.003 4317 1 2 1.385 

 0.75 7.761 0.443 1.332 4320 0 0 1.657 

 0.8 7.755 0.447 1.332 4320 0 0 1.651 

Min  7.674 0.376 0.875     

Max  7.767 0.447 1.340     

Range  0.093 0.071 0.465     

 

 

Fig 5: Bar chart of score value calculated for each tested mutation rate 

The number of membranes does not show a significant 

effect on the generated path quality. Therefore, the 

number of membranes is set to 2 to reduce the execution 

time resulted by membranes operations. This systematic 

testing approach, incorporating tables and figures, 

ensures an effective selection of hyper-parameters and 

facilitates improved optimization outcomes for the 

proposed MOE-APF algorithm. 

6. Testing and Results 

The performance of proposed MOE-APF is compared 

with the memEAPF, where the following settings are 

followed: 

• The memEAPF and the proposed MOE-APF are 

tested against a series of 12 test environments, which 

represent multiple challenges [15] for many MR 

path planning algorithms that use the APF approach. 

• For each test environment, a total of 500 

independent run is conducted and, in each run, the 

same randomly selected population size is given for 

both memEAPF and the proposed MOE-APF. 

• The number of generations is limited to 10 for both 

memEAPF and MOE-APF to test the capability of 

each algorithm to get solution within a time limit. 

• The number of membranes is set to 2, and the 

number of individuals in each membrane is set to 32. 

• Each element in an individual solution is encoded in 

a 16-bit string. 

• The evaluation of performance measures for the 

tested methods is introduced in terms of path length, 

path roughness, success rate, and optimization time.  

• The maximum number of configuration points is set 

to 400 for the memEAPF so that the path length can 

reach 20 meters when the smallest step size value is 

selected. A distance of 20 meters is greater than the 

longest path from the start position to the target 

position in all environments. Meanwhile, the 

maximum number of configuration points is set to 

50 in the proposed MOE-APF. 

• In memEAPF, the spin direction of repulsive field in 

set manually to either clockwise or anti-clockwise 

direction for each test environment so that the 

selected value guarantees a successful generation of 

feasible paths. 

• All the experiments are carried out on an AMD 

Ryzen 5 PRO 4650G CPU (3.666 GHz) with 16 GB 

of DDR4 RAM running Windows 11 and MATLAB 

2018. Experiment data is saved in CSV format for 

further investigations. 

• Analysis, statistics, and bar charts are generated 

using IBM SPSS Statistics version 28.0.0.0 (190). 

In terms of success rate, Table 6 provides the number of 

passed and failed cases for both methods. The success 
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criterion comprises two conditions. First, the distance 

between the MR and the target position should be less 

than or equal to the step size length. Second, the path 

roughness should not exceed 5. A path with roughness 

greater than 5 indicates excessive oscillations, which is 

undesirable for MRs during path execution. 

The recorded values show that the memEAPF has an 

average success rate of 49.42%, while the proposed 

MOE-APF achieves an average success rate of 98.56%, 

representing a significant improvement. The test 

environments can be categorized into three groups based 

on the success rate of both methods. The first group 

includes environments 1, 2, 5, 9, 11, and 12, where both 

methods exhibit a high success rate. The second group 

comprises environments 3, 4, 6, 7, and 10, where the 

MOE-APF performs well while the memEAPF 

struggles. The third group consists of environment 

number 8, which poses a challenge for both methods. To 

identify common features within each group, Fig 6 

displays the layout of environments in the three groups. 

Environments in group 1, shown in Fig 6 (a), share a 

common feature that the MR needs to apply a single 

maneuver along the shortest path without any obstacles 

directly obstructing the direct path to the target position 

by introducing a local minimum position. Additionally, 

obstacles form clusters, with only one cluster active at a 

time, guiding the MR along the correct path. 

Environments in group 2 , shown in Fig 6 (b), present 

three challenges for the memEAPF. The first challenge 

is trap situations represented in environment 4. The 

second challenge is obstacles directly facing the MR and 

aligned with the target position forming local minima 

positions, which are represented in environments 3 and 

6. The third challenge is narrow passages, which is 

represented in environments 7 and 10. In environments 7 

and 10, obstacles form clusters on both sides of the MR, 

resulting in either local minima positions or high 

oscillations that affect the path quality due to a constant 

intersected distance of influence from obstacles on both 

sides. Environment 8 in group 3, shown in Fig 6 (c), 

introduces a new challenge that requires the MR to 

maneuver with different rotation angles. Consequently, a 

single selection for the rotational repulsive field fails to 

guide the MR along the shortest path without producing 

high oscillations. 

In terms of path length and path roughness, Figure 7 and 

Figure 8 present a comparison between the performance 

of the proposed MOE-APF and the memEAPF in terms 

of average path length and path roughness. The success 

criterion comprises two conditions. First, the distance 

between the MR and the target position should be less 

than or equal to the step size length. Second, the path 

roughness should not exceed 5. According to this success 

criteria, the memEAPF demonstrates complete failure in 

environments 4 and 8, as indicated by the absence of any 

successful runs. This highlights the limitations of the 

memEAPF in handling specific challenges posed by 

these environments. The key point of MOE-APF good 

performance is that a variable field of influence enables 

the selection of high and low values that best fits the 

planning challenge. On one hand, for narrow passages, 

selecting a small distance of influence for obstacle 

repulsive field generates a path free of unnecessary 

repulsive forces, which cases oscillations. This 

performance can be deduced from the calculated paths in 

environments 4, 5, and 10 as shown in Figure 10. On the 

other hand, for environment of single obstacles cluster 

such as environments 1, 3, and 9 as shown in Figure 10, 

selecting a relatively high distance of influence allow an 

early detection for the obstacle. Therefore, the MR can 

move smoothly around the obstacle rather than getting a 

sudden steering near the obstacle. The significant 

improvement in path length and path smoothness offered 

by the MOE-APF underscores its superior optimization 

capabilities and ability to find more efficient routes for 

the MR. This improvement holds true across all test 

environments, indicating the robustness and 

effectiveness of the proposed method 
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(a) Environments group 1 

 
(b) Environments group 2 

 
(c) Environments group 3 

Fig 6: Environments categorization based on success rate of the memEAPF and the proposed MOE-APF 

 

Table 6: Comparison between the memEAPF and the proposed MOE-APF method in terms of number of passes cases 

 memEAPF MOE-APF 

Environment Passed Failed Passed Failed 

1 500 0 500 0 

2 472 28 500 0 

3 6 494 499 1 
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4 0 500 500 0 

5 500 0 500 0 

6 9 491 499 1 

7 9 491 500 0 

8 0 500 424 76 

9 498 2 492 8 

10 30 470 500 0 

11 500 0 500 0 

12 441 59 500 0 

TOTAL 2965 3035 5914 86 

 

 

Fig 7: Comparison between the memEAPF and the MOE-APF methods in terms of path length  

 

Fig 8: Comparison between the memEAPF and the MOE-APF methods in terms of path roughness 

In terms of optimization time, the proposed MOE-APF 

proves the ability to generate feasible paths in less time 

for all test environments. This time reduction is mainly 

caused by two factors. First, setting the step size to 0.4 

meters reduced the total number of configuration points 

that should be calculated along the path. Second, the idea 

of optimizing the repulsive rotational angle results in 

higher success rate of most individuals in the 

evolutionary population. Therefore, a few number of 

generations is required to guarantee reaching a good 

solution. 
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6.1. Demonstration of best paths calculated by the 

memEAPF and the MOE-APF methods 

Fig 10 presents the best results obtained from applying 

the memEAPF and the MOE-APF methods to the set of 

12 test environments, each representing a unique path 

planning challenge. The path generated by the 

memEAPF method is represented by the dashed line, 

while the path generated by the proposed MOE-APF 

method is represented by the solid line. The start position 

of the MR is represented by a blue circle, and the target 

position is represented by a green triangle. It can be 

noticed that the proposed method generates shorter and 

smoother paths compared with the memEAPF method in 

all test environments. In environment 8, it can be noticed 

that a single field rotation angle made it difficult for the 

MR to maneuver both obstacles’ groups placed in 

opposite directions of the MR. Therefore, the path was 

interrupted and a sudden steering is made before the 

second obstacles’ group. An online path planning 

approach can be incorporated to continuously calculate 

the best rotational angle so that the MR can maneuver 

different obstacles along its path to the target.

 

Table 7: Comparison between shortest path calculated by the memEAPF compared with the proposed MOE-APF 

method in terms of path length, optimization time, path roughness, and the number of configuration points. 

 

Fig 9: Comparison between the memEAPF and the proposed MOE-APF in terms of optimization time 

 The memEAPF method The proposed MOE-APF method 

Environmen

t 

Path 

length 

(m) 

Optimizatio

n time (s) 

Path 

roughnes

s 

Number of 

configuration

s 

Path 

lengt

h 

(m) 

Optimizatio

n time (s) 

Path 

roughnes

s 

Number of 

configuration

s 

1 6.435 0.247 0.530 51 5.311 0.205 0.340 14 

2 9.033 0.224 2.730 10 8.141 0.224 0.320 21 

3 9.481 0.326 3.630 10 8.705 0.253 0.370 22 

4 
10.02

3 
0.160 5.110 13 6.149 0.181 0.210 16 

5 6.500 0.275 0.000 51 6.500 0.226 0.000 17 

6 
10.55

2 
0.406 78.150 51 8.829 0.284 1.320 23 

7 8.721 0.509 77.480 51 6.923 0.451 1.050 18 
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7. Conclusion 

This article presents a novel path planning method called 

MOE-APF that demonstrates a high performance in 

terms of time efficiency, path length optimization, path 

smoothness, and success rate. In the proposed method, 

the repulsive field is modified by two factors. First, the 

relative distance between the MR and the target position 

is added. Second, a rotational matrix is added so that the 

repulsive force makes the MR follow the obstacle 

contour rather than repels it away. In addition, an 

evolutionary algorithm is used for automatic selection of 

the APF parameters. The evolutionary algorithm 

employed a multi-objective fitness function that 

8 
18.41

5 
0.794 240.510 145 8.368 0.676 5.570 21 

9 9.464 0.161 0.580 49 7.059 0.129 0.440 18 

10 5.255 0.718 4.480 9 4.672 0.412 0.030 12 

11 9.019 0.438 0.750 51 8.126 0.333 0.210 21 

12 9.875 0.403 4.670 51 8.678 0.201 0.860 22 

 

Fig 10: Comparison between shortest paths calculated by the memEAPF and the MOE-APF methods 
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incorporates path length, path roughness, and path safety. 

Based on statistical analysis, the step size is set to a 

constant value and removed from the optimization 

parameter set. Meanwhile, the repulsive rotational angle 

and the obstacle distance of influence are added to the 

optimization set. 

A comparison is done between a previous method called 

memEAPF and the proposed MOE-APF. Through 

experimentation and analysis, the proposed method 

showcases its effectiveness and outperforms the 

memEAPF method in all performance measures, which 

are path length, path smoothness, path safety, success 

rate, and optimization time. However, the proposed 

method results in low quality paths in environments that 

require maneuver in an opposite direction. This is 

because the MOE-APF employs a single rotational angle 

along the full path. This problem can be solved by 

continuously searching for the best rotational angle along 

the path. The low optimization time of the proposed 

method open the door for an online version, which 

automatically re-optimizes the APF parameters to refine 

the initial calculated path. 
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