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Abstract: This research introduces a novel Security Framework for Misbehaviour Detection (SFMD) in Vehicular Ad Hoc Networks 

(VANETs) and presents a comparative analysis of the proposed framework. Leveraging a hybrid approach with Genetic Algorithms 

(GAs) and Deep Learning (DL), SFMD addresses the critical need for robust security in VANETs. The novelty in this research study is 

the use of Genetic Algorithms in misbehaviour detection in VANETs. Traditionally, the complexity of defining a suitable fitness function 

for GAs in this context has deterred their application. However, SFMD overcomes this challenge by introducing an innovative solution: 

employing an Artificial Neural Network (ANN) as the fitness function for GAs. This paradigm shift opens new avenues for efficient and 

effective feature selection, marking the first instance in VANET research where GA plays a pivotal role in misbehaviour detection. The 

synergy between these two cutting-edge approaches, coupled with the integration of contextual data and the utilization of an ANN-based 

fitness function in GA, equips SFMD to address the unique challenges posed by VANETs, where rapid decision-making and adaptability 

are paramount. By integrating contextual data, including vehicle positions, speed, and communication patterns, SFMD utilizes GAs for 

feature selection and DL for real-time misbehaviour detection. The 10- fold CV used enabled the whole system to be unbiased, achieving 

precision, recall, and F1 scores of 0.9999 in binary classification and 0.9976, 0.9977, and 0.9977 in multiclass classification respectively. 

Comparative analysis with recent works underscores SFMD's superiority, highlighting its potential to enhance the security landscape of 

VANETs. The study emphasizes the importance of context awareness, paving the way for future real-world validations and large-scale 

experiments. Future research can explore SFMD's practicality in diverse VANET scenarios, validating its effectiveness. However, 

limitations include the dependence on simulated datasets and the need for real-world deployment to uncover potential challenges. 

Keywords: Artificial Neural Network, Genetic Algorithm, Hybrid Detection, Misbehavior Detection, Security in VANETs, Vehicular ad 

hoc Networks 

1. Introduction 

The Vehicular Ad-Hoc Network (VANET), a subset of 

Mobile Ad-Hoc Network (MANET), facilitates 

communication between vehicles (V2V) and between 

vehicles and infrastructure (V2I) [1]. The implementation 

of high-definition mapping, intelligent transportation apps, 

and autonomous and coordinated driving have all been 

made possible by VANETs because of the advances in the 

field of telecommunications [2]. Simultaneously, VANETs 

exhibit distinctive features like highly dynamic topology, 

decentralized networking, and self-organization [3]. Hence 

the security and safety requirements in these networks are 

different and more complex than the traditional networks 

[4, 5]. Messages exchanged in vehicular communication 

networks, encompassing navigation, traffic safety, and 

event-oriented messages, are often transmitted without 

encryption [6]. Consequently, the open nature of VANETs 

exposes vulnerabilities to various attacks like false 

reporting, denial-of-service (DoS), and forgery, potentially 

leading to traffic disruptions or accidents [7–9]. Moreover, 

malicious nodes may exploit participants' messages and 

identities, posing a considerable threat to drivers. 

Consequently, in the context of security preservation, it 

becomes imperative to trace and penalize malicious 

vehicles in response to any misbehaviour [10, 11]. 

Attacks in VANET could be categorised as intravehicular 

or intervehicle based on the attackers' target location. 

Intravehicular attacks occur when the malicious activities 

are targeted within a specific vehicle in the network. For 

example, falsifying GPS data or disabling the steering or 

braking system of an autonomous vehicle through 

compromised Electronic Control Unit (ECU), is extremely 

dangerous [12]. Intervehicle attacks are more sophisticated 

than intravehicular attacks as these involve malicious 

activities that target the communication and interactions 

between multiple vehicles in the VANET. [13]. In the 

dynamic world of vehicular communication, vehicles, 

Roadside Units (RSUs), and cloud platforms exchange 

crucial traffic-related information to enhance the 

management of vehicular networks. This includes sharing 

data on accident notifications, traffic congestion, and road 

conditions. However, this interconnected system is 

vulnerable to misbehaviour, particularly in the form of 

deceptive messages originating from malicious nodes. 
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These spurious messages, either unintentionally triggered 

by misbehaving nodes or intentionally relayed through 

fraudulent means, can have significant and potentially 

harmful consequences. The primary focus of this study is 

intervehicle misbehaviour, which is a growing concern. 

In VANETs, technologies ensuring security aim to tackle 

the security concerns associated with VANETs. These 

technologies are broadly classified into proactive and 

reactive processes [14]. The proactive approach prevents 

potential outside attackers from accessing the system, 

enforcing security policies through methods such as access 

control mechanisms, integrity and authenticity checks 

(e.g., cryptographic signature verification), and Public Key 

Infrastructures (PKIs). PKIs issue key material and 

certificates only to approved vehicles and entities, 

establishing a trusted environment. However, if an attack 

originates from an insider, like injecting a false message to 

warn vehicles of a non-existent hazard, proactive security 

alone may fall short, necessitating active safety measures. 

The reactive security mechanism involves detection and 

response, addressing threats not prevented by proactive 

security [15], with misbehaviour detection being a 

prominent reactive security mechanism [16]. 

The landscape of VANET security has traditionally leaned 

on static security measures like fixed encryption 

algorithms and access control policies. However, with the 

rise of machine learning solutions for misbehaviour 

detection, there's a notable shift towards more dynamic and 

adaptive approaches. Despite these advancements, there 

remains a research gap in the development of 

comprehensive, context-aware frameworks that can 

seamlessly integrate context awareness, considering factors 

like real-time traffic conditions, communication patterns, 

and the dynamic positions of vehicles. 

While some studies explore Deep Learning (DL) for 

VANET security, there is a distinct lack of research 

leveraging Genetic Algorithms (GAs) in the context of 

misbehaviour detection in VANETs. The research 

community has not fully explored the potential synergy 

between GAs and DL for optimizing feature selection and 

enhancing classification accuracy in this domain. This 

study uniquely contributes to filling this void by proposing 

the novel Context-Aware Security Framework for 

Misbehaviour Detection (SFMD), which pioneers the 

integration of GAs and DL. This innovative approach 

seeks to address the existing gap by introducing a cohesive 

framework that harnesses the strengths of both techniques 

for enhanced security in VANETs. 

The core motivation behind SFMD is to create a 

framework that not only identifies misbehaviour but also 

adapts to evolving threats and changing network 

conditions, all while considering the rich contextual data 

present in VANETs. Contextual data, including vehicle 

positions, speed, and communication patterns, serves as a 

critical foundation for the framework's decision-making 

processes. GA is employed as a feature selection 

mechanism, optimizing the relevance and dimensionality 

of the dataset, while DL models are harnessed in the 

classification module for accurate and real-time 

misbehaviour detection. The synergy between these two 

cutting-edge approaches, coupled with the integration of 

contextual data and the utilization of an ANN-based fitness 

function in GA, equips SFMD to address the unique 

challenges posed by VANETs, where rapid decision-

making and adaptability are paramount.  

Section 2 of this paper presents the materials and methods 

used in the study including the dataset, the communication 

architecture and the proposed framework. Section 3 

presents the results that include a comprehensive 

exploration of SFMD, experimental evaluation and a series 

of experiments that demonstrate the framework's 

effectiveness in detecting misbehaviour across a range of 

scenarios. Furthermore, in Section 3 we provide evidence 

of SFMD's superiority over traditional machine learning 

models and existing misbehaviour detection methods, 

underscoring the critical role of context-awareness and the 

ANN-based fitness function in VANET security. The 

conclusion of the paper is provided in Section 4. 

2. Material and Methods 

2.1. Dataset 

For this study, the VeReMi Extension dataset [17] has 

been used. VeReMi extension provides contextual as well 

as behavioural data. Features including speed, speed noise, 

position, and position noise are contextual features.  

This dataset is available online for researchers free of cost. 

The VeReMi Extension dataset was created to provide an 

initial baseline against which detection algorithms may be 

evaluated and contrasted. This not only shortens the 

amount of time needed for researchers to carry out 

simulation studies of high quality, but it also makes it 

much simpler for the researchers to put the strategy into 

practice. 

The dataset was produced with the help of LuST (Version 

2) and VEINS. The Luxembourg traffic scenario (LuST), 

which was initially presented by Codeca et al. [18], was 

developed to provide a realistic framework for the 

assessment of VANET applications. F2MD has been 

utilized throughout the process of producing the dataset. 

F2MD [19] is an extension to VEINS that enables the 

reconstruction and detection of a wide variety of different 

types of misbehaviour detection use cases. OMNeT++ and 

SUMO are the foundations upon which VEINS, an open-

source simulator for Inter-Vehicular Communication, is 

built. Table. 1 provides a short overview of the parameters 
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of the VeReMi Extension dataset. The files in the dataset 

are encoded in JSON. 

 

Fig 1:  Parameters in VeReMi Extension dataset [21]  

The VeReMi Extension dataset contains the message logs 

for each vehicle, each of which contains GPS data of the 

local nodes as well as BSM messages received from other 

nodes via DSRC, labelled as type 2 and type 3 

respectively. It accomplishes two key goals: first, it acts as 

a baseline to evaluate the effectiveness of misbehaviour 

detection techniques on a city scale, and second, it helps 

save a significant number of computational resources. 

For our experiment, some minor adjustments are made for 

data labelling to help with the classification. Another 

parameter was added named “misbehaving”: R[0,1], where 0 

means that a particular message is from a vehicle that is 

normal while 1 represents the message that came from a 

misbehaving vehicle.  

The VeReMi extension dataset is available as JSON files. 

The data files must be changed into a .csv format to be 

used in our system. The data files were converted from 

JSON to csv format using Gigasheet.co. We extracted 

30,000 message logs from the VeReMi Extension dataset. 

The dataset contained 33 features that made a 

dimensionality of the dataset as 30000 x 33. 

2.2. Communication Architecture of Proposed 

Framework 

 

Fig 2: Communication Architecture 

The communication architecture of the proposed 

framework for misbehaviour detection is illustrated in 

Figure 2. Each vehicle registers with the regional 

authorization party or certificate authority, which provides 

it with appropriate credentials for communication. BSMs 

(Basic Safety Messages) are periodic beacon messages that 

are periodically generated by authorized vehicles and 

digitally signed before they are broadcasted. All vehicles 

and RSUs within the communication range of the sender 

vehicle receive these BSMs. A wired backbone network 

connects the RSUs in the network and other infrastructure 

nodes. While existing methods rely on individual vehicle 

OBUs to detect misbehaviour, the proposed scheme 

deploys the detection framework at the RSUs. RSUs are 

configured to receive BSMs from vehicles and then 

combine GPS information with BSM data to identify 

misbehaving or attacking vehicles using the hybrid 

detection module. The RSU generates an alert message to 

inform nearby vehicles and infrastructures every time a 

vehicle is classified as a "misbehaving" vehicle. In 

response to such alert messages from RSUs, each vehicle 

adds this information to the OBU's local log of flagged 

vehicles. Afterwards, the certificate authorities and other 

nodes may take additional actions depending on their 

network policies, which are beyond the scope of this study. 

  

Fig 3: Alert Generation by RSU 

While vehicle OBUs are more resource constrained, RSUs 

have more computational capabilities available for 

misbehaviour detection. The proposed method also has the 

benefit of notifying a vehicle about a potential attacker 

even before they get within communication range. For 

instance, as depicted in Fig. 3, vehicle V1 is outside of 

vehicle V2’s communication range. However, depending 

on the data R1 has received, the RSU can detect the 

misbehaviour and alert vehicle V2 as necessary. The RSU 

just needs to emit one "alert" message to neighbouring 

RSUs and vehicles if misbehaviour is discovered. We 
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assume that the nodes of the infrastructure are secure. 

Instead of RSUs, we focus on misbehaving vehicles 

because vehicles are more vulnerable to attacks than RSUs. 

2.3. Proposed Misbehaviour Detection Framework 

The core contribution of this study is the framework for 

misbehaviour detection for the VANETs. The performance 

efficiency and the effectiveness of the suggested security 

framework are both significantly impacted by the entire 

features that are employed by the detection system. 

Detection accuracy, computational time and memory 

requirements have been identified as the primary factors 

for which the reduction in the total number of features is 

required by the system. 

The proposed framework (Fig. 4) consists of four modules 

which include:  

• Data collection module: This module collects the 

behavioural data, and the contextual data from the 

network and sends it to the pre-processing 

module. 

• Pre-processing Module: To obtain the initial data, 

the network's raw traffic is handled in a 

predetermined manner. 

• Hybrid Detection: This module primarily consists 

of a hybrid model, which analyses the data, filters 

out the irrelevant characteristics, and reconstructs 

a low-dimensional feature dataset then uses 

supervised algorithms to categorize traffic, judge 

if it is being subjected to an attack, and decide 

whether to provide a warning in response to the 

findings. 

• Feedback module: Using the machine's output 

status and alarm information, this module 

modifies its operations. 

2.3.1.1. Context Sensing and Behavioural Data Collection 

Contextual elements at times impede a vehicle's regular 

operations. As a result, we have devised a framework that 

acquires and logs contextual data that is combined with a 

vehicle's inherent behaviour to establish whether the 

vehicle is exhibiting malicious intent. A range of 

contextual data types hold the potential to significantly 

influence a vehicle's actions. These include the position 

coordinates, altitude, speed, status of the channel, 

temperature, weather conditions etc. The impact of each 

contextual factor on a vehicle's actions is outlined below: 

• GPS coordinates and altitude, in combination, 

offer insight into the geographic location of 

mobile vehicles. This data aids in identifying 

instances where a vehicle might engage in 

misbehaviour due to its position. For instance, if a 

mobile vehicle moves to the far side of a hill 

relative to its communication peer, it might have 

to drop a packet due to the obstruction caused by 

the hill. 

• Speed (velocity) denotes a vehicle's motion, and 

we've observed that higher speeds hinder 

collaborative interactions with other vehicles. 

• Channel status indicates the congestion level of 

the transmission channel over a specific 

timeframe. Given that all vehicles within the radio 

range share this channel, increased congestion 

elevates the likelihood of dropped data packets. 

• Temperature and wind speed are crucial in 

determining whether a vehicle's misbehaviour can 

be attributed to  

harsh weather. For instance, a mobile vehicle is 

more prone to malfunctions in conditions where 

the temperature is 20°F and wind speed is 40mph, 

compared to conditions of 70°F and 5mph wind. 

 

 

Fig 4: SFMD Framework 
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Fig 5: GA Based Feature Selection            

The behavioural data collection module is responsible for 

the collection of vehicle behaviors through the BSM (Basic 

Safety Messages) that are broadcasted by the vehicles and 

the context sensing module collects the contextual data 

through GPS.  

2.3.1.2. Data Pre-processing 

It is required to reduce the features from high-dimensional 

feature sets because this may directly challenge systems 

for pattern recognition. In other words, having a lot of 

features may often lower the detection system's accuracy 

rate because some of them may be redundant or otherwise 

pointless [20]. Several combinatorial sets are required to 

preserve the optimal combination and achieve the highest 

level of accuracy. 

2.3.1.3. Hybrid Detection 

2.3.1.3.1 Feature Selection using ANN Fitness function-

based Genetic Algorithm 

Genetic algorithms (GA) are population-based and 

algorithmic search heuristics that imitate the process of 

human evolution in nature [21]. By employing the process 

of natural selection along with genetic functions like 

crossovers and mutations, GA repeatedly uses one 

population to produce a new population of chromosomes 

(In a manner like Charles Darwin's theory of evolution, 

which emphasizes the importance of reproduction, genetic 

recombination, and the survival of the fittest). In terms of 

human genetics, chromosomes can be compared to bit 

strings, genes to features, alleles to feature values, loci to 

bit positions, genotype to encoded strings, and phenotype 

to decoded genotype [22].  

A function "fitness function" or "Objective function" is 

used to assess the fitness of the chromosomes. In other 

terms, the fitness function provides numeric values that are 

used to rank the chromosomes. Chromosomal encoding, 

initializing the population, measuring fitness, selecting 

individuals, and conditions to terminate the GA are the five 

key processes in the Genetic Algorithm. In a manner like 

how humans naturally evolve, the 

algorithm manipulates the finite binary population. First, 

an initial population is generated randomly and assessed 

using the fitness function. 

A Feature Subset Selection is a map or an operator FSub 

from an x-dimensional input space to a y-dimensional 

output space given as: 

 

where x ≥ y and x, y ∈ Z+, Rn×x is any dataset containing 

the initial feature set containing n instances or observations 

with x number of features and Rn×y is the feature set after 

reduction containing n observations with y features in the 

subset selection. 

The feature selection by GA is shown in Fig. 5. In relation 

to the binary chromosome utilized in this study, if the gene 

value is '1' shows that the specific feature identified by the 

position of the '1' is chosen. Conversely, if the gene value 

is '0', the feature is not selected. The ranking is carried out 

FSub: R n×x → R n×y                                                                                              (1) 
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and the top 'n' most fit individuals are chosen to survive 

and move on to the next generation, a process known as 

elitism. Once the elite individuals have been transferred to 

the successor generation, the individuals left in the 

population are utilized to generate the rest of the next 

generations by a combination of crossover and mutation. 

Crossover refers to combining the genetic information 

from two individuals to create a new crossover offspring. 

On the other hand, the mutation operator perturbs the 

genes within each chromosome by flipping bits, with the 

probability of flipping determined by the mutation 

probability.  

2.3.1.3.2 Generation of Initial Population 

Initially, the population consists of a matrix with 

dimensions Size of Population x Genome Length, where 

the elements are randomly generated binary digits. The 

Size of Population refers to the number of chromosomes 

(individuals) in the population, while the Genome Length 

(also referred to as Chromosome Length) indicates the 

number of bits (genes) within every chromosome [23] 

2.3.1.3.3 Fitness Evaluation 

For the Genetic Algorithm (GA) to reduce the features and 

choose a subset, a fitness function is required, which serves 

as a guiding factor for the GA, to assess the discriminatory 

capability of each feature subset. The fitness of every 

chromosome within the population is evaluated using an 

ANN-based fitness function. 

During each iteration of the GA, the individuals (subset of 

features) in the current population are assessed, and their 

fitness is determined based on the accuracy of 

classification obtained from the ANN. Individuals with 

high fitness values have a higher likelihood of surviving 

and being included in the next generation. The iterations of 

the GA aim to gradually reduce the error rate and select the 

individuals with the best fitness values (highest accuracy). 

This is accomplished by reporting the accuracy rate for 

each involved chromosome C, and ultimately selecting the 

chromosome with the highest accuracy rate as determined 

by Eq 2. 

 

Where, α = ANN-based classification accuracy 

         N = Cardinality of chosen features 

This function takes a chromosome C (represented by the 

subset of selected features) as input evaluates its fitness 

using a function (which includes the neural network 

training and evaluation) and returns the mean accuracy as 

the fitness value. 

The mathematical structure of this equation guarantees that 

the Genetic Algorithm is capable of learning, minimizing 

errors, and selecting a reduced number of features. 

2.3.1.3.4 Generation of New Children 

Table 1 shows the parameters of the GA used in this study. 

According to Table 1, the chromosome length for the 

experimental dataset is 33, which corresponds to the 

number of features extracted from the VeReMi extension 

dataset. To prevent the GA from getting stuck in local 

optima, the maximum number of generations was set to 

500. The GA follows a sequential Elitism, Crossover, and 

Mutation process to generate a new population. 

Table 1. Parameters used in Genetic Algorithm. 

Parameter Value 

Genome length 33 

Population size 300 

Number of generations 500 

Mutation Uniform Mutation 

Mutation Probability 0.1 

Crossover Arithmetic Crossover 

Crossover Probability 0.8 

Fitness Function ANN-Based 

Classification Accuracy 

Selection scheme Tournament of size 2 

Elite Count 2 

 

2.3.1.3.5 Summary of the Approach. 

Here's a summary of the approach: 

Genetic Algorithm (GA): 

The genetic algorithm is responsible for evolving a 

population of solutions (feature subsets) over generations. 

The fitness of each solution is determined by an Artificial 

Neural Network (ANN) trained on the selected features. 

ANN as Fitness Function: 

The ANN, embedded in the fitness function, evaluates the 

performance of a feature subset in terms of misbehaviour 

detection. 

The goal of the genetic algorithm is to find feature subsets 

that lead to high accuracy in misbehaviour detection based 

on the ANN's evaluation. 

 

Misbehaviour Detection: 
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The ANN, trained during the fitness evaluation, implicitly 

serves as the classifier for misbehaviour detection. A 

feedforward neural network with one hidden layer 

containing 10 neurons was used in the study, and it was 

trained using the Levenberg-Marquardt algorithm [24]. 

The features selected by the genetic algorithm guide the 

ANN in making predictions related to misbehaviour. In 

this approach, the genetic algorithm is responsible for 

optimizing the features fed into the ANN, and the ANN 

itself is responsible for learning the patterns related to 

misbehaviour. An additional classifier for misbehaviour 

detection is not needed. 

The feedback module handles the detected misbehaviours 

by generating an alarm and informing the authority for 

detected misbehaving nodes in the network. 

3. Results 

The proposed system employed a dataset of 30,000 records 

to define the normal and misbehaving vehicles in 

VANETs. We passed the extracted 33 features from the 

dataset to the Genetic algorithm for the feature reduction 

phase. The genetic algorithm reduced the feature space to 

14 features thus reducing the dimensionality of the dataset 

to 30,000 x 14. 

The VeReMi Extension dataset exhibits an imbalance, 

encompassing data on legitimate vehicles as well as 

attacker vehicles [25]. Recognizing that accuracy is 

insufficient for evaluating imbalanced datasets, we employ 

metrics outlined in equations (1) to (3) to assess and 

compare the effectiveness of the proposed framework. 

 

We evaluated the performance of the proposed framework 

in two ways: for binary classification as well as multiclass 

classification. In binary classification, our framework 

classified the vehicles as normal and misbehaving while in 

multiclass classification the framework identified the 

misbehaving vehicles and further classified them into 12 

different classes corresponding to the type of misbehaviour 

a node exhibits. 

3.1. Comparison of different classifiers for fitness 

function 

In this section, we compare the chosen ANN classifier with 

six popular classifier algorithms (Logistic Regression, 

Naïve Bayes, K Nearest Neighbour, Decision Tree, SVM 

[26], and Random Forest) and use them as fitness functions 

in Genetic algorithm to check if we selected correct 

classifier to be used as fitness function. The results are 

summarised in Table 2 and visually represented in Fig.6. 

 

TABLE 2: Simulation Results 

Model Precision  Recall F1 Score 

Logistic 

Regression 0.925 0.846 0.883738 

Naïve Bayes 0.964 0.963 0.96349974 

K-Nearest 

Neighbour 0.965 0.958 0.96148726 

Decision Tree 0.989 0.975 0.9819501 

SVM 0.991 0.991 0.991 

Random Forest 0.993 0.989 0.99099596 

Artificial Neural 

Network 0.9976 0.9977 0.99765 

 

 

Fig 6: Simulation Results of different fitness functions 

Based on the simulation results reported above, the ANN 

yielded the best results among all classifiers. So, ANN has 

been chosen to be used as a fitness function in the Genetic 

algorithm in our framework. 

3.2. Binary Classification Results 

Figures 7 and 8 show the results of the binary classification 

of the proposed framework. The detection accuracy of the 

SFMD using the binary classification method is 99.99%. 

Analysing the ROC shows the AUC (Area under curve) 

near 1which means the framework has an excellent 

measure of separability. 

 

Fig 7: Confusion Matrix 
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Fig 8: Receiver Operating Characteristics graph 

3.3. Multiclass Classification Results 

Figures 9 and 10 show the results of the multiclass 

classification of proposed framework. The detection 

accuracy of the SFMD using the multiclass classification 

method is 99.76%. The AUC is near to 1 which means the 

framework is performing excellently in terms of multiclass 

classification as well. 

 

Fig 9: Confusion Matrix 

 

 

Fig 10: Receiver Operating Characteristics graph  

3.4. Results with different misbehaving nodes densities 

To evaluate our framework’s performance under different 

misbehaviour node densities, we created five datasets with 

10%, 20%, 30%, 40% and 50% misbehaving nodes 

percentage in each dataset respectively and tested the 

performance of SFMD. The results of the simulation have 

been shown in Figure 11. The results have shown that 

when the percentage of misbehaving nodes was only 10% 

of the total number of nodes, the framework showed 100% 

accuracy with precision, recall and F1 score all point to 1. 

As more and more misbehaving nodes were introduced 

into the dataset, there was a decrease in the precision, 

recall and F1 score values. However, at 50% misbehaving 

nodes, the framework’s performance was reduced as 

compared to the 10% scenario, still, it has shown the 

precision, and F1 score as 0.9966 and recall as 0.9967. 

This shows that our framework is giving excellent results 

even in the worst scenarios when misbehaving nodes 

percentage is 50% of the total nodes. 

 

Fig 11: SFMD Results with different misbehaving nodes 

percentage. 
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3.5. Comparison with existing works 

Table 3 compares the precision, recall and F1 scores 

obtained using the SFMD with techniques reported in 

some recent papers. Figure 11 presents a graphical 

representation of the comparison work. As clear from the 

results, Paper 2 [28] has shown very low precision, recall 

and F1 score values as compared to all other frameworks. 

Paper 5 [11] performed similarly to the proposed model 

and generated a high precision value of 0.9999 however, 

showed comparatively less recall value and F1 Score. The 

proposed model showed the best performance, compared 

to existing techniques, which was classified with 0.9976, 

0.9977, and 0.9977 precision, recall and F1 scores 

respectively using multiclass classification while with 

binary classification the framework has shown the 

precision, recall and F1 scores as 0.9999 for all three 

metrics. 

4. Conclusion 

In a landscape where secure and reliable communication is 

essential for the success of VANETs, the proposed security 

framework, SFMD offers a promising avenue for 

advancing the state of security within these networks. We 

use contextual as well as behavioural data of the vehicles 

in the network to train the ANN classifier, and then use the 

trained ANN classifier as a fitness function in the Genetic 

Algorithm. This technique helped us to reduce features to a 

significantly low level and distinguish misbehaving nodes 

from well-behaved nodes. Experimental results show that 

the framework, SFMD, achieves a good performance in 

terms of high precision, recall and F1-score. What sets 

SFMD apart and renders it truly innovative is its 

unwavering focus on the contextual aspects of 

misbehaviour detection, facilitated by the utilization of an 

ANN-based fitness function within the Genetic Algorithm. 

Through this study, we aim to contribute to the ongoing 

efforts to secure the future of VANETs, where the right 

information at the right time can make all the difference. 

Future work can validate the proposed framework in real-

world VANET scenarios to assess its practicality and 

effectiveness. Conducting large-scale experiments and 

deployment in diverse urban and suburban settings would 

provide valuable insights into the framework's real-world 

performance and potential challenges. 

 

 

TABLE 3: Comparison of SFMD with existing works 

Paper Precision  Recall F1 Score 

Proposed Framework (with 

Binary Classification model) 
0.9999 0.9999 0.9999 

Proposed Framework (with 

Multiclass Classification 

model) 

0.9976 0.9977 0.9977 

Paper 1 [27] 0.988 0.99 0.988999 

Paper 2 [28] 0.887 0.616 0.727069 

Paper 3 [29] 0.978 0.932 0.954446 

Paper 4 [25] 0.9886 0.8277 0.901023 

Paper 5 [11] 0.9999 0.9554 0.977144 
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Fig 11: Comparison Chart of SFMD and other works
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