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Abstract: Image enhancement is one of the basic and important image processing techniques used to improve the quality of image in 

wide variety of applications including real-time video surveillance, medical imaging, industrial automation, intelligent self navigation 

systems, and oceanography. This research paper proposes a novel high-speed parallel and pipelined reconfigurable field programmable 

gate arrays (FPGA) architecture for histogram equalisation to enhance the contrast of an image. The proposed parallel histogram 

equalisation architecture comprises of comparators, unique counter modules and a register array. The proposed architecture has been 

developed using register transfer level (RTL) - compliant Verilog HDL code, simulated using Xilinx’s integrated simulator (ISim), 

synthesized and implemented on a Kintex7 family of FPGA device. Simulation and synthesis results demonstrate that the proposed 

architecture can be implemented with a processing time of 2.364ns with a maximum frequency of operation 422.976MHz. Extremely 

dark images and overexposed images from standard datasets have been used to test the performance of the developed architecture and 

compared with matlab results through the quality metrics like Entropy, Contrast per pixel. Results obtained by proposed architecture and 

the results obtained by matlab found similar. Experimental results show that the proposed architecture outperforms other existing 

architectures
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1. Introduction 

Histogram equalization is the simplest and broadly 

applied image processing technique[1] used to enhance 

the contrast of an image by redistributing its pixel 

intensities to the entire range. The main objective of 

histogram equalization is to make the pixel intensity 

distribution more uniform across the entire intensity 

range, thereby improving the overall visual quality and 

enhancing features in the image. 

Histogram computation and pixel transformation 

function are the two major operations in histogram 

equalisation technique. Serializing the histogram 

computation increases the run time, but whereas 

parallelizing the data for histogram computation reduces 

the computation time to a larger extent. Parallel 

computation of histogram equalization can be achieved 

using FPGA technology to accelerate the process and 

improve its efficiency. Histogram equalization is an 

image processing technique used to enhance the contrast 

of an image by redistributing pixel intensities. Parallel 

processing on an FPGA can significantly speed up the 

computation of the histogram equalization algorithm for 

images. 

Histogram computation and histogram mapping are the 

two major sub modules of histogram equalisation. Many 

researchers have proposed various architectures for 

histogram computation. Two different approaches have 

been used for the computation of histogram. One is 

memory based approach and the other is counter based 

approach. In memory based histogram computation 

BRAMs are used for two purposes 

(i) To store image pixel values 

(ii) To store histogram for each bin 

By streaming the image pixel values into the 

computation unit instead of storing in BRAM may use 

less number of BRAMs.  

Parallelizing the histogram computation using memory 

based architecture has a challenging problem. If the 

group of pixels that are read parallel from memory has 

several occurrences of same pixel value, then there are 

several writes to the same memory location at the same 

time which leads to memory collision. A sample to 

illustrate memory collision is shown in figure1.  Another 

challenging problem in BRAM based histogram 

computation is that increase in image size demands large 

number of BRAMS. 
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Fig 1: Memory collision in parallel histogram 

computation [2] 

The proposed research work is focused on developing a 

novel parallel and pipelined counter based histogram 

computation architecture to overcome the above said 

challenges. In counter based approach the number of 

counters to count the bins remains 256 only irrespective 

of the size of the input image and only the counter bit 

size increases with increase in image size. The proposed 

design demands only the increase in counter register size 

instead of the number of counters for larger image size. 

The major contributions of the proposed research work 

are 

(i) Development of an efficient parallel and 

pipelined architecture for histogram 

computation of an image 

(ii) Use of Register Transfer Level modeling style 

of verilog HDL coding for the development of 

all sub modules of histogram equalisation 

architecture. 

(iii) A novel counter design to count when the two 

consecutive pixels of an image holds the same 

pixel intensity value which are read parallel 

from odd and even address. 

(iv) Efficient high speed design architecture to 

implement output pixel transformation function. 

 

2. Related Work 

The huge challenge in hardware implementation of 

histogram equalization algorithm is to reduce the 

processing time by utilizing fewer hardware resources. 

Histogram computation and pixel transformation are the 

two major steps in histogram equalisation. Many 

researchers have come out with various architectures for 

histogram computation. The two most convenient 

architectures proposed in the literature for computing 

histograms use an array of counters [2] and array of 

accumulators with memory [3]. In Memory based 

architectures, every pixel histogram computation needs 

one read and write memory access before and after 

computation. This kind of memory access time 

dominates the actual computation which eventually 

increases the processing time.  

A sequential histogram computation architecture using 

an array of 256×16-bit memory has been proposed by Li 

et al.[3]. Each memory location is used to update and 

store the histogram count of the respective greyscale 

bins. This architecture needs 3 clock cycles to read and 

update the histogram of an input greyscale value. Use of 

this sequential architecture may demand additional 

hardware for the computation of cumulative histogram 

and equalised output greyscale value which may reduce 

the overall speed of histogram equalisation architecture. 

A decoder based sequential architecture that uses an 

array of counters has been proposed by Abdullah et al.[4] 

and Nitin et al. [5]. In this architecture the author use a 

special kind of decoder called hierarchical decoder 

which has a cascaded OR gate structure for computation 

of cumulative histogram. But this cascaded OR gate 

structure introduces additional delay at the higher order 

outputs of decoder which limits the speed of operation of 

the system.  

Parallel and pipelined array architecture for real-time 

histogram computation has been proposed by Cadenas et. 

al. [6]. In proposed method a set of processing cells to 

compute k histogram bins for 1 or 2 or 4 input pixels in 

pipelined fashion. Finally the histogram bin counts are 

read serially from all processing cells. Registers are used 

to accumulate the histogram bins. Proposed system 

demands more number of processing cells if the 

processing cells accommodate less number of histogram 

bins. 

Asadollah Shahbahrami et al. [2] proposed a parallel 

histogram computation architecture that overcome the 

memory collision problem by using two port memory. 

The architecture computes the histogram in two phases 

by using three memories. In first phase it uses two 

memories to compute the histogram of pixels stored in 

odd and even memory addresses individually and in 

second phase it adds the histograms stored in both 

memories and store it in third memory. Second phase 

incurs an additional 256 clock cycles in computing the 

final histogram along with N2/2 clock cycles used in first 

phase for an image of size N×N. Proposed architecture is 

found to be efficient for smaller histograms but fails for 

larger histograms as it demands additional memory. 

Krishna Swaroop Gautam [7] proposed a parallel 

architecture for histogram computation of n pixels 

simultaneously. The proposed architecture use n input 

registers, demultiplexers and adders. Proposed parallel 

architecture reduces the computation time by n as 

compared to the sequential computation architecture at 
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the same time it increases the hardware resources usage 

by n times. 

Parallel array histogram architecture proposed by Gan 

et.al [8] uses a register array instead of a memory array 

to store the histogram values. In each step, M inputs can 

be processed in parallel to renovate the histogram bins 

without any additional dormancy. Experimental results 

show that the design can achieve a super-linear speed-up 

of 43.75 for a 16- way PAHA when compared to a 

software implementation in a general purpose processor 

but however the proposed design demands more 

hardware resources. 

Ernest Jamro, Maciej Wielgosz, and Kazimierz Wiatr in 

2007[9] has proposed a highly parallel architecture 

module for histogram computation. Proposed 

architecture includes a Dual port BRAM module that 

could process multiple input data in a single clock cycle. 

The fundamental disadvantage arises from this design is 

that the number of BRAMs which is required in total is 

the product of BRAM for parallel histogram calculations 

(or LUT programming) and the reading of the histogram. 

This increase in BRAM requirement limits the amount of 

parallelism adopted in the design. 

Riyadh Zaghlool Mahmood et. al. [10] has proposed a 

hardware architecture for parallel histogram computation 

that avoids memory collisions by using a dual-ported 

memory. The proposed architecture uses two BRAM’s, 

one BRAM to store the image pixels and another BRAM 

to store histogram array.  In proposed method the input 

pixels are used as addresses of BRAM to update the 

histogram array. The system architecture uses 3 clock 

cycles to update the histogram array of two pixels 

parallel. Proposed system needs 24756 (6000h) clock 

cycles to compute the histogram of 128×128 image. 

Proposed Architecture demands additional BRAM’s for 

larger image sizes with higher histogram size. 

The speed at which histogram statistics are computed is 

increased by each of these parallel histogram computing 

architectures at the expense of higher hardware resource 

utilization. At the same time most of the existing work is 

addressing only the architecture and processing time for 

computation of histogram, but the additional processing 

time and resources needed for computing histogram 

equalised image has not been addressed. 

3. Proposed Work: 

Proposed research work supports massive parallelism in 

computing image histogram using a set of comparators 

and counters with an additional control circuit by reading 

two pixels at the same time. Flowchart for the proposed 

HE architecture is shown in figure 2. 

1. Read two pixels at a time one from odd numbered 

address and another from even numbered address 

from memory 

2. Compare the read pixels with all 256 bin values 

simultaneously using 256 × 2 comparators. 

3. The comparator output for odd addressed pixel 

(pixel_in1) is c1n and the comparator output for 

even addressed pixel (pixel_in2) is c2n. 

4. Check the value of c1n and c2n for controlling the 

counter operation. 

5. If both c1n and c2n are equal to 0, then the counter 

value will be retained as it is. If either c1n or c2n is 

equal to 1 then the counter will update its counter 

value by 1. If both c1n and c2n are equal to 1, the 

counter updates its count value by 2. 

6. Repeat the steps 1 to 5 until all the pixels in an 

image are read. 

7. The most significant 8 bits of updated counter value 

is loaded into a 256 × 8 bit array registers which 

holds the histogram equalized pixel values for all 

256 bins. 

8. Output the two histogram equalized pixel values at 

each clock. 

 

Fig 2: Flowchart of Proposed PHE Architecture 

3.1 Numerical Illustration: 

Traditional HE Computation 

Consider a 3 bit image (M) of size 4×4 
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M = [

0 1 1 3
7 2 5 6
6 3 2 1
1 4 4 2

] 

(i) Find the range of intensity values of the image  

Range of pixel intensity values for a 3 bit image 

(kmax) is 7 

(ii) Compute the frequency of occurrence 

(n(k):count) of each pixel (k) in the image. 

k: 0 1 2 3 4

 5 6 7 

n(k): 1 4 3 2 2

 1 2 1 

(iii) Compute the cumulative count (n(r)) of each 

pixel in the image using equation 1. 

n(r)=∑ 𝒏(𝒌)𝒓
𝒌=𝟎                                      

(1)                                                                     

n(r): 1 5 8 10 12

 13 15 16 

(iv) Compute the Histogram equalised output pixel 

values of image using equation 2. 

T(r)=kmax×
∑ 𝑛(𝑘)𝑟

𝑘=0

𝑁
                                (2) 

Where T(r) is the histogram equalised output 

pixel value for the pixel intensity r. Substituting 

kmax=7 and N=16 in equation 2 

r:  0 1 2 3 4

 5 6 7 

T(r) :0 2 4 4 5

 6 6 7 

Histogram equalised output image (Mhe) obtained is 

shown as 

Mhe = [

02 2 4
7 4 6 6
6 4 4 2
2 55 4

]  

Proposed HE Computation 

Consider a 3 bit image (M) of size 4×4 

M = [

0 1 1 3
7 2 5 6
6 3 2 1
1 4 4 2

] 

(i) Find the range of intensity values of the image  

Range of pixel intensity values for a 3 bit image 

(kmax) is 7 

(ii) Compute the frequency of occurrence 

(n(k):count) of each pixel (k) in the image. 

k: 0 1 2 3 4

 5 6 7 

n(k): 1 4 3 2 2

 1 2 1 

(iii) Compute the cumulative count (n(r)) of each 

pixel in the image using equation 1. 

n(r) = ∑ 𝒏(𝒌)𝒓
𝒌=𝟎                                                                                                                                                                                         

n(r)  1 5 8 10 12

 13 15 16 

(iv) Compute the Histogram equalised output pixel 

values of image. 

Equation (2) reduces to equation (3) by substituting 

kmax=8 and N=16  

T(r)=8×
∑ 𝑛(𝑘)𝑟

𝑘=0

16
=

∑ 𝑛(𝑘)𝑟
𝑘=0

2
                      (3) 

According to equation (3), the histogram equalised 

output pixel values are obtained by right shifting the 

cumulative count n(r) by 1 bit which reduces the 

complex operations of multiplication and division in 

traditional approach. 

r:  0 1 2 3 4 5

 6 7 

T(r) 0 2 4 5 6 6

 7 7 

Histogram equalised output image obtained using 

proposed method is shown as 

Mhe = [

02 2 5
7 4 6 7
7 5 4 2
2 6 6 4

]  

Numerical illustration of proposed method shows that 

the output pixel valued obtained from proposed method 

is same as the traditional method. 

3.2 Architecture for Proposed PHE System 

 

Fig 3: Proposed PHE Architecture 
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The proposed FPGA architecture for the parallel 

histogram equalization computation is shown in Figure 

3. The proposed PHE architecture simultaneously reads 

two input pixels from two consecutive memory 

addresses for every positive edge of the clock signal. The 

proposed system's architecture consists of 

histogram computing unit and a pixel transformation 

unit. The histogram computation unit includes an array 

of comparators, an array of control modules and an array 

of registers. A register array and a delay control unit are 

part of the pixel transformation unit. The histogram 

count values are held in a set of counters, the histogram 

equalized pixel values are stored in a set of registers. The 

proposed parallel architecture speeds up the computation 

of histogram equalization without requiring a substantial 

increase in device cost. 

3.2.1 Comparator Module 

Comparator module in the Proposed design uses a set of 

two comparators of less than or equal comparison type as 

shown in figure 4. 

 

Fig 4 Architecture of Comparator Module 

This comparator module compare a specific grayscale 

value in the range of 0 to 255 with two input pixels from 

two consecutive memory addresses and generates the 

output signals C1n and C2n. The comparator outputs 

C1n and C2n are set to 1 when the input pixels p1_in and 

p2_in are less than or equal to the pixel intensity n. A set 

of AND, OR and XNOR gates are used to compute less 

than or equal to operation of comparator. This 

comparator module outputs C1n and C2n are used as the 

control signals to trigger the counter enable signals as 

shown in figure 5.  

 

Fig 5 Counter Enable Control Circuit 

Counter Enable control circuit provides the control 

signals to the counter registers to update the histogram 

value. The module consists of a set of logical XOR and 

logical AND gates. XOR gate is used to trigger the nth 

counter when any one pixel out of 2 input pixels is less 

than or equal to the intensity value n. AND gate is used 

to trigger nth counter when both the input pixels are less 

than or equal to the intensity value n. 

3.2.2 Histogram Count Module 

High speed design architecture proposed for histogram 

count module which includes 2 adders, a 4:1 multiplexer 

and an 8 bit register has been shown in figure 6. Adders 

increment the count values and store the updated count 

into counter register in every positive edge of the clock. 

Proposed design employs 256 counter modules to update 

the histogram count of all 256 grayscale bins. The 

cumulative histogram count is incremented by 1 when 

any one of input pixel is less than or equal to the pixel 

intensity n and it is incremented by 2 when both the 

consecutive input pixels are less than or equal to the 

pixel intensity n. The counter design incorporates two 

adders (Adder1 and Adder2), a multiplexer, and a 

register. Adder1 and Adder2 add the constants 1 and 2 to 

it, accordingly when their input (prior count) changes. 

Multiplexer picks the results from Adder1 or Adder2 

based on the control signals cen1n and cen2n. When 

cen1n=1 and cen2n=0, the multiplexer provides the 

Adder1 result (count_n = count_n+1), and when 

cen1n=0 and cenn=1, it provides the Adder2 result 

(count_n=count_n+2).On each positive clock edge, the 

multiplexer output (cumulative pixel count) is loaded 

into the register. Proposed PHE system architecture uses 

256 counters to hold the cumulative count of all pixel 

intensity values in an image.  

 

Fig 6 Counter Design 

3.2.3 Delay control unit 

Delay control unit acts as an interface between histogram 

count module and output mapping module. In order to 

write the histogram equalised pixel values to the output 

register array, there is a need of read and write control 

signal with a delayed clock. The control signals used to 
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read (Rd_clk) and write (Write_En) the output registers 

are generated by the delay control unit. Each input pixel 

is mapped with its corresponding histogram equalised 

output pixel value from 256 byte register array with 

appropriate delay. The block diagram and detailed 

architecture of delay control unit is shown in figure 7. 

Delay control signals Write_En and Rd_clk are 

generated after n/2 (n: total number of pixels in an input 

image) and n/2+1 clock cycles respectively for an image 

of size n. 

 

Fig 7 Architecture of Delay Control Circuit 

3.2.4 Output Mapping Unit: 

A set of 256 output registers are used to store the 

computed histogram equalized output pixel values. Least 

significant 8 bits are stored as histogram equalised output 

pixels when write control signal (write_en) is enabled. 

Histogram equalized output pixels are read from the 

output register array when Rd_clk control signal is set by 

the delay control unit. The input pixels which are 

delayed for n+1 clock cycles are used as index values for 

accessing appropriate registers to read the output pixel 

values.  

4. Experimental Results 

Architecture design to implement histogram equalisation 

algorithm onto an FPGA has been coded in matlab to 

ensure the correctness of the developed hardware 

architecture. Subsequently the proposed architecture has 

been developed using RTL compliant verilog HDL 

(Hardware Description Language) code so that it can be 

implemented on an FPGA. 

The pixel intensities (hexadecimal value) of a standard 

image in .jpg and .bmp format are read and stored it in a 

text (.txt format) file. Different variety of dark images, 

over exposed images, aerial images and medical images 

from different datasets [11] are used to test the 

functionality of the propose architecture. A size of 

256×256 and 512×512 Grayscale scale and RGB color 

images have been used in testing the design architecture. 

The text file generated by the Matlab code has been used 

by Xilinx ISIM (Ver. SE 14.7) for simulation.  

The simulated output of the proposed design has been 

written in an output text (.txt format) file. To display the 

histogram-equalized output image, a Matlab program has 

been written to read the pixel intensities from the output 

text file and convert them back into an output image in 

the.jpg (.jpg format) file. 

4.1 Simulation Results 

The Simulation results of histogram equalization 

architecture shown in figure 8 portrays that two input 

pixels are read in each positive edge of the clock. After a 

latency of 32768 clock cycles histogram equalized 

output pixels are generated for two input pixels in each 

positive edge of clock. The histogram equalized output 

pixel values obtained for the two input pixels 201 and 

198 respectively at the positive edge of 32768th clock has 

been shown in figure 8. 

 

Fig 8 Simulation Results of Proposed System 

Developed RTL code for PHE architecture has been 

tested for RGB color images and the simulation results 

are shown in figure 9. Two pixels from each RGB color 

channel are read and processed in one clock cycle in the 

proposed design. 

 

Fig 9 Simulation Results of Proposed PHE Architecture 

for Color Images 

4.2 Synthesis Results  

The proposed PHE architecture has been synthesized and 

implemented on Kintex 7 family FPGA board. After 

synthesis and implementation, it is relatively simple to 

examine and analyze the various metrics, like area, 

power, and timing requirement. The RTL schematic of 

comparator and counter control module for the pixel 

input values from 194 to 200 has been shown in figure 

10 and the RTL schematic of counter and output pixel 

mapping unit has been shown in figure 11. 

 

Fig 10 RTL Schematic of proposed PHE Architecture 

(Input Side) 
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Fig 11 RTL Schematic of proposed PHE Architecture 

(Output Side) 

The summary of utilization of slices and LUTs of 

Kintex7 FPGA for the proposed PHE architecture has 

been shown in figure 12. Utilization summary shows that 

the design uses 7% of slice registers, 23% of slice LUTs 

for implementing the combinational logic of the design 

and 50% of available LUT-FF pairs as memory elements 

for the proposed PHE design. Synthesized design uses 

2064 D-type flip-flop(s), 507 comparator(s), 2 

multiplexer(s) and 257 adders/subtractors 

 

Fig 12 Device Utilisation of Proposed PHE Architecture 

4.3 Experimental Results Analysis 

The research work focus on developing efficient high 

speed architecture for histogram equalisation technique 

which is one of the prominent image contrast 

enhancement technique. According to the timing report, 

the design's processing time is 2.596ns with a maximum 

frequency of operation of 385.26MHz when only 

parallelism is used, and 2.364ns with a maximum 

frequency of operation of 422.976MHz when both 

parallelism and pipelining are used. The proposed design 

has a latency of 32768 clock cycle for a 256×256 image 

size. 

Table 1 Comparison of Processing time of Proposed 

PHE Architecture 

Image 

Size 

Proce

ssing 

time 

in 

[12] 

Proces

sing 

time in 

[4][5] 

Proces

sing 

time 

in [13] 

Processing 

time of 

Proposed 

Architectu

re 

256×25

6 

0.97

ms 

0.263

ms 

0.15m

s 

0.077ms 

 

The proposed architecture has been compared with 

various existing architectures [4], [5], [12], [13]  in terms 

of processing time and the results are listed in table1for a 

standard image of size 256×256. 

 

Fig 13 Comparison of Computation Time 

Experimental results show that the proposed PHE 

architecture enhances the contrast of an image with a 

higher speed compared to the architectures proposed in 

[4], [5], [12], [13]. According to the comparison shown 

in table 1 proposed PHE architecture has speed up factor 

of 2, 3.14 and 12.5 compared to the serial in architecture 

proposed by [13] , [4,5] and [12]. Computation time of 

various architectures for different image size is shown in 

figure 13. 

  

Fig 14 Comparison of Hardware Resource Utilisation  

Figure 14 illustrates that the proposed PHE architecture 

utilizes only 8% more hardware resources compared to 

serial computation architecture proposed in [13] by 

increasing the speed by a factor of 2. 

(A1) (001.jpg) (B1) (C1) 
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(A2) (011.jpg) (B2) (C2) 

(A3) (014.pg) (B3) (C3) 

(A4) (015.jpg) (B4) (C4) 

(A5) (016.jpg) (B5) (C5) 

(A6) 

(Exdark.jpg) 

(B6) (C6) 

(A7) (xray.jpg) (B7) (C7) 

 

Fig 15 Input and Output images of Proposed Design 

A set of dark image samples from the dataset [10] have 

been used to test the performance of the proposed 

architecture. First the color images are converted into 

grayscale images and given as an input to the proposed 

architecture. Columns 1, 2, and 3 of Figure 15 display 

the input grayscale and the corresponding output images 

generated by the Matlab and FPGA implementations. 

Figure 16 displays the results of processing the R, G, and 

B channels of the color images using the 

proposed architecture. The results show that the output 

images produced by the proposed architecture have 

better visual quality compared to the input images in 

terms of brightness and contrast. 

(a1) (a2) (a3) 

(b1) (b2) (b3) 

(a4) (a5) (a6) 

(b4) (b5) (b6) 

Fig 16 Input and Output RGB images of the proposed 

method (a1) – (a6) : Input Images (b1) – (b6) : Output 

Images 

The common image enhancement qualitative metrics like 

entropy (E) and contrast per pixel (cpp) presented in 

equation (4) and (5) has been used to measure the 

performance of the proposed PHE architecture 

implemented using verilog. The entropy[14–17] of an 

image quantifies its information content. This term refers 

to the level of uncertainty or randomness in images. 

More information in an image improves its quality. 

Figure 17 shows the measured entropy for input and 

output images.  

E = − ∑ 𝑃𝑖 
𝑛−1
𝑖=0 𝑙𝑜𝑔2 𝑃𝑖                                                  (4) 
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Where E refers to Entropy of image, n = 256 for 8 bit 

grayscale levels Pi refers to probability of pixels with 

grayscale level i.  

 

Fig 17 Entropy of Input and Output Images 

In general Histogram equalisation reduces the entropy of 

input images by amplifying the noise. According to the 

experimental results, the output images obtained from 

matlab implementation of traditional Histogram 

equalisation have reduction in entropy by more than 7% 

to 20%, whereas the output images obtained from verilog 

implementation of the proposed design have reduction in 

entropy by only 2% compared to the input image. From 

this it can be concluded that the proposed design 

improves the image contrast with a very less information 

loss. 

Contrast of an image is the difference between the 

image's light and dark intensities. A wider range of grey 

intensities leads to increased contrast. Contrast per pixel 

(CPP) is a measure that indicates how a pixel value differ 

from its neighboring pixel values.  

CPP = 
∑ 𝑐𝑜𝑛𝑣2(𝐼,𝐾)

𝑁
                                                           (5) 

Where I=3×3 image window,  

k=kernel = 
1

8 
× [−1, −1, −1; −1, 8, −1; −1, −1, −1 ] 

and N=Image Size. 

Figure 18 shows the contrast per pixel value for a set of 

low contrast dark input images and their corresponding 

output images. According to experimental results, the 

proposed design improves input image contrast by more 

than 50 percent, which makes it more appropriate for 

enhancing the brightness and contrast of low contrast 

dark images. 

 

Fig 18 Contrast per Pixel of Input and Output Images 

5. Conclusion and Future Work 

The fundamental goal of this research work is to create 

reconfigurable parallel in hardware architecture for 

histogram equalisation that consumes reduced computing 

time and modest hardware resources. The suggested 

architecture was coded in both matlab and RTL 

compliant verilog HDL, and its functioning was tested 

using Xilinx ISIM, an integrated simulator tool. The 

proposed design was synthesized and implemented using 

the Xilinx Kintex 7 low voltage FPGA family device 

Xc7k70tl. According to the experimental results, the 

computation speed of the proposed architecture for 

implementing histogram equalisation on FPGA is 2 

times faster than the serial architecture proposed in [11], 

3.14 times faster than the existing architectures proposed 

in [3,4], and more than 12.5 times faster compared to the 

architecture proposed in [12]. The proposed design was 

synthesized and implemented using the Xilinx Kintex 7 

low voltage FPGA family device, Xc7k70tl. According 

to the experimental results, the computation speed of the 

proposed architecture for implementing histogram 

equalisation on FPGA is 2 times faster than the serial 

architecture proposed in [11], 3.14 times faster than the 

existing architectures proposed in [3,4], and more than 

12.5 times faster than the architecture proposed in [10]. 

This improvement in computation speed opens up new 

opportunities for improving the suitability the suggested 

design for real-time applications. 
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