

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 204–213 | 204

An High Speed FPGA Implementation of Image Contrast Enhancement

using Histogram Equalisation

Agalya P.1, M. C. Hanumantharaju2

Submitted: 15/01/2024 Revised: 23/02/2024 Accepted: 01/03/2024

Abstract: Image enhancement is one of the basic and important image processing techniques used to improve the quality of image in

wide variety of applications including real-time video surveillance, medical imaging, industrial automation, intelligent self navigation

systems, and oceanography. This research paper proposes a novel high-speed parallel and pipelined reconfigurable field programmable

gate arrays (FPGA) architecture for histogram equalisation to enhance the contrast of an image. The proposed parallel histogram

equalisation architecture comprises of comparators, unique counter modules and a register array. The proposed architecture has been

developed using register transfer level (RTL) - compliant Verilog HDL code, simulated using Xilinx’s integrated simulator (ISim),

synthesized and implemented on a Kintex7 family of FPGA device. Simulation and synthesis results demonstrate that the proposed

architecture can be implemented with a processing time of 2.364ns with a maximum frequency of operation 422.976MHz. Extremely

dark images and overexposed images from standard datasets have been used to test the performance of the developed architecture and

compared with matlab results through the quality metrics like Entropy, Contrast per pixel. Results obtained by proposed architecture and

the results obtained by matlab found similar. Experimental results show that the proposed architecture outperforms other existing

architectures

Keywords: Contrast enhancement, FPGA, HE, High speed, Pipelined Architecture

1. Introduction

Histogram equalization is the simplest and broadly

applied image processing technique[1] used to enhance

the contrast of an image by redistributing its pixel

intensities to the entire range. The main objective of

histogram equalization is to make the pixel intensity

distribution more uniform across the entire intensity

range, thereby improving the overall visual quality and

enhancing features in the image.

Histogram computation and pixel transformation

function are the two major operations in histogram

equalisation technique. Serializing the histogram

computation increases the run time, but whereas

parallelizing the data for histogram computation reduces

the computation time to a larger extent. Parallel

computation of histogram equalization can be achieved

using FPGA technology to accelerate the process and

improve its efficiency. Histogram equalization is an

image processing technique used to enhance the contrast

of an image by redistributing pixel intensities. Parallel

processing on an FPGA can significantly speed up the

computation of the histogram equalization algorithm for

images.

Histogram computation and histogram mapping are the

two major sub modules of histogram equalisation. Many

researchers have proposed various architectures for

histogram computation. Two different approaches have

been used for the computation of histogram. One is

memory based approach and the other is counter based

approach. In memory based histogram computation

BRAMs are used for two purposes

(i) To store image pixel values

(ii) To store histogram for each bin

By streaming the image pixel values into the

computation unit instead of storing in BRAM may use

less number of BRAMs.

Parallelizing the histogram computation using memory

based architecture has a challenging problem. If the

group of pixels that are read parallel from memory has

several occurrences of same pixel value, then there are

several writes to the same memory location at the same

time which leads to memory collision. A sample to

illustrate memory collision is shown in figure1. Another

challenging problem in BRAM based histogram

computation is that increase in image size demands large

number of BRAMS.

1Department of Electronics & Communication Engineering

Sapthagiri College of Engineering, Bangalore, Visvesvaraya

Technological University, Belagavi, India
agalyas@sapthagiri.edu.in

2 Department of Electronics & Communication Engineering

BMS Institute of Technology & Management, Bangalore,
Visvesvaraya Technological University, Belagavi, India

mchanumantharaju@gmail.com

ORCID ID : 0000-3343-7165-777X

* Corresponding Author Email: author@email.com

mailto:agalyas@sapthagiri.edu.in
mailto:mchanumantharaju@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 204–213 | 205

Fig 1: Memory collision in parallel histogram

computation [2]

The proposed research work is focused on developing a

novel parallel and pipelined counter based histogram

computation architecture to overcome the above said

challenges. In counter based approach the number of

counters to count the bins remains 256 only irrespective

of the size of the input image and only the counter bit

size increases with increase in image size. The proposed

design demands only the increase in counter register size

instead of the number of counters for larger image size.

The major contributions of the proposed research work

are

(i) Development of an efficient parallel and

pipelined architecture for histogram

computation of an image

(ii) Use of Register Transfer Level modeling style

of verilog HDL coding for the development of

all sub modules of histogram equalisation

architecture.

(iii) A novel counter design to count when the two

consecutive pixels of an image holds the same

pixel intensity value which are read parallel

from odd and even address.

(iv) Efficient high speed design architecture to

implement output pixel transformation function.

2. Related Work

The huge challenge in hardware implementation of

histogram equalization algorithm is to reduce the

processing time by utilizing fewer hardware resources.

Histogram computation and pixel transformation are the

two major steps in histogram equalisation. Many

researchers have come out with various architectures for

histogram computation. The two most convenient

architectures proposed in the literature for computing

histograms use an array of counters [2] and array of

accumulators with memory [3]. In Memory based

architectures, every pixel histogram computation needs

one read and write memory access before and after

computation. This kind of memory access time

dominates the actual computation which eventually

increases the processing time.

A sequential histogram computation architecture using

an array of 256×16-bit memory has been proposed by Li

et al.[3]. Each memory location is used to update and

store the histogram count of the respective greyscale

bins. This architecture needs 3 clock cycles to read and

update the histogram of an input greyscale value. Use of

this sequential architecture may demand additional

hardware for the computation of cumulative histogram

and equalised output greyscale value which may reduce

the overall speed of histogram equalisation architecture.

A decoder based sequential architecture that uses an

array of counters has been proposed by Abdullah et al.[4]

and Nitin et al. [5]. In this architecture the author use a

special kind of decoder called hierarchical decoder

which has a cascaded OR gate structure for computation

of cumulative histogram. But this cascaded OR gate

structure introduces additional delay at the higher order

outputs of decoder which limits the speed of operation of

the system.

Parallel and pipelined array architecture for real-time

histogram computation has been proposed by Cadenas et.

al. [6]. In proposed method a set of processing cells to

compute k histogram bins for 1 or 2 or 4 input pixels in

pipelined fashion. Finally the histogram bin counts are

read serially from all processing cells. Registers are used

to accumulate the histogram bins. Proposed system

demands more number of processing cells if the

processing cells accommodate less number of histogram

bins.

Asadollah Shahbahrami et al. [2] proposed a parallel

histogram computation architecture that overcome the

memory collision problem by using two port memory.

The architecture computes the histogram in two phases

by using three memories. In first phase it uses two

memories to compute the histogram of pixels stored in

odd and even memory addresses individually and in

second phase it adds the histograms stored in both

memories and store it in third memory. Second phase

incurs an additional 256 clock cycles in computing the

final histogram along with N2/2 clock cycles used in first

phase for an image of size N×N. Proposed architecture is

found to be efficient for smaller histograms but fails for

larger histograms as it demands additional memory.

Krishna Swaroop Gautam [7] proposed a parallel

architecture for histogram computation of n pixels

simultaneously. The proposed architecture use n input

registers, demultiplexers and adders. Proposed parallel

architecture reduces the computation time by n as

compared to the sequential computation architecture at

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 204–213 | 206

the same time it increases the hardware resources usage

by n times.

Parallel array histogram architecture proposed by Gan

et.al [8] uses a register array instead of a memory array

to store the histogram values. In each step, M inputs can

be processed in parallel to renovate the histogram bins

without any additional dormancy. Experimental results

show that the design can achieve a super-linear speed-up

of 43.75 for a 16- way PAHA when compared to a

software implementation in a general purpose processor

but however the proposed design demands more

hardware resources.

Ernest Jamro, Maciej Wielgosz, and Kazimierz Wiatr in

2007[9] has proposed a highly parallel architecture

module for histogram computation. Proposed

architecture includes a Dual port BRAM module that

could process multiple input data in a single clock cycle.

The fundamental disadvantage arises from this design is

that the number of BRAMs which is required in total is

the product of BRAM for parallel histogram calculations

(or LUT programming) and the reading of the histogram.

This increase in BRAM requirement limits the amount of

parallelism adopted in the design.

Riyadh Zaghlool Mahmood et. al. [10] has proposed a

hardware architecture for parallel histogram computation

that avoids memory collisions by using a dual-ported

memory. The proposed architecture uses two BRAM’s,

one BRAM to store the image pixels and another BRAM

to store histogram array. In proposed method the input

pixels are used as addresses of BRAM to update the

histogram array. The system architecture uses 3 clock

cycles to update the histogram array of two pixels

parallel. Proposed system needs 24756 (6000h) clock

cycles to compute the histogram of 128×128 image.

Proposed Architecture demands additional BRAM’s for

larger image sizes with higher histogram size.

The speed at which histogram statistics are computed is

increased by each of these parallel histogram computing

architectures at the expense of higher hardware resource

utilization. At the same time most of the existing work is

addressing only the architecture and processing time for

computation of histogram, but the additional processing

time and resources needed for computing histogram

equalised image has not been addressed.

3. Proposed Work:

Proposed research work supports massive parallelism in

computing image histogram using a set of comparators

and counters with an additional control circuit by reading

two pixels at the same time. Flowchart for the proposed

HE architecture is shown in figure 2.

1. Read two pixels at a time one from odd numbered

address and another from even numbered address

from memory

2. Compare the read pixels with all 256 bin values

simultaneously using 256 × 2 comparators.

3. The comparator output for odd addressed pixel

(pixel_in1) is c1n and the comparator output for

even addressed pixel (pixel_in2) is c2n.

4. Check the value of c1n and c2n for controlling the

counter operation.

5. If both c1n and c2n are equal to 0, then the counter

value will be retained as it is. If either c1n or c2n is

equal to 1 then the counter will update its counter

value by 1. If both c1n and c2n are equal to 1, the

counter updates its count value by 2.

6. Repeat the steps 1 to 5 until all the pixels in an

image are read.

7. The most significant 8 bits of updated counter value

is loaded into a 256 × 8 bit array registers which

holds the histogram equalized pixel values for all

256 bins.

8. Output the two histogram equalized pixel values at

each clock.

Fig 2: Flowchart of Proposed PHE Architecture

3.1 Numerical Illustration:

Traditional HE Computation

Consider a 3 bit image (M) of size 4×4

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 204–213 | 207

M = [

0 1 1 3
7 2 5 6
6 3 2 1
1 4 4 2

]

(i) Find the range of intensity values of the image

Range of pixel intensity values for a 3 bit image

(kmax) is 7

(ii) Compute the frequency of occurrence

(n(k):count) of each pixel (k) in the image.

k: 0 1 2 3 4

 5 6 7

n(k): 1 4 3 2 2

 1 2 1

(iii) Compute the cumulative count (n(r)) of each

pixel in the image using equation 1.

n(r)=∑ 𝒏(𝒌)𝒓
𝒌=𝟎

(1)

n(r): 1 5 8 10 12

 13 15 16

(iv) Compute the Histogram equalised output pixel

values of image using equation 2.

T(r)=kmax×
∑ 𝑛(𝑘)𝑟

𝑘=0

𝑁
 (2)

Where T(r) is the histogram equalised output

pixel value for the pixel intensity r. Substituting

kmax=7 and N=16 in equation 2

r: 0 1 2 3 4

 5 6 7

T(r) :0 2 4 4 5

 6 6 7

Histogram equalised output image (Mhe) obtained is

shown as

Mhe = [

02 2 4
7 4 6 6
6 4 4 2
2 55 4

]

Proposed HE Computation

Consider a 3 bit image (M) of size 4×4

M = [

0 1 1 3
7 2 5 6
6 3 2 1
1 4 4 2

]

(i) Find the range of intensity values of the image

Range of pixel intensity values for a 3 bit image

(kmax) is 7

(ii) Compute the frequency of occurrence

(n(k):count) of each pixel (k) in the image.

k: 0 1 2 3 4

 5 6 7

n(k): 1 4 3 2 2

 1 2 1

(iii) Compute the cumulative count (n(r)) of each

pixel in the image using equation 1.

n(r) = ∑ 𝒏(𝒌)𝒓
𝒌=𝟎

n(r) 1 5 8 10 12

 13 15 16

(iv) Compute the Histogram equalised output pixel

values of image.

Equation (2) reduces to equation (3) by substituting

kmax=8 and N=16

T(r)=8×
∑ 𝑛(𝑘)𝑟

𝑘=0

16
=

∑ 𝑛(𝑘)𝑟
𝑘=0

2
 (3)

According to equation (3), the histogram equalised

output pixel values are obtained by right shifting the

cumulative count n(r) by 1 bit which reduces the

complex operations of multiplication and division in

traditional approach.

r: 0 1 2 3 4 5

 6 7

T(r) 0 2 4 5 6 6

 7 7

Histogram equalised output image obtained using

proposed method is shown as

Mhe = [

02 2 5
7 4 6 7
7 5 4 2
2 6 6 4

]

Numerical illustration of proposed method shows that

the output pixel valued obtained from proposed method

is same as the traditional method.

3.2 Architecture for Proposed PHE System

Fig 3: Proposed PHE Architecture

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 204–213 | 208

The proposed FPGA architecture for the parallel

histogram equalization computation is shown in Figure

3. The proposed PHE architecture simultaneously reads

two input pixels from two consecutive memory

addresses for every positive edge of the clock signal. The

proposed system's architecture consists of

histogram computing unit and a pixel transformation

unit. The histogram computation unit includes an array

of comparators, an array of control modules and an array

of registers. A register array and a delay control unit are

part of the pixel transformation unit. The histogram

count values are held in a set of counters, the histogram

equalized pixel values are stored in a set of registers. The

proposed parallel architecture speeds up the computation

of histogram equalization without requiring a substantial

increase in device cost.

3.2.1 Comparator Module

Comparator module in the Proposed design uses a set of

two comparators of less than or equal comparison type as

shown in figure 4.

Fig 4 Architecture of Comparator Module

This comparator module compare a specific grayscale

value in the range of 0 to 255 with two input pixels from

two consecutive memory addresses and generates the

output signals C1n and C2n. The comparator outputs

C1n and C2n are set to 1 when the input pixels p1_in and

p2_in are less than or equal to the pixel intensity n. A set

of AND, OR and XNOR gates are used to compute less

than or equal to operation of comparator. This

comparator module outputs C1n and C2n are used as the

control signals to trigger the counter enable signals as

shown in figure 5.

Fig 5 Counter Enable Control Circuit

Counter Enable control circuit provides the control

signals to the counter registers to update the histogram

value. The module consists of a set of logical XOR and

logical AND gates. XOR gate is used to trigger the nth

counter when any one pixel out of 2 input pixels is less

than or equal to the intensity value n. AND gate is used

to trigger nth counter when both the input pixels are less

than or equal to the intensity value n.

3.2.2 Histogram Count Module

High speed design architecture proposed for histogram

count module which includes 2 adders, a 4:1 multiplexer

and an 8 bit register has been shown in figure 6. Adders

increment the count values and store the updated count

into counter register in every positive edge of the clock.

Proposed design employs 256 counter modules to update

the histogram count of all 256 grayscale bins. The

cumulative histogram count is incremented by 1 when

any one of input pixel is less than or equal to the pixel

intensity n and it is incremented by 2 when both the

consecutive input pixels are less than or equal to the

pixel intensity n. The counter design incorporates two

adders (Adder1 and Adder2), a multiplexer, and a

register. Adder1 and Adder2 add the constants 1 and 2 to

it, accordingly when their input (prior count) changes.

Multiplexer picks the results from Adder1 or Adder2

based on the control signals cen1n and cen2n. When

cen1n=1 and cen2n=0, the multiplexer provides the

Adder1 result (count_n = count_n+1), and when

cen1n=0 and cenn=1, it provides the Adder2 result

(count_n=count_n+2).On each positive clock edge, the

multiplexer output (cumulative pixel count) is loaded

into the register. Proposed PHE system architecture uses

256 counters to hold the cumulative count of all pixel

intensity values in an image.

Fig 6 Counter Design

3.2.3 Delay control unit

Delay control unit acts as an interface between histogram

count module and output mapping module. In order to

write the histogram equalised pixel values to the output

register array, there is a need of read and write control

signal with a delayed clock. The control signals used to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 204–213 | 209

read (Rd_clk) and write (Write_En) the output registers

are generated by the delay control unit. Each input pixel

is mapped with its corresponding histogram equalised

output pixel value from 256 byte register array with

appropriate delay. The block diagram and detailed

architecture of delay control unit is shown in figure 7.

Delay control signals Write_En and Rd_clk are

generated after n/2 (n: total number of pixels in an input

image) and n/2+1 clock cycles respectively for an image

of size n.

Fig 7 Architecture of Delay Control Circuit

3.2.4 Output Mapping Unit:

A set of 256 output registers are used to store the

computed histogram equalized output pixel values. Least

significant 8 bits are stored as histogram equalised output

pixels when write control signal (write_en) is enabled.

Histogram equalized output pixels are read from the

output register array when Rd_clk control signal is set by

the delay control unit. The input pixels which are

delayed for n+1 clock cycles are used as index values for

accessing appropriate registers to read the output pixel

values.

4. Experimental Results

Architecture design to implement histogram equalisation

algorithm onto an FPGA has been coded in matlab to

ensure the correctness of the developed hardware

architecture. Subsequently the proposed architecture has

been developed using RTL compliant verilog HDL

(Hardware Description Language) code so that it can be

implemented on an FPGA.

The pixel intensities (hexadecimal value) of a standard

image in .jpg and .bmp format are read and stored it in a

text (.txt format) file. Different variety of dark images,

over exposed images, aerial images and medical images

from different datasets [11] are used to test the

functionality of the propose architecture. A size of

256×256 and 512×512 Grayscale scale and RGB color

images have been used in testing the design architecture.

The text file generated by the Matlab code has been used

by Xilinx ISIM (Ver. SE 14.7) for simulation.

The simulated output of the proposed design has been

written in an output text (.txt format) file. To display the

histogram-equalized output image, a Matlab program has

been written to read the pixel intensities from the output

text file and convert them back into an output image in

the.jpg (.jpg format) file.

4.1 Simulation Results

The Simulation results of histogram equalization

architecture shown in figure 8 portrays that two input

pixels are read in each positive edge of the clock. After a

latency of 32768 clock cycles histogram equalized

output pixels are generated for two input pixels in each

positive edge of clock. The histogram equalized output

pixel values obtained for the two input pixels 201 and

198 respectively at the positive edge of 32768th clock has

been shown in figure 8.

Fig 8 Simulation Results of Proposed System

Developed RTL code for PHE architecture has been

tested for RGB color images and the simulation results

are shown in figure 9. Two pixels from each RGB color

channel are read and processed in one clock cycle in the

proposed design.

Fig 9 Simulation Results of Proposed PHE Architecture

for Color Images

4.2 Synthesis Results

The proposed PHE architecture has been synthesized and

implemented on Kintex 7 family FPGA board. After

synthesis and implementation, it is relatively simple to

examine and analyze the various metrics, like area,

power, and timing requirement. The RTL schematic of

comparator and counter control module for the pixel

input values from 194 to 200 has been shown in figure

10 and the RTL schematic of counter and output pixel

mapping unit has been shown in figure 11.

Fig 10 RTL Schematic of proposed PHE Architecture

(Input Side)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 204–213 | 210

Fig 11 RTL Schematic of proposed PHE Architecture

(Output Side)

The summary of utilization of slices and LUTs of

Kintex7 FPGA for the proposed PHE architecture has

been shown in figure 12. Utilization summary shows that

the design uses 7% of slice registers, 23% of slice LUTs

for implementing the combinational logic of the design

and 50% of available LUT-FF pairs as memory elements

for the proposed PHE design. Synthesized design uses

2064 D-type flip-flop(s), 507 comparator(s), 2

multiplexer(s) and 257 adders/subtractors

Fig 12 Device Utilisation of Proposed PHE Architecture

4.3 Experimental Results Analysis

The research work focus on developing efficient high

speed architecture for histogram equalisation technique

which is one of the prominent image contrast

enhancement technique. According to the timing report,

the design's processing time is 2.596ns with a maximum

frequency of operation of 385.26MHz when only

parallelism is used, and 2.364ns with a maximum

frequency of operation of 422.976MHz when both

parallelism and pipelining are used. The proposed design

has a latency of 32768 clock cycle for a 256×256 image

size.

Table 1 Comparison of Processing time of Proposed

PHE Architecture

Image

Size

Proce

ssing

time

in

[12]

Proces

sing

time in

[4][5]

Proces

sing

time

in [13]

Processing

time of

Proposed

Architectu

re

256×25

6

0.97

ms

0.263

ms

0.15m

s

0.077ms

The proposed architecture has been compared with

various existing architectures [4], [5], [12], [13] in terms

of processing time and the results are listed in table1for a

standard image of size 256×256.

Fig 13 Comparison of Computation Time

Experimental results show that the proposed PHE

architecture enhances the contrast of an image with a

higher speed compared to the architectures proposed in

[4], [5], [12], [13]. According to the comparison shown

in table 1 proposed PHE architecture has speed up factor

of 2, 3.14 and 12.5 compared to the serial in architecture

proposed by [13] , [4,5] and [12]. Computation time of

various architectures for different image size is shown in

figure 13.

Fig 14 Comparison of Hardware Resource Utilisation

Figure 14 illustrates that the proposed PHE architecture

utilizes only 8% more hardware resources compared to

serial computation architecture proposed in [13] by

increasing the speed by a factor of 2.

(A1) (001.jpg) (B1) (C1)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 204–213 | 211

(A2) (011.jpg) (B2) (C2)

(A3) (014.pg) (B3) (C3)

(A4) (015.jpg) (B4) (C4)

(A5) (016.jpg) (B5) (C5)

(A6)

(Exdark.jpg)

(B6) (C6)

(A7) (xray.jpg) (B7) (C7)

Fig 15 Input and Output images of Proposed Design

A set of dark image samples from the dataset [10] have

been used to test the performance of the proposed

architecture. First the color images are converted into

grayscale images and given as an input to the proposed

architecture. Columns 1, 2, and 3 of Figure 15 display

the input grayscale and the corresponding output images

generated by the Matlab and FPGA implementations.

Figure 16 displays the results of processing the R, G, and

B channels of the color images using the

proposed architecture. The results show that the output

images produced by the proposed architecture have

better visual quality compared to the input images in

terms of brightness and contrast.

(a1) (a2) (a3)

(b1) (b2) (b3)

(a4) (a5) (a6)

(b4) (b5) (b6)

Fig 16 Input and Output RGB images of the proposed

method (a1) – (a6) : Input Images (b1) – (b6) : Output

Images

The common image enhancement qualitative metrics like

entropy (E) and contrast per pixel (cpp) presented in

equation (4) and (5) has been used to measure the

performance of the proposed PHE architecture

implemented using verilog. The entropy[14–17] of an

image quantifies its information content. This term refers

to the level of uncertainty or randomness in images.

More information in an image improves its quality.

Figure 17 shows the measured entropy for input and

output images.

E = − ∑ 𝑃𝑖
𝑛−1
𝑖=0 𝑙𝑜𝑔2 𝑃𝑖 (4)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 204–213 | 212

Where E refers to Entropy of image, n = 256 for 8 bit

grayscale levels Pi refers to probability of pixels with

grayscale level i.

Fig 17 Entropy of Input and Output Images

In general Histogram equalisation reduces the entropy of

input images by amplifying the noise. According to the

experimental results, the output images obtained from

matlab implementation of traditional Histogram

equalisation have reduction in entropy by more than 7%

to 20%, whereas the output images obtained from verilog

implementation of the proposed design have reduction in

entropy by only 2% compared to the input image. From

this it can be concluded that the proposed design

improves the image contrast with a very less information

loss.

Contrast of an image is the difference between the

image's light and dark intensities. A wider range of grey

intensities leads to increased contrast. Contrast per pixel

(CPP) is a measure that indicates how a pixel value differ

from its neighboring pixel values.

CPP =
∑ 𝑐𝑜𝑛𝑣2(𝐼,𝐾)

𝑁
 (5)

Where I=3×3 image window,

k=kernel =
1

8
× [−1, −1, −1; −1, 8, −1; −1, −1, −1]

and N=Image Size.

Figure 18 shows the contrast per pixel value for a set of

low contrast dark input images and their corresponding

output images. According to experimental results, the

proposed design improves input image contrast by more

than 50 percent, which makes it more appropriate for

enhancing the brightness and contrast of low contrast

dark images.

Fig 18 Contrast per Pixel of Input and Output Images

5. Conclusion and Future Work

The fundamental goal of this research work is to create

reconfigurable parallel in hardware architecture for

histogram equalisation that consumes reduced computing

time and modest hardware resources. The suggested

architecture was coded in both matlab and RTL

compliant verilog HDL, and its functioning was tested

using Xilinx ISIM, an integrated simulator tool. The

proposed design was synthesized and implemented using

the Xilinx Kintex 7 low voltage FPGA family device

Xc7k70tl. According to the experimental results, the

computation speed of the proposed architecture for

implementing histogram equalisation on FPGA is 2

times faster than the serial architecture proposed in [11],

3.14 times faster than the existing architectures proposed

in [3,4], and more than 12.5 times faster compared to the

architecture proposed in [12]. The proposed design was

synthesized and implemented using the Xilinx Kintex 7

low voltage FPGA family device, Xc7k70tl. According

to the experimental results, the computation speed of the

proposed architecture for implementing histogram

equalisation on FPGA is 2 times faster than the serial

architecture proposed in [11], 3.14 times faster than the

existing architectures proposed in [3,4], and more than

12.5 times faster than the architecture proposed in [10].

This improvement in computation speed opens up new

opportunities for improving the suitability the suggested

design for real-time applications.

References

[1] A. Vyas, S. Yu, and J. Paik, Fundamentals of

digital image processing. 2018.

[2] A. Shahbahrami, J. Y. Hur, B. Juurlink, and S.

Wong, “FPGA Implementation of Parallel

Histogram Computation.”

[3] X. Li, G. Nt, Y. Cut, T. Pu, and Y. Zhong, “Real-

time Image Histogram Equalization Using FPGA,”

[Online]. Available:

http://proceedings.spiedigitallibrary.org/.

[4] A. M. Alsuwailem and S. A. Alshebeili, “A new

approach for real-time histogram equalization using

FPGA,” Proc. 2005 Int. Symp. Intell. Signal

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 204–213 | 213

Process. Commun. Syst. ISPACS 2005, vol. 2005,

pp. 397–400, 2005, doi:

10.1109/ispacs.2005.1595430.

[5] N. Sachdeva and T. Sachdeva, “An FPGA Based

Real-time Histogram Equalization Circuit for

Image Enhancement,” vol. 7109, no. 2, pp. 63–67,

2010.

[6] J. O. Cadenas, R. Simon Sherratt, P. Huerta, and

W.-C. Kao, “Parallel Pipelined Array Architectures

for Real-time Histogram Computation in Consumer

Devices,” 2011.

[7] K. S. Gautam, “Parallel Histogram Calculation for

FPGA: Histogram Calculation,” in Proceedings -

6th International Advanced Computing Conference,

IACC 2016, Aug. 2016, pp. 774–777, doi:

10.1109/IACC.2016.148.

[8] Q. Gan, J. M. P. Langlois, and Y. Savaria, “Parallel

array histogram architecture for embedded

implementations,” Electron. Lett., vol. 49, no. 2,

pp. 99–101, Jan. 2013, doi: 10.1049/el.2012.2701.

[9] E. Jamro, M. Wielgosz, and K. Wiatr, “FPGA

Implementation of Strongly Parallel Histogram

Equalization.”

[10] R. Z. Mahmood and H. A. T. Abdullah, “FPGA-

Based high speed two ways parallel histogram

computation for grey image,” Prz.

Elektrotechniczny, vol. 99, no. 1, pp. 120–123,

2023, doi: 10.15199/48.2023.01.23.

[11] M. A. Qureshi, A. Beghdadi, and M. Deriche,

“Towards the design of a consistent image contrast

enhancement evaluation measure,” Signal Process.

Image Commun., vol. 58, no. August, pp. 212–227,

2017, doi: 10.1016/j.image.2017.08.004.

[12] D. B. Younis and B. M. K. Younis, “Low Cost

Histogram Implementation for Image Processing

using FPGA,” IOP Conf. Ser. Mater. Sci. Eng., vol.

745, no. 1, pp. 0–9, 2020, doi: 10.1088/1757-

899X/745/1/012044.

[13] P. Agalya and M. C. Hanumantharaju, “High Speed

and Efficient Reconfigurable Histogram

Equalisation Architecture for Image Contrast

Enhancement,” in Information, Communication and

Computing Technology, 2023, pp. 142–156.

[14] L. G. More, M. A. Brizuela, H. L. Ayala, D. P.

Pinto-Roa, and J. L. V. Noguera, “Parameter tuning

of CLAHE based on multi-objective optimization

to achieve different contrast levels in medical

images,” Proc. - Int. Conf. Image Process. ICIP,

vol. 2015-Decem, no. May 2016, pp. 4644–4648,

2015, doi: 10.1109/ICIP.2015.7351687.

[15] K. Singh and R. Kapoor, “Image enhancement

using Exposure based Sub Image Histogram

Equalization,” Pattern Recognit. Lett., vol. 36, no.

1, pp. 10–14, 2014, doi:

10.1016/j.patrec.2013.08.024.

[16] J. C. M. Román, J. L. V. Noguera, H. Legal-Ayala,

D. P. Pinto-Roa, S. Gomez-Guerrero, and M. G.

Torres, “Entropy and contrast enhancement of

infrared thermal images using the multiscale top-

hat transform,” Entropy, vol. 21, no. 3, pp. 1–19,

2019, doi: 10.3390/e21030244.

[17] D. Y. Tsai, Y. Lee, and E. Matsuyama,

“Information entropy measure for evaluation of

image quality,” J. Digit. Imaging, vol. 21, no. 3, pp.

338–347, 2008, doi: 10.1007/s10278-007-9044-5.

