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Abstract: As the size of liver tumor image databases increases, it becomes challenging to enhance the true positive rate of traditional 

prediction approaches due to the high majority-minority ratio and noise. However, while 3D convolutions have the potential to fully 

leverage spatial information, they also come with high computational costs and require significant GPU memory usage. On the other 

hand, 2D convolutions are limited in their ability to utilize the information contained in the third dimension. Missing feature values, 

feature noise, and Imbalanced liver classes are some of the significant factors that can impact the quality of input data. The quality of 

imbalance data significantly impacts the efficiency of classification approaches, making it necessary to ensure high-quality input data to 

achieve optimal results. Therefore, to ensure high-quality predictions on imbalanced liver datasets, models need to be optimized. Sensors 

are commonly used to collect and measure physical parameters, and they can be used to obtain liver tumor data for the proposed model. 

In this work, medical imaging sensors such as CT (computed tomography) machines are used to capture detailed images of the liver and 

identify potential tumors. Therefore, sensors play a crucial role in the proposed model by providing the necessary data to extract features, 

segment the liver and detect tumors accurately. In this work, an optimized k-joint probabilistic segmentation-based ensemble 

classification model is proposed to address the issues of homogenous and heterogenous liver tumor detection. Additionally, novel image 

filtering, feature extraction and ranking approaches are proposed to improve the imbalanced liver tumor regions for classification 

process. The experimental results demonstrate that the proposed classification model based on k-joint probability segmentation has 

significantly improved the accuracy, recall, precision, and AUC compared to the existing models. 

Keywords: Imbalance liver image data, probabilistic segmentation, deep learning, support vector machine, decision tree, ensemble 

learning model. 

1. Introduction 

Liver cancer is a severe disease that claims many lives 

every year. Accurate CT scans that measure the tumor's 

size, shape, position, and functional volume can help 

doctors detect and treat hepatocellular carcinoma more 

effectively [1]. Therefore, there is a significant requirement 

for automatic liver and liver tumor segmentation methods 

in the medical field. Automatically segmenting the liver 

from contrast-enhanced CT scans is challenging due to the 

low contrast ratio. Figure 1 displays the liver's closeness to 

adjacent organs. To improve tumor visibility, radiologists 

inject a contrast agent during CT scans, but this can create 

noise in the liver region [2]. Liver segmentation is already 

a challenging endeavor, and tumor segmentation is even 

more difficult. Figure 1 demonstrates how liver tumors can 

vary significantly in size, shape, location, and number 

within a single patient, posing a hurdle for automatic 

segmentation. Certain lesions may not possess clear 

boundaries, as shown in Figure 1's  

third row, which can impede the effectiveness of edge-

based techniques. Several methods are available for 

breaking down a larger entity into smaller, more 

manageable components, commonly referred to as 

segmentation techniques [3]. 
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Fig. 1. Liver tumors can vary in size, shape, and location 

of patient 

Class imbalance is a common issue in real-world 

applications where the distribution of classes in the dataset 

is uneven. For instance, medical diagnosis data may have 

significantly fewer instances of a specific disease than 

instances without the disease. Existing models may 

overlook the minority class, resulting in subpar 

performance [2], and this mismatch in data distribution can 

lead to biased conclusions [4]. Several methods have been 

proposed to address imbalanced liver datasets, including 

oversampling, under sampling, and cost-sensitive learning. 

However, these methods have limitations and often result 

in information loss or overfitting. They also require 

significant resources and are computationally expensive. 

Class imbalance occurs when one class has significantly 

more instances than the other class. Real-world 

applications such as credit scoring, fraud detection and 

medical diagnostics frequently involve this type of 

Imbalanced liver dataset [5]. On the other hand, class 

distribution imbalance describes a scenario where the 

number of instances of each class is not significantly 

different, but the distribution of the classes is unequal. 

Additionally, concept drift is a situation where the 

distribution of classes changes over time, making it 

difficult for machine learning models to adapt. Covariate 

shift occurs when the distribution of the input features 

varies for each class. This type of Imbalanced liver dataset 

arises when data is collected from multiple sources or at 

different times, making it challenging for machine learning 

models to accurately predict the class labels. Imbalanced 

liver datasets in machine learning algorithms can lead to 

poor accuracy, biased outputs, and overfitting. Existing 

models often overlook the minority class in imbalanced 

liver datasets, resulting in subpar performance and 

distorted outcomes. Ensemble learning, where multiple 

machine learning models are combined to produce a single 

prediction, is a useful method for improving the 

performance of the machine learning model. Although this 

approach can be computationally expensive and requires 

significant resources, it has shown promising outcomes in 

practical applications.  

In addition to conventional machine learning methods, 

other approaches, such as deep learning and transfer 

learning, have been proposed to address imbalanced liver 

datasets. These approaches offer different strategies for 

handling the issue of imbalanced liver datasets in machine 

learning and have shown promising results in real-world 

applications. Various oversampling methods are available, 

including random oversampling, synthetic oversampling, 

and adaptive synthetic oversampling [6]. Resampling 

techniques, such as oversampling and under sampling, 

have been found to be effective in handling both binary 

and multi-class Imbalanced liver classification types. The 

main advantage of these resampling techniques is their 

independence from the underlying classifier. Empirically, 

pre-processing has been demonstrated to be a good way to 

balance the variable class distribution. Random 

oversampling is the technique of replicating instances of 

the minority class at random until the distribution of 

classes is balanced. Although this approach is 

straightforward and easy to understand, it can lead to 

overfitting and an increase in computation time. Synthetic 

oversampling involves creating synthetic instances of the 

minority class using techniques like bootstrapping and 

bagging [7]. Imbalanced liver datasets in real-time 

machine learning systems can result in several issues, 

including predictive model bias, overfitting, and metric 

misrepresentation. Sampling techniques, such as 

oversampling or under sampling, can balance the class 

distribution in an Imbalanced liver dataset, but they may 

also result in information loss and an increase in noise in 

the data [8]. Synthetic data creation techniques, such as 

SMOTE (Synthetic Minority Over-sampling Technique), 

can be used to produce data samples of the minority class, 

but they may also result in overfitting and poorer model 

performance. When developing and implementing machine 

learning models in real-time applications, it is crucial to 

carefully analyze these issues and take necessary action to 

resolve them. These are some of the most significant issues 

associated with imbalanced liver datasets in real-time 

machine learning applications. Preparing a dataset for 

machine learning involves several crucial processes, 

including data preprocessing, noise filtering, addressing 

missing values, and dealing with attribute noise and class 

noise [9].  

According to the American Cancer Society (ACS), 

detecting and treating liver cancer early can result in 

improved patient outcomes. The use of shallow and deep 

learning methods has shown potential in identifying liver 

cancer at an early stage, which can lead to successful 

treatment. In 2016, there were 42,710 new cases of liver 

cancer, with 30,186 cases affecting males and 12,638 cases 

affecting females. Deep learning algorithms have been 

incorporated, resulting in significant improvements in 

radiography, particularly in liver segmentation. Clinicians 

can now make more accurate and effective decisions 

regarding diagnosis and treatment, leading to precise 

detection and early treatment of liver disease. ACS is 
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confident that this approach will yield better results for 

patients. Advanced techniques are utilized to meticulously 

analyze imaging data and detect concealed malignant 

growths in the liver. The proliferation of cancerous cells in 

liver tissues is the defining characteristic of hepatocellular 

carcinoma (HCC), which is the most widespread form of 

liver cancer. The World Health Organization (WHO) has 

reported that liver cancer was responsible for the second 

highest number of fatalities worldwide in 2015, with 

788,000 of the 8.8 million reported deaths linked to it [10]. 

Maintaining a healthy liver is crucial for overall well-being 

and digestion. Liver cancer can be divided into primary 

and secondary types, with hepatocellular carcinoma and 

hemangiomas being common primary liver cancers. The 

findings of this study offer hope for improved diagnostic 

and treatment options for liver cancer and associated 

illnesses. A new computer-assisted technology can now 

detect liver cancer from unprocessed CT images by 

analyzing anomalies in the liver's textural image. Although 

the technique faces challenges with size, orientation, blur, 

and noise, it has the potential to transform the detection 

and treatment of liver cancer [11]. The accurate and timely 

detection of cancerous masses is essential for the effective 

treatment of liver tumors, which can be either benign or 

malignant. A cutting-edge tumour segmentation 

technology is being developed to combat the catastrophic 

outcomes associated with liver tumors. Early diagnosis and 

detection of malignant tumors is crucial to avoid negative 

effects. However, medical imaging presents a challenge in 

detecting and segmenting benign and malignant liver 

tumors. This study introduces a trustworthy segmentation 

and detection method that utilizes abdominal CT images. 

The process is complicated due to the noise and varying 

image intensity levels in CT scans of diverse patients. 

Nonetheless, the objective is to develop a solution that 

guarantees the best possible care for patients. The study 

aims to expand the limits of medical imaging and enhance 

the prognosis of individuals with liver tumors. Delineating 

tumors in abdominal CT scans is a difficult and complex 

task, further complicated by the indistinct borders of 

adjacent organs. The scan reveals soft tissues with similar 

intensity levels to the liver, like the pancreas and spleen. 

The human body comprises essential organs such as the 

liver, colon, pancreas, spleen, and abdominal wall. 

However, detecting liver tumors from CT scans is a 

difficult task due to the presence of uncertainties, noise, 

and variations in intensity levels between patients. To 

surmount these challenges, a pioneering technique has 

been devised that divides tumor detection into two distinct 

phases. This innovative methodology aims to advance the 

field and improve patient outcomes by carefully examining 

the intricacies of tumor segmentation in abdominal CT 

scans. The proposed method entails segmenting the liver 

initially and then detecting the tumor from the previously 

segmented liver [12]. Despite the progress made in 

medicine, terminal illnesses like cancer and tumors still 

pose a significant challenge to treatment. Nevertheless, the 

rapid advancement of medical knowledge provides a ray of 

hope, allowing for the swift and accurate identification of 

various ailments. However, medical errors, which can 

result from human weakness, can have dire consequences, 

even leading to death. To address this issue, advanced 

medical systems that incorporate AI and machine vision 

are being developed to reduce human error in critical 

situations. The medical equipment market has seen 

remarkable growth, mainly in the categories of diagnostic 

and treatment equipment. With fresh perspectives and 

innovative approaches, the future of medical technology 

looks bright [13]. The use of imaging technologies has 

transformed the diagnosis, treatment, and monitoring of 

various illnesses. Medical imaging has become an essential 

component of contemporary healthcare, offering a more 

profound insight into the intricacies of the human body. 

Advanced techniques like X-rays and sound reflection 

enable the detection of irregularities with exceptional 

precision and accuracy. Despite the recent progress in 

diagnostic software, liver cancer is still a significant threat 

to public health worldwide. The industry is thriving due to 

the high cost of sophisticated equipment [14]. 

Significant advancements have been made in the detection 

and analysis of liver function. The use of computed 

tomography (CT) scans has enabled medical professionals 

to conduct more thorough studies on liver function, with a 

specific focus on lesion segmentation. Lesion segmentation 

is a crucial aspect in the diagnosis and prognosis of liver 

diseases and abnormalities. The application of advanced 

deep learning algorithms has revolutionized radiography, 

bringing about a new era of precision and accuracy in liver 

analysis. This has created opportunities for future research 

in this field. A pioneering method has been developed that 

utilizes 3D CT scans and convolutional neural networks 

(CNNs) to accurately differentiate the liver from 

surrounding organs. This method has resulted in significant 

improvements in lesion segmentation, demonstrating the 

impressive progress in the detection and analysis of liver 

function [15]. The potential impact of deep learning 

algorithms in radiology is vast, as demonstrated by the 

innovative approach outlined in this research article. Using 

a Convolutional Neural Network (CNN), accurate 

classification of each slice of a 3D scan can be achieved, 

allowing for the removal of non-abdominal slices and 

isolation of the liver for further examination. This 

technique involves the utilization of a second CNN to 

separate the liver from abdominal slices, with the 

segmented liver slices then meticulously combined into a 

volume for morphological operations during post-

processing. The outcomes of this method were 

groundbreaking, highlighting a significant advancement in 

liver segmentation [16-18]. The segmentation of the liver 

into two distinct components allows for a precise and 
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dependable analysis of CT scans. It is essential to conduct 

thorough image preprocessing to ensure that the 

segmentation process yields the best possible outcomes. 

The initial stage of liver segmentation entails a complex 

methodology that employs adaptive thresholding, global 

thresholding, and mathematical correction approaches. 

Morphology techniques are used to separate the liver from 

the surrounding abdominal organs with accuracy, making 

the image more straightforward. Advanced techniques like 

region expanding, adaptive thresholding, and fuzzy c-mean 

clustering are utilized to achieve this level of accuracy [19-

21]. The integration of computer-aided diagnosis (CAD) is 

essential for achieving accurate medical imaging. 

Nevertheless, the existence of salt and pepper noise in CT 

images can considerably impair the outcomes, making pre-

processing a critical phase of the process. To address this 

problem, the CT image is converted to grayscale. 

Moreover, a 3x3 median filter is utilized during pre-

processing to reduce noise.  The effectiveness of a cutting-

edge method in achieving precise liver segmentation, a 

critical aspect of CAD for medical imaging, has been 

proven. Precise liver segmentation can result in early 

detection and diagnosis of tumors, which can lead to 

improved patient outcomes. To accomplish image 

segmentation, important image characteristics were 

considered [22].  

2. Proposed Methodology  

In liver image segmentation and ensemble classification, 

class membership identification using segmentation is a 

popular technique for identifying patterns and groupings in 

datasets with Imbalanced liver class distributions. 

Segmentation can assist in identifying trends within the 

minority class, which may not be visible when considering 

the entire dataset. One approach to utilizing segmentation 

for imbalanced liver datasets is to use segmentation 

algorithms to identify segments of data within the minority 

class in the context of liver image segmentation. These 

segments can be used to generate additional data points to 

balance the class distribution and improve the accuracy of 

liver image segmentation. In addition, segmentation can be 

used to assign class membership to the data points. This 

involves determining the segment to which each data point 

belongs and assigning it to the minority class if it falls 

within a segment that contains a higher percentage of 

minority class data points. Probabilistic models, such as 

Gaussian distributions, can be used to assign class 

membership by modelling the distribution of each class. 

This approach not only allows for the prediction of the class 

label of an observation, but also provides a probability score 

that represents the confidence of the prediction. To improve 

the statistical classification metrics of liver image 

segmentation, an ensemble learning framework can be 

implemented on the segmented data. The proposed model's 

overall framework filters imbalanced liver datasets using the 

noise filtering approach and feature ranking measure, 

employs the K-density probabilistic segmentation approach 

to determine the class membership of the filtered data, and 

finally implements an ensemble learning framework on the 

segmented data. Figure 1 illustrates the proposed model's 

overall framework for liver image segmentation and 

ensemble classification. 

2.1 Liver Image Sparse Filtering 

Liver image filtering can be performed to remove sparse 

noise from a dataset of liver images with numerical features. 

Sparse filtering is a useful technique for tasks such as feature 

selection, denoising, and compression. However, non-linear 

Gaussian estimation (NGE) can be used instead to estimate 

the parameters of a non-linear Gaussian model. This 

approach offers greater flexibility in expressing the 

relationships and underlying structure of the data compared 

to traditional sparse filtering, which is a linear feature 

selection method. By combining NGE and sparse filtering, a 

non-linear Gaussian model can be learned that features 

sparsity. This approach can improve the accuracy and 

relevance of liver image analysis by removing sparse noise 

from the dataset. The specific implementation of this process 

may vary depending on the dataset and the desired outcome, 

but the use of NGE and sparse filtering can provide an 

effective method for liver image filtering as shown in Figure 

2. 

 

Fig. 2. Proposed Framework 
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To identify the sparse features in partitioned data with a 

high degree of missing values, which makes accurate 

predictions even with limited data, the proposed equation 

called Non-linear Gaussian estimation can be used.  

2.2 Feature Extraction Measures 

Feature ranking is particularly important for imbalance 

datasets because these datasets are characterized by a 

significant imbalance between the majority and minority 

classes, with the minority class often having a much 

smaller representation. Feature ranking is an essential step 

in the process of developing effective machine learning 

models for imbalance datasets. To enhance the 

performance of models and prevent overfitting, it is crucial 

to choose the most relevant features for imbalance datasets 

when the majority and minority classes are strongly 

Imbalanced liver. A variety of feature ranking measures 

can be applied to imbalance datasets, including: 

Information Gain (IG): This feature ranking measure 

estimates the decrease in entropy that occurs when the 

dataset is divided based on a specific attribute. It can help 

identify the features that are most useful for classification 

and is frequently used in decision trees. 

ReliefF: ReliefF is a feature selection algorithm that 

weighs the differences between the closest examples of the 

same and other classes when determining the significance 

of each feature. It is helpful in identifying the features that 

most strongly separate the majority class from the minority 

class. 

Gini Index: The Gini index calculates the likelihood that an 

instance would be erroneously classified based on the 

distribution of classes in a node. It can help identify the 

features that offer the most information for classification 

and is frequently used in decision trees. 

Chi-squared test: This analysis determines if two 

categorical variables are independent of one another. It can 

be used to identify the features that significantly influence 

the class variable. 

Mutual Information (MI): MI is a measure of how much 

information a feature imparts to the class variable. It can 

help identify the most informative features for 

classification and is frequently used in feature selection 

algorithms. 
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The pseudo code provided outlines the steps for performing 

feature extraction from a dataset of liver images using 

optimized Principal Component Analysis (PCA). The input 

to the algorithm is the dataset X, which contains m instances 

(in this case, liver images) and p features (the pixel values of 

each image). The desired number of principal components k 

is also specified as an input. The output is a transformed 

matrix R, which is a reduced version of X containing only 

the most important features. The first step is to compute the 

mean vector u of the dataset X, which is the average value of 

each feature across all instances. This is done by summing 

all instances and dividing them by the total number of 

instances. Next, the covariance matrix C is computed for X, 

which measures how much each feature varies together with 

the other features across all instances. This is done by 

subtracting the mean vector from each instance, multiplying 

each instance by its transpose, and then summing across all 

instances. The eigenvalues λ and eigenvectors E of C are 

then computed using the eigenvalue method. Eigenvalues 

represent the variance explained by each eigenvector, and 

eigenvectors represent the direction of maximum variance in 

the dataset. The top k eigenvectors are then selected to form 

a new matrix E_k, which defines a new k-dimensional space 

in which to project the instances. The transformed matrix R 

is then computed by projecting X onto the k-dimensional 

space defined by E_k. This is done by multiplying X by 

E_k. The resulting matrix R contains the transformed 

instances with only the most important features. Finally, the 

algorithm returns R as the output. The use of optimized PCA 

for feature extraction can aid in the accurate diagnosis and 

treatment of liver diseases by identifying the most relevant 

features in large datasets of liver images. 

2.3 Feature Ranking Algorithm 

Probabilistic feature extraction measures are a type of 

feature extraction technique used in liver image 

segmentation processes. These measures rely on 

probabilistic models to extract features from liver images, 

which can be used to identify and segment the liver tissue. 

There are several methods for probabilistic feature 

extraction in liver image segmentation, including the 

Hidden Markov Model (HMM), theta regulated Gaussian 

Mixture Models (TGMMs), and the theta control Markov 

Random Field (TMRF) model. 

The HMM model represents the liver image as a series of 

hidden states and observed features, where the hidden 

states represent the underlying structure of the liver image, 

and the observed features represent the actual pixel values. 

The HMM model calculates the probability distribution of 

the hidden states given the observed features, which can be 

used to segment the liver tissue into different segments. 

TGMMs represent the liver image as a combination of 

Gaussian distributions, with each distribution representing 

a particular type of liver tissue. The model calculates the 

probability distribution of the liver image given the 

observed features and uses this information to segment the 

liver tissue. The TMRF model represents the liver image as 
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a graph, where each pixel acts as a node, and the edges 

between nodes represent the spatial relationships between 

pixels. The model calculates the probability distribution of 

the liver image given the observed features by establishing 

a prior distribution and a likelihood function. The prior 

distribution captures the statistical characteristics of the 

liver image and the spatial layout of the liver tissue, while 

the likelihood function gauges how closely the observed 

features adhere to the prior distribution. By combining the 

prior distribution and likelihood function, the model can 

calculate the probability distribution of the liver image, 

which can be used to precisely segment the liver tissue. 

2.4 K-joint Density Probabilistic based 

Segmentation Approach 

The K-Density probabilistic segmentation approach 

estimates the probability density function of each liver tissue 

cluster using a kernel density estimator. This approach has 

several benefits when handling imbalanced liver datasets. It 

can handle liver images with a significant degree of class 

imbalance, where the minority class has a very low sample 

size and can withstand image noise and outliers. The K-

Density probabilistic clustering approach can locate 

complex and non-linear liver tissue clusters, which is crucial 

for numerous real-world applications. One of the main 

benefits of the K-Density probabilistic clustering approach is 

its ability to be applied to both binary and multi-class liver 

segmentation issues. It can also be utilized for unsupervised 

learning when the number of liver tissue classes is unknown 

in advance. Another benefit of the K-Density probabilistic 

clustering approach is its ability to be used with other 

methods to enhance the performance of liver image 

segmentation models. Liver automatic segmentation using 

joint probability estimations involves finding the optimal 

segmentation of liver images by estimating the joint 

probability distribution of the data. The inputs to the 

algorithm include a filtered Imbalanced liver dataset and the 

number of segmentation regions K. The first step is to 

initialize the mixture model by randomly assigning 

parameters to K Gaussian mixture components. The 

Expectation step involves calculating the posterior 

probability of each region belonging to each of the K 

segmentation regions using Bayes' theorem. The 

Maximization step involves updating the parameters of each 

mixture component by calculating the mean, covariance 

matrix, and prior probability using the posterior probabilities 

calculated in the Expectation step. These steps are repeated 

until convergence is obtained, which is checked by 

monitoring the change in the log-likelihood of the data. If 

the log-likelihood does not change significantly, the 

algorithm stops and returns the final segmentation vector, 

which indicates the segmentation assignment for each 

region. The algorithm calculates the probability of selecting 

each segmentation region score based on its density using 

the joint probability distribution of the data. This approach 

can accurately segment the liver tissue even in the presence 

of imbalanced liver datasets and can locate complex and 

non-linear segmentation regions. 

Automatic liver and tumor segmentation algorithm using 

joint probability estimations: 

Inputs: 

Dataset: filtered Imbalanced liver dataset of liver images 

K: the number of segmentation regions 

Outputs: 

Segmentation: a vector of length N, where N is the number 

of regions in the dataset, indicating the segmentation 

assignment for each region 

Steps: 

Initialize the mixture model: 

Randomly initialize the parameters for K Gaussian mixture 

components 

Expectation step: 

Calculate the posterior probability of each region 

belonging to each of the K segmentation regions using 

Bayes' theorem 

Maximization step: 

Update the parameters of each mixture component by 

calculating the mean, covariance matrix, and prior 

probability using the posterior probabilities calculated in 

the Expectation step 

Repeat steps 2 and 3 until convergence: 

Check for convergence by monitoring the change in the 

log-likelihood of the data 

If the log-likelihood does not change significantly, stop the 

algorithm and return the segmentation 

Return the final segmentation vector, which indicates the 

segmentation assignment for each region 

Calculate the probability of selecting each segmentation 

region score based on its density using the joint probability 

distribution of the data as 
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3. Ensemble Classification Framework 

3.1 Non-linear SVM optimization with Kernel 

Function 

The kernel function is composed of three distinct terms: 
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The first term, a(x), is a radial basis function (RBF) that 

measures the similarity between pairs of input vectors 

based on the distance from the origin. It decreases 

exponentially as the distance between the vectors 

increases, and its width is controlled by a parameter σ that 

balances the tradeoff between bias and variance in the 

SVM. 

The second term, b(n), acts as a normalization constant and 

ensures that the kernel function is positive and finite. It is 

computed using the multinomial coefficient formula and is 

proportional to the number of possible monomials of 

degree n in D dimensions. 

The third term, c(x,n), is a polynomial function of the input 

vector x and the degree vector n, which specifies the 

degree of each variable in the polynomial. It captures the 

non-linear interactions between the input features and 

enables the SVM to model complex decision boundaries. 

3.2 Feature Ranking for Decision Tree Optimization 

Measure 

The feature ranking measure for decision tree optimization 

is given by the following equations: 

The feature ranking measure for decision tree optimization 

is given by the following equations: 

FRM(Di) = Max{ρ1, ρ2} 

where Di is the dataset, and ρ1 and ρ2 are calculated as 

follows: 

ρ1 = (-CE(A2[]/A1[])^3) / ((sum(A1)[]_i)^3 * Corr(Di)^3) 

ρ2 = (-CE(A1[]/A2[]) / ((sum(A2)[]_i)^3 * sqrt(Corr(Di))) 

Here, CE(A2[]/A1[]) and CE(A1[]/A2[]) represent the 

conditional entropy of A2 given A1 and A1 given A2, 

respectively. Corr(Di) is the correlation coefficient of the 

feature Di with the class variable, and sum(A1)[]_i and 

sum(A2)[]_i represent the sums of the ith column of A1 

and A2, respectively. N is the total number of 

observations, and m is the minimum of the number of rows 

and columns. 

Additionally, a Max-Hellinger entropy-based ensemble 

learning model is proposed, where the PE (potential error 

reduction) value is calculated as follows: 

PE = Math.cbrt(infogain(data)NHellinger(data)) * E(D) / 

chiValExp(data) 

Here, data is the dataset, N is the total number of 

observations, E(D) is the entropy of the class variable, and 

chiValExp(data) is the chi-squared value of the data. 

Finally, the proposed HER (Hellinger entropy ranking) 

measure is calculated as the maximum of the following 

three values: 

( ) ( )( ) ( ) ( )( )
p n

|D | |D |
2333

p p n n

p 1 n 1

Pr oposedHER max{ ( ( D / | D | D / | D |) ),corr(D),PE}
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/   chiValE

        

xp data ;

       

  

          

= =

=

=

−

                                                      

 

These rankings are then combined across all nodes to 

create a final ranking of the features.   

3.3 Optimal KNN 

The improved KNN involves computing the squared 

Euclidean distance between each instance in the dataset and 

a test sample. The distance is calculated using the formula 

(D (p1, p2)) = log(Σ(‖pi‖−‖pj‖)²), which is then used to sort 

the k-nearest neighbors of the test sample T according to 

their distances. The probability estimation for the sorted 

neighbors is then computed. For each instance ti in the k-

neighbors (sort (k, D(T, p))), the distance probability is 

computed using the formula DistProb[] = (1 / √(2π)) ∫ 

e^(D(Ti, p)²) dD(Ti, p) / |N|, where N is the total attribute. 

This step is crucial in dealing with imbalanced liver datasets 

since it assigns weights to the neighbors based on their 

distance probabilities. Finally, for each test sample t in the k-

neighbors (sort (k, D(T, p))), the class membership 

probabilities are computed, and the class is assigned to t 

using the classifier. This step involves computing the 

membership probabilities of each class and selecting the 

class with the highest probability. 

3.4 Proposed U-Net Model 

The Un-Net is a network architecture that builds upon the 

traditional U-Net model by making changes to the skip 

connection path, pooling path, and up-convolution path in 

the node structure. In the Un-Net, all output features in the 

node are connected to the next nodes and same-level 

encoder nodes, unlike in the conventional U-Net and most 

U-Net-based models where only the output features of the 

last convolution unit of the nodes are used as input for the 

next layers and the decoder node. The node structure in the 

Un-Net consists of n convolution units in each node, with 

subsequent units using dense connections that combine 

pooled features from upper nodes with previous 

convolution unit features. The transition node and decoder 

nodes are similarly structured, with the top decoder node 

connecting directly to the output. Additionally, the Un-Net 

implements deep supervision by multiple side-outputs 

fusion (MSOF) for better performance on image 

segmentation tasks. 
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4. Experimental Analysis 

In this section, the proposed framework and its 

experimental findings are presented, evaluating the 

precision, accuracy, recall, and F-measure. Diverse 

imbalanced datasets were used for classification tasks, and 

liver segmentation stage. The learning rate was 

meticulously fine-tuned to 3e-5 for 30 epochs to enhance 

the training process. Over-fitting was prevented by 

utilizing a batch. The compact size of 8 and dropout rate of 

0.2 make this model a valuable tool for medical image 

analysis. An early-stopping mechanism was also 

incorporated during the training phase to optimize 

performance. Two publicly available datasets, namely the 

LiTS and 3DIRCADb datasets, were utilized in this study. 

The LiTS dataset included 131 CT volumes for training 

and 70 for testing. However, adjustments were necessary 

to ensure accurate evaluation of the model's performance 

due to the absence of ground truth data for the testing 

subset. Ground truth data was manually curated by three 

experienced radiologists who meticulously collected CT 

scans. However, the dataset presented challenges due to 

variations in resolution and section spacing, ranging from 

0.55mm to 1.0mm and 0.45mm to 6.0mm respectively, 

which added complexity to the analysis. Despite the 

challenges, the research was conducted meticulously, 

accounting for these variations to ensure the validity of the 

findings. The 3DIRCADb dataset, which consisted of 20 

CT volumes, played a crucial role in the LiTS dataset, 

particularly volumes 28 to 47. The incorporation of this 

dataset improved the accuracy and comprehensiveness of 

the research, resulting in a more reliable outcome. To 

ensure a comprehensive evaluation of the network's 

performance, a rigorous stratified partitioning approach 

was employed, dividing both datasets into three distinct 

segments. This methodical approach allowed for a 

thorough assessment of the network's effectiveness, 

utilizing a training set of 90 CT scans (comprising of 85 

LiTS volumes and 5 3DIRCADb volumes), a validation set 

of 11 LiTS volumes, and a testing set of 30 CT scans 

(comprising of 15 LiTS volumes and 15 3DIRCADb 

volumes) carefully selected through a meticulous curation 

process. The proposed model is compared with existing 

models such as FCNN (Deep learning fully CNN), MC-

FCNN (Multichannel Fully CNN), and U-Net on different 

liver tumor regions. 

 

 

 
Fig. 3. Liver Tumor Segmentation and Detection 

Figure 3 describes each liver tumor image and its 

corresponding tumor regions. Initially, a liver image with 

heterogeneous noisy tumors is taken as input for 

segmentation and tumor detection. The proposed 

segmentation-based classification framework is used to 

detect the tumor regions. 
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Fig. 4. Comparative analysis of proposed segmentation-based classification model RMS to the conventional models RMS on 

liver tumor dataset 

 

Fig. 5. Comparative analysis of proposed segmentation-based classification model RMS to the conventional models VOE 

(%) on liver tumor dataset 

 

Fig. 6. Comparative analysis of proposed liver segmentation-based classification approach and existing models using F-

measure for noisy tumor detection on different heterogeneous images 
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Table 1. Comparative analysis of proposed liver segmentation-based classification approach and existing models using 

accuracy for noisy tumor detection on different heterogeneous images 

CV FCNN MC-FCNN U-Net Proposed Model 

#1 0.962 0.974 0.976 0.982 

#2 0.966 0.972 0.976 0.981 

#3 0.965 0.971 0.975 0.988 

#4 0.967 0.971 0.977 0.985 

#5 0.965 0.971 0.977 0.986 

 

 

Fig. 7. Comparative analysis of proposed liver segmentation-based classification approach and existing models using recall 

for noisy tumor detection on different heterogeneous

Table 2. Comparative analysis of proposed liver segmentation-based classification approach and existing models using 

AUC for noisy tumor detection on different heterogeneous 

FCNN MC-FCNN U-Net Proposed Model 

0.964 0.974 0.977 0.984 

0.962 0.972 0.977 0.984 

0.96 0.975 0.978 0.985 

0.963 0.972 0.976 0.989 

0.962 0.974 0.978 0.989 

 

Table 3. Comparative analysis of proposed liver segmentation-based classification approach and existing models using 

accuracy for noisy tumor detection on different homogenous and heterogenous tumor dataset. 

FCNN MC-FCNN U-Net Proposed Model 

0.96 0.971 0.977 0.989 

0.961 0.973 0.976 0.982 

0.967 0.973 0.976 0.987 

0.962 0.973 0.978 0.984 

0.966 0.974 0.975 0.983 

0.966 0.973 0.976 0.983 

0.965 0.971 0.978 0.98 

0.966 0.973 0.978 0.983 
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Fig. 8. Comparative analysis of proposed liver segmentation-based classification approach and existing models using recall 

for noisy tumor detection on different homogenous and heterogenous tumor dataset. 

 

Fig. 9. Comparative analysis of proposed liver segmentation-based classification approach and existing models using AUC 

for noisy tumor detection on different homogenous and heterogeneous tumor dataset 

5. Conclusion 

In this paper, a novel k-joint probabilistic based multi-tumor 

classification model is proposed on different tumor 

imbalance regions. To ensure high-quality predictions on 

imbalanced liver datasets, the study proposes an optimized 

ensemble classification model that utilizes optimized 

filtering and classification approaches. Additionally, a novel 

strategy is proposed to handle missing data, imbalanced 

liver classes, feature selection, and ensemble classification 

approaches to improve the true positive rate and error rate 

on imbalance databases. However, 3D convolutions come 

with high computational costs, and 2D convolutions have 

limited spatial information utilization. The quality of input 

data, including missing feature values, feature noise, and 

imbalanced liver classes, significantly impacts the efficiency 

of classification approaches, making it necessary to ensure 

high-quality input data to achieve optimal results. This work 

proposes an optimized ensemble classification model based 

on k-joint probabilistic segmentation to address the 

challenges of both homogeneous and heterogeneous liver 

tumor detection. Furthermore, novel approaches for image 

filtering, feature extraction, and ranking are proposed to 

enhance the classification process for imbalanced liver 

tumor regions. The experimental results indicate that the 

proposed classification model outperforms existing models 

in terms of accuracy, recall, precision, and AUC. 
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