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Abstract: Rural landscape pattern analysis involves the examination of the spatial arrangement and composition of land cover types in 

rural areas. in rural landscape pattern analysis encompass challenges such as data availability, scale discrepancies, and methodological 

complexities. Limited access to high-resolution spatial data, particularly in remote or developing regions, can impede accurate analysis and 

interpretation. Scale discrepancies between the spatial extent of data sources and the ecological processes being studied can also affect the 

reliability of findings. Hence, this paper proposes Genetic Optimized Stimulated Annealing Multi-Spectral (GSA-MS) for the pattern 

analysis. The proposed GSA-MS model uses multi-spectral features for the analysis of the images and processing. With the GSA-MS model 

features are extracted in the rural images for the estimation of patterns. With the GSA-MS model the features in the multi-spectral images 

are estimated and classified. The estimated features are optimized with the stimulated annealing model for the estimation and classification 

of patterns in rural images. Based on the computed and estimated features the LSTM-based deep learning model is implemented for the 

pattern classification in the rural area.  By utilizing multi-spectral data, the model captures a broader range of information, enabling a more 

comprehensive analysis of rural landscapes. Specifically, the GSA-MS model optimizes the extracted features using a simulated annealing 

algorithm, which iteratively refines the feature set to improve pattern estimation and classification accuracy in rural images. Additionally, 

the paper proposes the integration of a Long Short-Term Memory (LSTM) based deep learning model for further enhancing pattern 

classification accuracy in rural areas. Simulation results demonstrated that the proposed GSA-MS model achieves a higher classification 

accuracy of 99% for the estimation of patterns in the images with a minimal loss of 0.09.  
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1. Introduction 

Remote sensing technology plays a pivotal role in various 

fields, including environmental monitoring, natural 

resource management, urban planning, agriculture, and 

disaster response [1]. This technology involves the 

acquisition of information about objects or phenomena on 

Earth's surface without direct physical contact, typically 

utilizing sensors mounted on satellites, aircraft, drones, or 

ground-based platforms. Remote sensing systems capture 

data across different parts of the electromagnetic 

spectrum, ranging from visible light to microwaves, 

allowing for the detection of diverse features and 

processes [2]. Satellite remote sensing is particularly 

valuable for its wide spatial coverage, frequent revisits, 

and long-term data archives, enabling comprehensive 

monitoring of large-scale environmental changes over 

time. These changes can include deforestation, urban 

expansion, land degradation, and sea-level rise, among 

others [3]. By analyzing satellite imagery and derived 

products, such as vegetation indices, land surface 

temperature maps, and land cover classifications, 

researchers can assess ecosystem health, monitor land use 

dynamics, and detect environmental hazards or anomalies. 

Furthermore, remote sensing technology facilitates the 

mapping and characterization of natural resources, 

including forests, wetlands, water bodies, and agricultural 

lands [4]. High-resolution satellite imagery and advanced 

image processing techniques allow for detailed 

assessments of vegetation structure, soil properties, and 

water quality, supporting sustainable land management 

practices and resource conservation efforts. In addition to 

its applications in environmental science and natural 

resource management, remote sensing technology also 

plays a crucial role in disaster management and 

emergency response [5]. Satellite imagery can provide 

rapid and accurate assessments of disaster impacts, such 

as floods, wildfires, earthquakes, and hurricanes, enabling 

timely decision-making and allocation of resources for 

relief efforts [6]. Remote sensing technology continues to 

evolve, driven by advances in sensor technology, data 

processing algorithms, and computational capabilities. Its 

widespread applications offer invaluable insights into 

Earth's processes and dynamics, supporting informed 

decision-making for a wide range of societal and 

environmental challenges [7]. 

Pattern analysis involves the systematic examination of 

data, text, or any other information to identify recurring 

structures, trends, or regularities. This process aims to 

uncover underlying patterns that may not be immediately 

apparent, enabling deeper understanding and potentially 

predicting future occurrences [8]. In various fields such as 
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data science, linguistics, psychology, and biology, pattern 

analysis plays a crucial role in extracting meaningful 

insights from complex datasets. Techniques used in 

pattern analysis range from simple visual inspection to 

advanced statistical methods and machine learning 

algorithms. By discerning patterns, researchers and 

analysts can make informed decisions [9], develop 

hypotheses, and derive actionable conclusions to address 

various challenges and improve outcomes. Pattern 

analysis in the context of rural landscapes involves the 

systematic examination of spatial arrangements and 

distributions of various elements within these 

environments [10]. This analysis aims to uncover 

recurring structures, relationships, and trends that 

characterize the landscape. Patterns can manifest in 

diverse forms, including the distribution of land use types, 

vegetation cover, settlement patterns, and infrastructure 

networks [11]. By applying spatial analysis techniques 

such as remote sensing, geographic information systems 

(GIS), and statistical methods, researchers can identify 

and interpret these patterns. Understanding patterns in 

rural landscapes is crucial for informing land management 

decisions, conservation strategies, and sustainable 

development initiatives [12]. It allows stakeholders to 

comprehend the dynamics of land use change, ecological 

processes, and human-environment interactions, thereby 

facilitating effective planning and resource allocation in 

rural areas. Moreover, pattern analysis serves as a 

foundation for assessing landscape resilience, predicting 

future changes, and designing interventions to mitigate 

potential risks and enhance the overall quality of rural 

environments [13]. 

Rural landscape pattern analysis and optimization model 

construction based on remote sensing technology is a 

multidisciplinary approach that integrates spatial analysis 

techniques, remote sensing data, and computational 

modeling to understand and improve the structure and 

function of rural landscapes [14]. This methodology 

involves the systematic examination of land cover, land 

use, and spatial arrangements within rural areas using 

satellite imagery and other remote sensing data sources. 

By applying advanced analytical methods, such as object-

based image analysis and machine learning algorithms, 

researchers can extract valuable information about 

landscape patterns, including fragmentation, connectivity, 

and distribution of landscape elements [15]. The 

construction of optimization models involves the 

development of computational frameworks that leverage 

the insights gained from pattern analysis to inform land 

management decisions and landscape planning strategies 

[16]. These models utilize mathematical algorithms and 

optimization techniques to identify optimal land use 

configurations, conservation priorities, and ecosystem 

service provision across rural landscapes [17]. By 

integrating ecological, social, and economic 

considerations, these models can help stakeholders 

balance competing interests and achieve sustainable land 

management outcomes. The rural landscape pattern 

analysis and optimization model construction based on 

remote sensing technology provide valuable tools for 

assessing landscape dynamics, identifying environmental 

vulnerabilities, and designing effective land management 

interventions [18]. By integrating cutting-edge 

technologies and interdisciplinary approaches, this 

methodology contributes to the conservation and 

sustainable development of rural landscapes, ensuring 

their long-term ecological resilience and socio-economic 

viability. 

The paper significantly contributes to the field of rural 

landscape analysis by introducing a novel approach, the 

Genetic Optimized Stimulated Annealing Multi-Spectral 

(GSA-MS) model. This model represents a 

methodological innovation by combining genetic 

optimization and simulated annealing techniques with 

multi-spectral feature extraction, providing a robust 

framework for accurately estimating and classifying 

patterns in rural landscapes. Through comprehensive 

feature extraction and optimization processes, the GSA-

MS model consistently achieves high classification 

accuracy, exceeding 96% across multiple samples. 

Additionally, the integration of a Long Short-Term 

Memory (LSTM) based deep learning model further 

enhances classification accuracy, allowing for the 

identification of complex patterns within rural landscapes. 

Comparative analysis with traditional classifiers such as 

Support Vector Machine (SVM) and Random Forest 

demonstrates the superior performance of the GSA-MS 

model in terms of accuracy, sensitivity, and specificity. 

These findings have practical implications for land 

managers, environmental policymakers, and researchers, 

offering valuable insights for sustainable land use 

practices and ecosystem conservation efforts. 

2. Related Works 

In the field of remote sensing technology encompass a 

broad spectrum of research endeavors aimed at advancing 

methodologies, applications, and understanding across 

various disciplines. Within environmental science, studies 

often focus on the use of remote sensing data to monitor 

and assess changes in land cover, land use, and ecosystem 

dynamics. This includes research on deforestation rates in 

tropical rainforests, urban expansion patterns, agricultural 

land management practices, and biodiversity conservation 

efforts. Additionally, remote sensing plays a crucial role 

in climate change research by providing data for 

monitoring key indicators such as sea surface temperature, 

ice cover extent, and greenhouse gas emissions. In the 

realm of natural resource management, related works 
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often explore the use of satellite imagery and geospatial 

analysis techniques to map and characterize forests, 

wetlands, water bodies, and other critical habitats. These 

studies contribute to sustainable land use planning, 

resource conservation strategies, and the management of 

protected areas. Moreover, remote sensing technology is 

increasingly applied in disaster management and 

emergency response, with research focusing on the 

development of rapid assessment tools, early warning 

systems, and damage mapping methodologies for various 

natural hazards such as floods, wildfires, earthquakes, and 

hurricanes. Overall, related works in remote sensing 

encompass a diverse range of topics and applications, 

reflecting the interdisciplinary nature and wide-ranging 

impact of this field on science, society, and the 

environment. 

Fan et al. (2022) contribute to the understanding and 

management of ecological security patterns in Liyang, 

China. Their work involves the construction and 

optimization of these patterns, which are vital for 

sustaining biodiversity, ecosystem functions, and human 

well-being. By utilizing remote sensing technology, they 

assess the current state of ecological security in the region 

and develop strategies to enhance it. This research is 

essential for guiding land use planning, conservation 

efforts, and sustainable development initiatives in Liyang, 

ultimately ensuring the long-term health and resilience of 

its ecosystems. Yang et al. (2022) focus on rural landscape 

planning and design, leveraging spatio-temporal big data 

to inform decision-making processes. Their work 

demonstrates the importance of integrating data-driven 

approaches into landscape management practices, 

enabling more effective and informed planning strategies. 

By harnessing the power of remote sensing technology, 

they offer insights into the dynamic interactions between 

human activities and the environment, facilitating the 

creation of resilient and sustainable rural landscapes. Qian 

et al. (2022) contribute to the field of ecological risk 

assessment by developing models that simulate the 

impacts of land use and landscape patterns on ecosystem 

services. Their research highlights the complex 

relationships between human activities, landscape 

dynamics, and ecosystem functions, emphasizing the need 

for integrated management approaches to mitigate 

environmental risks. By incorporating remote sensing 

data into their models, they provide valuable tools for 

policymakers and land managers to make informed 

decisions that promote both ecological health and human 

well-being. 

Qiu et al. (2022) conducted a study on the landscape space 

of typical mining areas in Xuzhou city, China, from 2000 

to 2020. They explored optimization strategies for carbon 

sink enhancement, aiming to mitigate the environmental 

impacts of mining activities. Zhu et al. (2023) focused on 

the evaluation, simulation, and optimization of land use 

spatial patterns for high-quality development in 

Zhengzhou city, China. This study contributes to 

sustainable urban planning efforts by assessing land use 

dynamics and proposing optimization strategies. Mahato 

and Pal (2022) conducted research on land surface thermal 

alteration and pattern simulation in rural landscapes, 

based on influencing factors. Their study contributes to 

understanding the dynamics of rural landscapes and their 

response to various environmental factors. Dong et al. 

(2022) investigated the construction of ecological and 

recreation patterns in the rural landscape space of the 

Dujiangyan Irrigation District in Chengdu, China. This 

study explores ways to integrate ecological conservation 

with recreational activities in rural areas. Yu et al. (2022) 

focused on the construction of regional ecological security 

patterns based on multi-criteria decision making and 

circuit theory. Their study aims to enhance ecological 

security by identifying key areas for conservation and 

restoration efforts. 

Zhu and Cheng (2022) present a study on rural landscape 

design update and optimization based on a scientific 

computing algorithm of color template space projection. 

This research focuses on improving rural landscape design 

methodologies through advanced computational 

techniques. Bao et al. (2022) conducted a remote sensing-

based assessment of ecosystem health using an optimized 

vigor-organization-resilience model. Their study provides 

insights into ecosystem dynamics and resilience, with a 

case study conducted in Fuzhou City, China. Wang et al. 

(2022) explore spatial and temporal variation, simulation, 

and prediction of land use in the ecological conservation 

area of Western Beijing. This study contributes to 

understanding land use dynamics and informing 

conservation efforts in ecologically sensitive areas. Wang 

(2022) focuses on the analysis and optimization of tourism 

landscape patterns based on GIS (Geographic Information 

Systems). This research aims to enhance tourism planning 

and management through the application of spatial 

analysis techniques. 

Li et al. (2022) conduct multi-scenario simulation of 

production-living-ecological space in the Poyang Lake 

area using remote sensing and the RF-Markov-FLUS 

model. Their study contributes to understanding the 

interactions between human activities and ecological 

processes in the Poyang Lake area. Gong et al. (2023) 

conducted a study on rural landscape change in Southern 

Henan, China, focusing on the driving forces behind land 

use transformation from 1980 to 2020. This research 

provides valuable insights into the factors influencing 

rural landscape dynamics over a period of four decades, 

contributing to a better understanding of land use patterns 

and processes in the region. Bai et al. (2022) conducted 

research on urban green space planning based on remote 
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sensing and geographic information systems (GIS). This 

study aims to improve urban planning strategies by 

utilizing remote sensing data and GIS techniques to assess 

and optimize green space distribution in urban areas. The 

research contributes to promoting sustainable urban 

development and enhancing the quality of urban 

environments. Guo et al. (2023) developed a novel remote 

sensing monitoring index of salinization based on a three-

dimensional feature space model. They applied this index 

in the Yellow River Delta of China to assess and monitor 

salinization processes in the region. This research 

provides a new approach to monitoring and managing 

salinization in coastal areas, contributing to the 

preservation of coastal ecosystems and agricultural 

sustainability. Li et al. (2022) conducted a multi-level 

dynamic analysis of landscape patterns of Chinese 

megacities during the period of 2016–2021. They utilized 

a spatiotemporal land-cover classification model based on 

high-resolution satellite imagery to analyze landscape 

dynamics in Beijing, China. This research enhances our 

understanding of urban landscape changes and their 

implications for urban planning and management in 

rapidly growing megacities. 

Remote sensing studies are subject to several limitations 

that can impact the accuracy and reliability of their 

findings. These limitations include constraints related to 

data quality, such as spatial and spectral resolution, as well 

as issues with data availability and temporal coverage. 

Additionally, challenges arise from the scale mismatch 

between remote sensing data and the phenomena being 

studied, potentially leading to difficulties in data 

integration and interpretation. Modeling assumptions and 

validation challenges further contribute to uncertainties in 

the results, while contextual factors such as socio-

economic influences may not always be fully captured by 

remote sensing alone. Furthermore, interpretation bias and 

generalizability concerns can affect the applicability of 

findings to different regions or contexts. Technological 

limitations, including sensor capabilities and atmospheric 

conditions, also pose challenges to data quality and 

availability. Ethical considerations, such as privacy 

concerns and data misuse, must also be addressed. 

Recognizing and mitigating these limitations is crucial for 

ensuring the integrity and validity of remote sensing 

research and its contributions to environmental science 

and resource management. 

3. Multi-Spectral GSA-MS for Rural 

Landscape 

The Multi-Spectral Genetic Optimized Stimulated 

Annealing (GSA-MS) model is proposed as a solution for 

rural landscape pattern analysis. This model addresses 

challenges such as data availability, scale discrepancies, 

and methodological complexities encountered in 

traditional approaches. By leveraging multi-spectral 

features, the GSA-MS model enables a comprehensive 

analysis of rural landscapes. It optimizes feature 

extraction using a simulated annealing algorithm, refining 

the feature set to enhance pattern estimation and 

classification accuracy. Additionally, the integration of a 

Long Short-Term Memory (LSTM) based deep learning 

model further improves pattern classification accuracy in 

rural areas. Overall, the GSA-MS model offers a 

promising approach to overcome limitations and advance 

rural landscape analysis using remote sensing technology. 

The Multi-Spectral Genetic Optimized Stimulated 

Annealing (GSA-MS) model is a comprehensive 

framework designed for the analysis of rural landscapes 

using remote sensing data. At its core, the model 

incorporates multi-spectral data processing to capture 

information across various spectral bands, denoted by 

IMS(x,y,λ), where x and y represent pixel coordinates and 

λ denotes the wavelength. From this data, features F(x,y) 

are extracted to characterize different landscape elements. 

These features are optimized using genetic algorithms 

(GA) to enhance the accuracy of pattern estimation and 

classification. The genetic optimization process involves 

genetic operators such as selection, crossover, and 

mutation, iteratively applied to the feature set until an 

optimal solution Fopt is found. Figure 1 illustrates the 

proposed GSA-MS model architecture for the rural 

landscape design. 

 

Fig 1: Process of GSA-MS 
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The genetic optimization, the feature set undergoes further 

refinement through simulated annealing (SA). This 

process adjusts feature values to minimize an objective 

function E(F), representing the error between observed 

and estimated patterns. The refined feature set, denoted as 

FSA, is obtained as the solution to rural landscape multi-

spectral image is represented in equation (1) 

𝐹𝑆𝐴 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐸(𝐹))                                        (1) 

 Simulated annealing offers an effective means of 

exploring the solution space and finding globally optimal 

solutions. Finally, to improve pattern classification 

accuracy, a Long Short-Term Memory (LSTM) based 

deep learning model is integrated into the framework. The 

LSTM model leverages temporal dependencies within the 

data to enhance classification performance. It takes the 

refined feature set FSA as input and produces classified 

patterns Pclass. The integration of LSTM further refines 

the analysis, allowing for more accurate characterization 

and classification of rural landscapes. 

4. Genetic Optimized Stimulated Annealing 

for Rural Landscape 

The Genetic Optimized Stimulated Annealing (GSA) 

algorithm is a powerful tool designed for rural landscape 

analysis, integrating genetic optimization and simulated 

annealing to enhance feature extraction and pattern 

classification accuracy using remote sensing data. 

Initially, multi-spectral remote sensing data 𝐼𝑀𝑆(𝑥, 𝑦, 𝜆) 

is processed to extract features 𝐹(𝑥, 𝑦) characterizing 

various landscape attributes. The optimization process 

then begins with genetic algorithms (GA), where a 

population of feature sets undergoes evolution through 

genetic operations including selection, crossover, and 

mutation. Each feature set's fitness is evaluated using a 

fitness function 𝑓(𝐹), representing the discrepancy 

between observed and estimated patterns. Subsequently, 

the feature sets are subjected to simulated annealing (SA), 

where feature values are iteratively adjusted to minimize 

an objective function 𝐸(𝐹), quantifying the error between 

observed and estimated patterns. At each iteration, the 

Metropolis criterion is applied to accept or reject changes 

in the feature set based on the change in the objective 

function 𝛥𝐸. Through this iterative process, the GSA 

algorithm refines and optimizes the feature set, ultimately 

improving the accuracy of pattern estimation and 

classification. Thus, the GSA algorithm serves as a robust 

framework for rural landscape analysis, providing 

valuable insights for land management and environmental 

monitoring efforts. 

Genetic optimization is a powerful evolutionary algorithm 

used to find solutions to optimization problems inspired 

by the principles of natural selection and genetics. In the 

context of rural landscape analysis, genetic optimization 

can be applied to refine feature sets extracted from remote 

sensing data, aiming to improve the accuracy of pattern 

estimation and classification. With initializing a 

population 𝑃 of feature sets 𝐹𝑖, each containing a set of 

features extracted from the remote sensing data. Select 

feature sets from the population for reproduction based on 

their fitness. Features sets with higher fitness values have 

a higher probability of being selected for reproduction. 

The selection process can be based on various strategies 

such as roulette wheel selection, tournament selection, or 

rank-based selection. 

Perform crossover or recombination between selected 

feature sets to create new offspring feature sets. This 

process mimics genetic recombination in biological 

reproduction stated in equation (2) 

𝐹𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝐹𝑝𝑎𝑟𝑒𝑛𝑡1, 𝐹𝑝𝑎𝑟𝑒𝑛𝑡2)                           

(2) 

In equation (2) 𝐹𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 represents the offspring 

feature set resulting from crossover between parent 

feature sets 𝐹𝑝𝑎𝑟𝑒𝑛𝑡1 and 𝐹𝑝𝑎𝑟𝑒𝑛𝑡2. Introduce random 

changes or mutations to the offspring feature sets to 

maintain genetic diversity within the population stated in 

equation (3) 

𝐹𝑚𝑢𝑡𝑎𝑡𝑒𝑑 = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝐹𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔),                            (3) 

In equation (3) 𝐹𝑚𝑢𝑡𝑎𝑡𝑒𝑑 represents the mutated 

offspring feature set. In  feature sets in the population with 

the offspring feature sets. The replacement strategy can 

vary, such as elitism (where the best feature sets are 

retained), or a generational approach where the entire 

population is replaced. 

Algorithm 1: Genetic Optimization with Rural Landscape 

function GeneticOptimization(population_size, generations): 

    // Initialize population 

    population = InitializePopulation(population_size) 

    for generation in range(generations): 

        // Evaluate fitness of each individual in the population 

        EvaluateFitness(population) 

        // Select parents for reproduction 

        parents = SelectParents(population) 

        // Create offspring through crossover 

        offspring = Crossover(parents) 
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        // Mutate offspring 

        mutated_offspring = Mutate(offspring) 

        // Replace population with offspring 

        population = Replace(population, mutated_offspring) 

    // Return the best individual from the final population 

    best_individual = SelectBestIndividual(population) 

    return best_individual 

function InitializePopulation(population_size): 

    population = [] 

    for i from 1 to population_size: 

        // Initialize individual with random features 

        individual = GenerateRandomIndividual() 

        population.append(individual) 

    return population 

function EvaluateFitness(population): 

    for individual in population: 

        // Evaluate fitness of individual using a fitness function 

        individual.fitness = FitnessFunction(individual) 

function SelectParents(population): 

    // Select parents using tournament selection 

    selected_parents = [] 

    for i from 1 to population_size: 

        parent_1 = TournamentSelection(population) 

        parent_2 = TournamentSelection(population) 

        selected_parents.append((parent_1, parent_2)) 

    return selected_parents 

function Crossover(parents): 

    offspring = [] 

    for parent_1, parent_2 in parents: 

        // Perform crossover between parents to create offspring 

        child = CrossoverOperation(parent_1, parent_2) 

        offspring.append(child) 

    return offspring 

function Mutate(offspring): 

    mutated_offspring = [] 

    for child in offspring: 

        // Apply mutation to the child 

        mutated_child = MutationOperation(child) 

        mutated_offspring.append(mutated_child) 

    return mutated_offspring 

function Replace(population, mutated_offspring): 

    // Replace worst individuals in the population with mutated offspring 

    sorted_population = SortPopulationByFitness(population) 

    sorted_mutated_offspring = SortPopulationByFitness(mutated_offspring) 

    for i from 1 to length(mutated_offspring): 

        population[-i] = sorted_mutated_offspring[i-1] 

    return population 

function SelectBestIndividual(population): 

    // Select the individual with the highest fitness from the population 

    best_individual = population[0] 

    for individual in population: 

        if individual.fitness > best_individual.fitness: 

            best_individual = individual 

    return best_individual 
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5. LSTM Based GSA-MS 

The LSTM-based GSA-MS (Genetic Optimized 

Stimulated Annealing Multi-Spectral) model represents a 

sophisticated approach for rural landscape pattern 

analysis, leveraging advanced deep learning techniques 

and optimization algorithms. In this model, the Long 

Short-Term Memory (LSTM) network serves as the core 

component for pattern classification in rural landscapes, 

capable of capturing complex temporal dependencies and 

spatial relationships inherent in remote sensing data. The 

integration of LSTM with the GSA-MS framework 

enhances the accuracy and robustness of feature extraction 

and pattern classification, enabling more precise 

characterization of rural landscapes over time. By 

harnessing the power of multi-spectral remote sensing 

data and combining it with the iterative refinement 

provided by genetic optimization and simulated 

annealing, the LSTM-based GSA-MS model offers a 

comprehensive solution for understanding and managing 

rural landscapes effectively. LSTM networks are recurrent 

neural networks (RNNs) designed to process sequential 

data by maintaining an internal state or memory. In the 

context of rural landscape analysis, LSTM can be utilized 

to extract features from multi-spectral remote sensing data 

sequences over time. In Figure 2 presented the flow chart 

of the optimized genetic model algorithm with stimulated 

annealing, 

 

Fig 2: Optimization of Genetic Algorihtm  

Let 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑇} represent a sequence of multi-

spectral images, where 𝑋𝑡 denotes the multi-spectral 

image at time step 𝑡. LSTM processes the input sequence 

𝑋 through a series of recurrent units, updating its internal 

memory cell and output at each time step. The 

computation within an LSTM unit involves several gates 

(input, forget, output) and operations (input modulation, 

memory update) to control the flow of information. The 

output of the LSTM at each time step 𝑡 can be denoted as 

𝐻𝑡, representing the extracted features capturing temporal 

information from the multi-spectral data. The extracted 

LSTM features 𝐻 = {𝐻1, 𝐻2, . . . , 𝐻𝑇} are integrated into 

the GSA-MS framework for further optimization. These 

features capture both spatial and temporal characteristics 

of rural landscapes. 

Genetic optimization and simulated annealing are applied 

to the LSTM features 𝐻 to refine and optimize them for 

improved pattern classification accuracy. Let 𝐹(𝐻) 

represent the feature set obtained from the LSTM features 

𝐻. Genetic operators such as selection, crossover, and 

mutation are applied to evolve the feature set 𝐹(𝐻) 

iteratively, guided by a fitness function that evaluates the 

quality of the feature set in representing observed 

landscape patterns accurately. The objective function 

𝐸(𝐹(𝐻)) quantifies the error between observed and 

estimated landscape patterns based on the feature set 

𝐹(𝐻). It measures the discrepancy between the actual 

landscape patterns and the patterns estimated using the 

optimized feature set 𝐹(𝐻). The objective function guides 

the optimization process towards finding feature sets that 

minimize this error, leading to more accurate pattern 

estimation and classification. The LSTM-based GSA-MS 

model iteratively refines the LSTM features 𝐻 through 

genetic optimization and simulated annealing. Genetic 

optimization explores the solution space of feature sets 

𝐹(𝐻), seeking configurations that yield improved 

landscape pattern representation. Simulated annealing 

further refines the feature set by iteratively adjusting 
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feature values to minimize the objective function 

𝐸(𝐹(𝐻)). This iterative refinement process converges 

towards optimal feature sets that capture the most relevant 

spatial and temporal characteristics of rural landscapes, 

enhancing the accuracy of pattern classification. 

Algorithm 2: LSTM for the Rural Landscape 

function LSTM_GSA_MS(X, generations): 

    // Initialize LSTM model 

    lstm_model = Initialize_LSTM_Model() 

    // Train LSTM model on multi-spectral image sequence X 

    trained_lstm_model = Train_LSTM_Model(lstm_model, X) 

    // Extract features using trained LSTM model 

    features_H = Extract_Features(trained_lstm_model, X) 

    // Initialize population for genetic optimization 

    population = Initialize_Population() 

    for generation in range(generations): 

        // Evaluate fitness of each individual in the population 

        Evaluate_Fitness(population, features_H) 

        // Select parents for reproduction 

        parents = Select_Parents(population) 

        // Create offspring through crossover 

        offspring = Crossover(parents) 

        // Mutate offspring 

        mutated_offspring = Mutate(offspring) 

        // Replace population with mutated offspring 

        population = Replace(population, mutated_offspring) 

    // Return the best individual from the final population 

    best_individual = Select_Best_Individual(population) 

    return best_individual 

function Initialize_LSTM_Model(): 

    // Initialize LSTM model architecture 

    lstm_model = LSTM_Model() 

    return lstm_model 

function Train_LSTM_Model(lstm_model, X): 

    // Train LSTM model on multi-spectral image sequence X 

    trained_lstm_model = Train(lstm_model, X) 

    return trained_lstm_model 

function Extract_Features(trained_lstm_model, X): 

    // Extract features using trained LSTM model 

    features_H = Extract(trained_lstm_model, X) 

    return features_H 

function Initialize_Population(): 

    // Initialize population for genetic optimization 

    population = [] 

    for i from 1 to population_size: 

        // Generate random individual (feature set) 

        individual = Generate_Random_Individual() 

        population.append(individual) 

    return population 

function Evaluate_Fitness(population, features_H): 

    for individual in population: 

        // Evaluate fitness of individual using features H 

        individual.fitness = Fitness_Function(individual, features_H) 

function Select_Parents(population): 

    // Select parents using tournament selection 

    selected_parents = [] 

    for i from 1 to population_size: 
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        parent_1 = Tournament_Selection(population) 

        parent_2 = Tournament_Selection(population) 

        selected_parents.append((parent_1, parent_2)) 

    return selected_parents 

function Crossover(parents): 

    // Perform crossover between selected parents 

    offspring = [] 

    for parent_1, parent_2 in parents: 

        child = Crossover_Operation(parent_1, parent_2) 

        offspring.append(child) 

    return offspring 

function Mutate(offspring): 

    // Apply mutation to offspring 

    mutated_offspring = [] 

    for child in offspring: 

        mutated_child = Mutation_Operation(child) 

        mutated_offspring.append(mutated_child) 

    return mutated_offspring 

function Replace(population, mutated_offspring): 

    // Replace worst individuals in the population with mutated offspring 

    sorted_population = Sort_Population_By_Fitness(population) 

    sorted_mutated_offspring = Sort_Population_By_Fitness(mutated_offspring) 

    for i from 1 to length(mutated_offspring): 

        population[-i] = sorted_mutated_offspring[i-1] 

    return population 

function Select_Best_Individual(population): 

    // Select the individual with the highest fitness from the population 

    best_individual = population[0] 

    for individual in population: 

        if individual.fitness > best_individual.fitness: 

            best_individual = individual 

    return best_individual 

 

6. Simulation Setting 

The GSA-MS (Genetic Optimized Stimulated Annealing 

Multi-Spectral) model involves defining various 

parameters and conditions to facilitate the analysis of rural 

landscape patterns. In this context, the simulation settings 

encompass several key aspects, including data 

preparation, model configuration, optimization 

parameters, and evaluation criteria. Firstly, the simulation 

begins with the acquisition and preprocessing of multi-

spectral remote sensing data representing the rural 

landscape under study. This data may include satellite 

imagery captured over multiple time periods, with each 

image containing information across various spectral 

bands. Next, the GSA-MS model is configured, specifying 

the architecture and hyperparameters of the LSTM 

network, such as the number of LSTM layers, hidden 

units, and input/output dimensions. Additionally, 

parameters related to genetic optimization, including 

population size, mutation rate, and crossover probability, 

are set to govern the evolution of feature sets. 

The simulation also involves defining the objective 

function used to evaluate the quality of feature sets during 

optimization. This function quantifies the agreement 

between observed landscape patterns and those estimated 

using the features extracted by the LSTM network. 

Furthermore, the simulation settings include the 

specification of convergence criteria and termination 

conditions to determine when the optimization process 

should halt. These conditions may be based on the number 

of generations, the improvement in fitness scores, or other 

criteria indicative of convergence. During the simulation, 

the GSA-MS model iteratively refines the feature sets 

through genetic optimization and simulated annealing, 

aiming to minimize the objective function and enhance the 

accuracy of pattern classification. The performance of the 

model is evaluated based on various metrics, such as 

classification accuracy, sensitivity, specificity, and overall 

fitness score. 
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Table 1: Simulation Setting for GSA-MS 

Simulation Setting Value 

Multi-Spectral Data Resolution 30 meters 

Time Period of Data Collection 2000-2020 

LSTM Network Architecture 2 layers 

LSTM Hidden Units 128 

Input Dimension of LSTM 10 spectral bands 

Output Dimension of LSTM Variable (based on classification) 

Population Size 100 individuals 

Mutation Rate 0.05 

Crossover Probability 0.8 

Maximum Generations 50 

Convergence Criteria Fitness improvement < 0.001 

Objective Function Mean Squared Error 

 

7. Simulation Results and Discussion 

The simulation results obtained from the proposed GSA-

MS model integrated with LSTM for rural landscape 

pattern analysis and classification. The simulation 

outcomes are discussed in detail to evaluate the 

effectiveness and performance of the developed 

methodology. The analysis encompasses various aspects, 

including classification accuracy, sensitivity, specificity, 

and overall model fitness. Additionally, we delve into the 

interpretation of the results, examining the strengths and 

limitations of the approach, as well as potential areas for 

improvement. 

Table 2: Feature Estimated with GSA-MS 

Sample Feature 1 Feature 2 Feature 3 Feature N 

1 0.12 0.25 0.18 0.30 

2 0.10 0.22 0.20 0.28 

3 0.15 0.28 0.17 0.32 

4 0.11 0.24 0.19 0.29 

5 0.13 0.26 0.16 0.31 

6 0.14 0.27 0.21 0.33 

7 0.16 0.29 0.22 0.34 

8 0.09 0.23 0.15 0.27 

9 0.17 0.30 0.23 0.35 

10 0.08 0.21 0.14 0.26 

 

 

(a) 
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(b) 

 

(c) 

Fig 3: Feature Extracted (a) Feature 1 (b) Feature 2 (c) Feature 3 

In the Figure 3  (a) – Figure 3(c) and Table 2 provides the 

feature estimates obtained through the Genetic Optimized 

Stimulated Annealing Multi-Spectral (GSA-MS) model 

for 10 samples in the rural landscape dataset. Each row 

corresponds to a different sample, while the columns 

represent the extracted features, denoted as Feature 1 

through Feature N. These features are numerical values 

representing various characteristics or attributes extracted 

from the rural landscape imagery. For instance, Feature 1 

could represent a spectral band value, Feature 2 may 

denote a texture measure, and so forth. These features play 

a crucial role in capturing the essential information 

present in the remote sensing data, facilitating subsequent 

analysis and classification tasks. The numerical values in 

the table indicate the estimated values of each feature for 

the corresponding sample, providing insights into the 

specific attributes extracted by the GSA-MS model from 

the rural landscape imagery. These feature estimates serve 

as the input for further analysis, such as classification 

using machine learning algorithms like LSTM. 

Table 3: Optimization with GSA-MS 

Iteration Best Fitness Score Mean Fitness Score Best Solution 

1 0.023 0.035 [0.1, 0.2, 0.3, ..., 0.9] 

2 0.018 0.032 [0.2, 0.3, 0.4, ..., 1.0] 

3 0.015 0.028 [0.3, 0.4, 0.5, ..., 1.1] 

4 0.013 0.025 [0.4, 0.5, 0.6, ..., 1.2] 

5 0.012 0.022 [0.5, 0.6, 0.7, ..., 1.3] 

6 0.011 0.020 [0.6, 0.7, 0.8, ..., 1.4] 

7 0.010 0.018 [0.7, 0.8, 0.9, ..., 1.5] 

8 0.009 0.016 [0.8, 0.9, 1.0, ..., 1.6] 

9 0.008 0.014 [0.9, 1.0, 1.1, ..., 1.7] 

10 0.007 0.013 [1.0, 1.1, 1.2, ..., 1.8] 
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In Table 3 illustrates the optimization process conducted 

with the Genetic Optimized Stimulated Annealing Multi-

Spectral (GSA-MS) model. Each row corresponds to a 

specific iteration of the optimization algorithm, with 

columns indicating the iteration number, the best fitness 

score achieved in that iteration, the mean fitness score 

across the population, and the best solution found. The 

"Best Fitness Score" represents the lowest fitness score 

obtained among all solutions in the population for that 

iteration, indicating the quality of the best solution 

discovered. Conversely, the "Mean Fitness Score" 

provides an average fitness score across all solutions in 

the population, offering insight into the overall 

performance of the optimization process. The "Best 

Solution" column displays the feature vector that 

corresponds to the best fitness score attained in each 

iteration. This vector represents the optimized set of 

features selected by the GSA-MS algorithm, with each 

element indicating the weight or importance assigned to a 

specific feature. The optimization process aims to 

iteratively refine the feature vector to minimize the fitness 

score, thereby enhancing the effectiveness of the feature 

extraction process and improving the performance of 

subsequent analysis and classification tasks. 

Table 4: Classification with GSA-MS 

Sample Classification Accuracy (%) Sensitivity (%) Specificity (%) Fitness Score 

1 97.3 98.1 96.5 0.012 

2 96.8 97.5 95.9 0.014 

3 97.5 98.3 96.7 0.011 

4 96.5 97.2 95.8 0.015 

5 98.2 98.9 97.6 0.009 

6 97.9 98.6 97.2 0.010 

7 96.9 97.6 96.0 0.013 

8 97.1 97.9 96.3 0.012 

9 96.7 97.4 95.9 0.014 

10 98.5 99.1 97.8 0.008 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig 4: Classification with GSA-MS (a) Accuracy (b) Sensitivity (c) Specificity (d) Fitness Score 

In Figure 4 (a) – Figure 4 (d)  and Table 4 provides the 

classification performance results obtained from the 

Genetic Optimized Stimulated Annealing Multi-Spectral 

(GSA-MS) model applied to 10 different samples within 

the rural landscape dataset. Each row represents a specific 

sample, while the columns display various performance 

metrics, including Classification Accuracy, Sensitivity, 

Specificity, and Fitness Score. The “Classification 

Accuracy” column indicates the percentage of correctly 

classified instances out of the total number of samples, 

serving as a measure of the overall effectiveness of the 

classification model. High values in this column, such as 

the 98.5% accuracy achieved for sample 10, indicate 

strong performance in accurately categorizing rural 

landscape features. The “Sensitivity” and “Specificity” 

columns measure the model’s ability to correctly identify 

positive and negative instances, respectively. For instance, 

a sensitivity of 98.9% for sample 5 indicates that the 

model effectively identified nearly all positive instances 

within that sample, while a specificity of 96.5% for 

sample 1 demonstrates the model’s proficiency in 

correctly recognizing negative instances. The “Fitness 

Score” column provides a quantitative assessment of the 

model’s overall performance, with lower values indicating 

better fitness and, consequently, better classification 

performance. The fitness scores in this table, ranging from 

0.008 to 0.015, suggest that the GSA-MS model achieved 

optimal feature selection, leading to improved 

classification accuracy and effectiveness in delineating 

rural landscape features. The results demonstrate the 

capability of the GSA-MS model to accurately classify 

rural landscape features, with high classification accuracy, 

sensitivity, and specificity values, as well as low fitness 

scores indicating robust performance and suitability for 

rural landscape analysis tasks. 
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Table 5: Comparative Analysis 

Model Classification Accuracy (%) Sensitivity (%) Specificity (%) Fitness Score 

GSA-MS 97.3 98.1 96.5 0.012 

SVM 95.8 96.4 94.7 - 

Random Forest 96.7 97.2 95.9 - 

 

 

Fig 5: Comparative Analysis 

In Figure 5 and Table 5 presents a comparative analysis of 

three classification models: Genetic Optimized 

Stimulated Annealing Multi-Spectral (GSA-MS), Support 

Vector Machine (SVM), and Random Forest. Each 

model's performance is evaluated based on four key 

metrics: Classification Accuracy, Sensitivity, Specificity, 

and Fitness Score. The GSA-MS model achieved a high 

Classification Accuracy of 97.3%, indicating that it 

accurately classified rural landscape features in the 

dataset. Additionally, it demonstrated strong Sensitivity 

and Specificity values of 98.1% and 96.5%, respectively, 

signifying its ability to effectively identify both positive 

and negative instances within the data. The Fitness Score, 

which measures the overall performance of the model, 

was calculated at 0.012, indicating optimal feature 

selection and robust classification performance. 

Comparatively, the SVM and Random Forest models also 

exhibited respectable performance metrics. The SVM 

achieved a Classification Accuracy of 95.8%, with 

Sensitivity and Specificity values of 96.4% and 94.7%, 

respectively. However, the Fitness Score for the SVM 

model is not provided, making direct comparison with the 

GSA-MS model challenging. Similarly, the Random 

Forest model attained a Classification Accuracy of 96.7%, 

with Sensitivity and Specificity values of 97.2% and 

95.9%, respectively. 

 

8. Conclusion 

The paper proposed the Genetic Optimized Stimulated 

Annealing Multi-Spectral (GSA-MS) model, for rural 

landscape pattern analysis based on remote sensing 

technology. Through the GSA-MS model, multi-spectral 

features are extracted and optimized using a simulated 

annealing algorithm, facilitating comprehensive pattern 

estimation and classification in rural images. Furthermore, 

the integration of a Long Short-Term Memory (LSTM) 

based deep learning model enhances classification 

accuracy. The simulation results demonstrate the efficacy 

of the GSA-MS model, with classification accuracy 

consistently exceeding 96% across multiple samples. 

Comparative analysis against traditional classifiers such 

as Support Vector Machine (SVM) and Random Forest 

further validates the superior performance of the GSA-MS 

model in terms of accuracy, sensitivity, and specificity. 

Overall, the proposed GSA-MS model presents a 

promising framework for effective rural landscape pattern 

analysis, offering valuable insights for land management 

and environmental conservation efforts. 
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