

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 374–379 | 374

An Optimized Integer Representation through a Novel Numeric

Encoding for Textual Data Compression

Kanak Pandit1*, Harshali Patil2, Poonam Joshi3,Tarunima Mukherjee4

 Submitted: 03/02/2024 Revised: 11/03/2024 Accepted: 17/03/2024

Abstract: The objective of this paper is to introduce a new variable sized integer encoding technique for file compression. The paper

aims to compare the performance of the proposed method with established codes like Elias Gamma, Elias Delta, and Golomb. The

study also seeks to examine the impact of varying log base values on compression ratio and runtime efficiency. The proposed method

utilizes radix conversion and the Burrows Wheeler Transform for file compression. Performance comparison is conducted on the

Calgary corpus, which includes both text and binary files. Existing codes like Elias Gamma, Elias Delta, and Golomb are executed on

the files before evaluating the proposed code. Graphs are used to analyze the impact of log base values on compression ratio, while

runtime efficiency is assessed. The proposed compression code achieves varied compression ratios (1.67 to 1.87) at radix r=4,

highlighting its effectiveness over existing algorithms. A non-linear relationship between the log base and compression ratio is

observed, plateauing as the log base increases. Runtime varies among files, with 'bib1' at the longest time (6.41 seconds) and 'obj1' the

shortest (0.09 seconds). A positive correlation exists between the number of data points (n) and runtime, while a negative correlation is

seen between 'n' and compression ratio, indicating lower ratios for larger 'n' files. Comparing its performance with established codes

provides a benchmark for evaluation. Analyzing compression ratio trends and runtime efficiency offers insights into the effectiveness

of the proposed method, adding to its novelty.

Keywords: Burrows-Wheeler Transform, Elias Delta Code, Elias Gamma Code, Golomb Code, Numeric Encoding

1. Introduction

As technology rapidly evolves, supported by increasingly

advanced software and hardware, the dissemination of

information worldwide via the internet has become swift and

widespread[1]. While information technology experts can easily

communicate through the internet, not all data can be

transmitted effortlessly. Compression techniques alleviate

challenges posed by large file sizes, facilitating quicker data

transmission and conserving storage space on computers. By

converting data sets into codes, compression reduces storage

requirements and streamlines data transmission processes. Data

compression can be considered a segment of information theory

focused on reducing the quantity of data required for

transmission[2]. The aim is to minimize the storage space

required for storing data in devices and to facilitate data

transmission through low-bandwidth channels of

communication. One such technique is lossy compression and

another is lossless[3]. In lossless compression, data can be

decompressed to precisely replicate the original source data,

whereas in latter, the restored data is not entirely

indistinguishable from the source and may incur some content

loss. It is typically applied to textual information such as

financial records, software applications, written documents, and

programming source code, while lossy compression is utilized

for compressing multimedia items. Lossy compression methods

often yield higher compression ratios compared to lossless

techniques due to the removal of redundant or less essential

data[4].

Some of the compression algorithms include:

1. Shannon Fano Algorithm

The Shannon Fano algorithm, employed in compression

methods like zip and .rar formats, is a pivotal technique for data

compression. While it offers compression benefits, its

conventional implementation often results in relatively long

codes. However, further advancements are needed to address

inherent limitations in its length and to optimize their

compression performance. Shannon Fano coding is more

complex than Huffman coding, which is a similar algorithm that

guarantees optimal codes[5].

2. Run Length Encoding (RLE):

It is a straightforward lossless methodology effective for

sequences of identical data values. While highly useful for

specific data types like icon files and line drawings, it may not

be suitable for general datasets due to potential increases in file

size. Despite its simplicity and applicability, RLE algorithms

require enhancements to handle diverse data types and improve

compression efficiency across various scenarios. For instance,

RLE may not achieve optimal compression when data comprises

short sequences of similar elements or consecutive non-identical

elements. In such cases, alternative methods like Huffman

coding may prove more effective[6].

3. Lempel Ziv Welch (LZW):

It is a widely used technique employing dictionaries, forms the

basis for many compression applications. While effective, its

conventional implementation may not always achieve optimal

compression results. This paper compares conventional LZW

coding with proposed modifications, highlighting the

1*
Computer Eng., Thakur College of Engineering and Technology, Mumbai:400066

ORCID ID : 0000-0001-7685-354

2
Computer Eng., Thakur College of Engineering and Technology, Mumbai:400066

ORCID ID : 0000-0003-2052-9940

3
Computer Eng., Thakur College of Engineering and Technology, Mumbai:400066

ORCID ID : 0009-0002-4671-6162

4
Computer Eng., Thakur College of Engineering and Technology, Mumbai:400066

ORCID ID : 0009-0007-9146-5135

* Corresponding Author Email: kanakpandit17@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 374–379 | 375

importance of efficient dictionary management and compression

output optimization[7]. LZW compression works best for files

that have more repetitive data, which is only in case of

monochrome images and text.

4. Tunstall Algorithm:

The Tunstall algorithm, introduced in 1967, revolutionized

noiseless compression codes by mapping source symbols to

fixed-length codewords. Despite its pioneering nature, the

Tunstall algorithm may face challenges in effectively handling

stochastic sources with variable-length codewords. Before

initiating the parsing process, Tunstall coding necessitates the

algorithm's awareness of the probability distribution associated

with each letter of the alphabet.

5. Huffman Compression:

Huffman compression, a static method based on frequency

analysis, offers efficient compression by allocating abbreviated

codes to frequently appearing characters. While highly effective,

it may not fully optimize compression for all datasets and

scenarios. This algorithm relies on unique codes and character

frequency distributions to achieve compression efficiency.

However, this method does not endorse adaptive encoding.[8].

Diverse sized codes are created for the purpose of shrinking the

content. Statistical coding methods, unlike fixed-length codes

,accomplish compression through the allocation of briefer

symbols to more often occurring symbols and longer codes to

less common symbols in the input document being compressed.

These statistical methods necessitate knowledge of the

probabilities associated with input symbols for generating

variable-length codes. Examples of statistical methods include

Huffman coding[9] and Shannon-Fano methods[10], which utilize

symbol tables during the decoding process. However, the two-

pass approach of statistical methods can be slow for certain

systems like storage and sensory systems.

Alternatively, coding techniques like Elias Gamma Code

(EGC)[11] , Elias Delta Code (EDC), and Golomb Code (GC)[12]

abstain from necessitating likelihood measures of source

information for generating codes, making them known as

varying sized whole number encoding techniques. As such

numeric encodings do not depend on symbol tables or likelihood

values, they are favored in sectors requiring swift encoding and

storage.

This paper proposes a new variable-length integer code based on

radix conversion, which serves as the ultimate stage encoder in

the Burrows-Wheeler compressor[13]. The effectiveness of the

newly suggested code is contrasted with current cutting-edge

methods like EGC, EDC, and GC using the Calgary corpus

dataset. Section II provides an overview of current codes.

Section III introduces the innovative code, while Section IV

investigates its effectiveness when utilized alongside the

Burrows-Wheeler Transform (BWT) for textual content

compaction, evaluated on the Calgary Corpus data. Finally,

Section V concludes the study.

Some Variable-Length Integer Codes:

Such codes serve the purpose of efficiently representing non-

negative integers in a compact format. Due to their ease of

construction, these codes find extensive applications in

compression of images, compression of videos, and

compression of text.

We introduce such codes including Golomb Code (GC), Elias

Gamma Code (EGC), and Elias Delta Code (EDC). These codes

are specifically designed for the depiction of non-negative

integers, offering efficient encoding and decoding mechanisms.

Unary Code

The Unary Code (UC), denoted as UC1, is versatile that adheres

to the characteristic of having a prefix. It is characterized by its

simplicity and effectiveness in encoding integers. The

representation of an integer “n” consists of a sequence of “(n-

1)” zeros or one, succeeded by a single one or zero.

Consequently, the length of the Unary Code for an integer n is

equivalent to n bits.

Table 1. UC foer the whole numbers 1 to 5

Numbers UC
Symbol Quantity

1 0  magnetic flux

2 10 B magnetic flux

density,

 magnetic

induction

3 110 H magnetic field

strength

4 1110 ,  susceptibility

5 11110  mass

susceptibility

As seen in Table 1[14], UC is depicted for 1 to 5.

2. Elias Gamma Code

It was introduced by Peter Elias in 1975. It is designed to encode

integers efficiently. The representation of an integer n

comprises two main components: the unary part denoted as

UC(L) and the binary part represented as ~B(n). Here, UC(L)

refers to the unary code representing the length (L) of the binary

encoding of n, while ~B(n) denotes the binary form of n

excluding its leading bit. The EGC is constructed by

concatenating UC(L) and ~B(n), represented as UC(L) | ~B(n).

Table 2. EGC for the whole numbers 1 to 5

Integer (n) EGC
Symbol Quantity

1 1  magnetic flux

2 10 B magnetic flux

density,

 magnetic

induction

3 11 H magnetic field

strength

4 100 ,  susceptibility

5 101  mass

susceptibility

Table 2[14] illustrates EGC for the whole numbers 1 to 5.

3. Elias Delta Code

Peter Elias developed the Elias Delta Code (EDC)[15]. It consists

of primary components: the Gamma Part and the binary part

denoted as ~B(n). The Gamma Part represents the Elias Gamma

Code representing the bit length (L) of ~B(n), while the binary

part signifies the binary form of the integer n excluding its

highest bit. Therefore, EDC is constructed as EGC(L) | ~B(n),

where EGC(L) represents the Elias Gamma Code of the bit

length (L).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 374–379 | 376

Table 3. EDC for the whole numbers 1 to 5

Integer (n) EDC
Symbol Quantity

1 1  magnetic flux

2 100 | 0 B magnetic flux

density,

 magnetic

induction

3 100 | 1 H magnetic field

strength

4 101 | 00 ,  susceptibility

5 101 | 01  mass

susceptibility

Table 3[14] illustrates EDC for the whole numbers 1 to 5.

4. Golomb Code

Golomb codes partition all index values i into uniform groups of

equal size[16]. A number a>0 is initially divided by a divisor b.

The remainder r and quotient q are then utilized to encode the

given number a (>0). These values are obtained using the

following equations[16]:

𝑥=(𝑎−1)/𝑏 Eq. (1)

r=a-qb-1 Eq. (2)

The Golomb Code consists of two parts. The initial segment of

GC encodes the value of q+1 in unary, while the second part

encodes the binary value of r. For instance, when the divisor,

b=5, it results in five possible remainders. These remainders, 0,

1, 2, 3 and 4 are encoded as 00, 01, 10, 11 and 100 respectively.

These codes are illustrated in Table 4, which presents the

Golomb Codes for divisors b=3 and b=4.

Table 4. GC for the whole numbers 1 to 5

Integer n Goulomb Code
Symbol Quantity

 d=3  magnetic flux

1 0 | 0 B magnetic flux

density,

 magnetic

induction

2 0 | 10 H magnetic field

strength

3 0 | 11 ,  susceptibility

4 10 | 0  mass

susceptibility

Table 4[14] illustrates GC for the whole numbers 1 to 5.

2. Methodology

In this section, we introduce a fresh approach to encoding

integers, grounded in the concept of radix conversion.

Representing integers efficiently holds paramount importance,

reducing storage overheads and facilitating swift integer

retrieval. Our proposed encoding method involves transforming

the binary representation of integers into a radix-r format. The

crux of this approach lies in recognizing that higher radix-r

systems often require fewer digits for representation compared

to lower radix-r systems. Consequently, encoding integers in a

higher radix-r system demands fewer bits for the length part of

the code. Thus, our encoding scheme comprises two main

components: the length part, indicating the essential digits for

representing the integer in the chosen greater radix-r, while the

part consisting of data, encapsulating the base-2 (radix-2)

depiction of the integer. Leveraging a higher radix system,

which necessitates fewer digits, results in a streamlined

representation, reducing the number of bits needed to preserve

the length portion of the integer.

Furthermore, advanced techniques like “EGC” and “EDC” also

segment integers into parts: the “length” part and the “data”

part. While the former signifies the binary digits necessary for

integer representation, the unary coding in both mentioned

coders may not provide optimal results. The primary deviation

between our suggested code and EGC lies in the role of the size

segment. In our approach, the “size” part denotes the count of

radix-r digits needed for integer portrayal, whereas Elias code

utilizes the length part to specify the count of base-2 (radix-2)

digits necessary for for representing integers. Despite this

distinction, both our proposed code and Elias codes utilize the

data section for representing the base-2 form of the integer.

Procedure to Encode the Text:

The process for creating a variable-length integer code for an

integer n involves the following steps:

a. Choose any radix-r to represent the provided integer n.

b. Determine the number of digits needed to express n in

the radix-r system using Eq. 3.

c. k=[log[1/1+e-(n/r)]]+1 (Eq. 3)

d. Code k in unary (A series of k-1 zeros followed by

1, or k-1 ones followed by 0).

e. Create the binary representation, denoted as b, of the

integer n in k[log nr] bits.

f. If r=2, append the binary code without its leading bit;

otherwise, attach the the binary representation

of integer n to the encoding of k obtained in

step 3.

Repeat the above steps for all whole numbers.

Table 5. The suggested encoding method for the numbers 1 through 10

n Proposed Code

r=2 r=3

1 1 1|01

2 1|0 1|10

3 1|1 1|0011

4 1|00 1|0100

5 1|01 1|0101

6 1|10 1|0110

7 1|11 1|0111

8 1|000 1|1000

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 374–379 | 377

9 1|001 1|001

10 1|010 1|01010

As per Table 5, the values are generated on ‘n’ and radix ‘r’

using proposed integer.

3. Results and Discussion
Compression codes are being used in various fields like multimedia

processing [17]. In this study, the suggested encoding method is utilized

for file compression using BWT compressor. The Burrows-Wheeler

Transform (BWT) compressor is structured into four distinct phases. In

the initial stage, the BWT calculates the permutation of the input. data,

rearranging it to facilitate compression. Following this permutation, the

second phase involves encoding the output of the BWT using the Move-

To-Front (MTF) coder, a technique that reorders symbols in accordance

with their frequency of appearance. Subsequently, in the third phase, the

MTF output undergoes compression through Run-Length Encoding

(RLE), which identifies consecutive identical symbols and represents

them with a count and a single instance of the symbol. Finally, in the

fourth phase, the output of the RLE process is encoded using Variable

Length Integer Codes (VLC), which efficiently represent integers with

varying lengths, contributing to overall compression effectiveness. This

multi-phase approach systematically reduces redundancy and optimizes

the compression of data, making it a versatile tool for various

compression tasks.

Table 6. Performance of Proposed code on various files of Calgary

Corpus

File Size n Compression

Ratio at r=4

Runtime

bib 111 KB 2,73,226 1.67 6.41 sec

geo 102 KB 2,11,149 1.71 1.98 sec

obj1 22 KB 44,241 1.87 0.09 sec

paper1 53 KB 1,37,959 1.70 0.55 sec

progc 40 KB 96,054 1.72 0.30 sec

progl 72 KB 1,74,879 1.75 0.93 sec

progp 49 KB 1,19,407 1.73 0.49 sec

trans 94 KB 2,15,609 1.68 1.44 sec

Table 6 shows the performance of a proposed compression code on eight

files: bib, geo, obj1, paper1, progc, progl, propg, and trans. The files

have different sizes, ranging from 22 KB to 111 KB. The compression

ratio achieved at radix r=4 varies from 1.67 to 1.87, indicating that the

code is effective in compressing the files as compared to existing

algorithms. There seems to be an inverse relationship between ‘n’ and

the compression ratio, although it is not perfectly inverse. This means

that files with higher value of ‘n’ tend to have lower compression ratios.

The proposed code seems to be more effective at compressing smaller

files with lower value of ‘n’ (e.g., obj1) compared to larger files with

higher value of n (e.g., bib).

Table 7. Performance(Compression Ratio) of Coders on various files of

Calgary Corpus

File EDC EGC GC Proposed Code

d=2 d=4 r=2 r=4

bib 0.33 0.27 0.12 0.21 1.10 1.67

geo 1.09 0.89 0.14 0.25 1.18 1.71

obj1 1.23 0.99 0.14 0.25 1.26 1.87

paper1 1.18 0.92 0.11 0.20 1.10 1.70

progc 1.16 0.89 0.12 0.21 1.13 1.72

progl 1.19 0.91 0.12 0.21 1.14 1.75

progp 0.33 0.28 0.12 0.21 1.13 1.73

trans 0.35 0.29 0.13 0.22 1.13 1.68

As shown in Table 7, the efficiency of different encoding methods with

the BWT compressor is assessed using the Calgary corpus dataset. The

assessment is based on the compression ratio computed using Eq. 4. The

experimental findings are presented in the Table 7. This study compared

the performance of a novel compression code with existing coders on

the Calgary Corpus. The proposed code consistently achieved

compression ratios greater than 1, demonstrating its effectiveness in

reducing file sizes compared to most existing methods. Notably, at

radix=4, the proposed code outperformed all coders, including EDC, for

all files. At radix=2, the proposed code's compression ratio is lower than

the EDC coder for some files (paper1, progc, progl).

Compression Ratio= Size of Original File /Size of Compressed File

(Eq.4)

It can hence, be inferred that the higher compression ratio signifies

increased compression efficiency as it represents a greater reduction in

data size.

In lossless compression, the goal is to represent the original data using

fewer bits without losing any information.The compression ratio

quantifies how much smaller the compacted information is compared

to the source data. The log base is a parameter that controls the

balance between compression ratio and computational complexity.

Figure 1. Log Base vs Compression Ratio of ‘paper1’ in Calgary

Corpus.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 374–379 | 378

Figure 1 shows that the compression ratio increases as the log base

increases. However, this increase is not linear. The compression ratio

starts to level off as the log base gets higher. This is because there is a

limit to how much data can be compressed without losing information.

The graph also shows that the compression ratio varies depending on the

specific data being compressed.

Overall, the graph shows that there is a balance between compression

ratio and computational complexity in lossless compression. By

choosing the right log base, it is possible to achieve a good balance

between these two factors.

Figure 2. Runtime of the Proposed Compression Code on Calgary

Corpus Files

Figure 2 shows a clear variation in runtime across different files from

the Calgary Corpus. It can be observed that ‘bib1’ takes the longest

time(6.41 seconds) while ‘obj1’ takes the shortest time (0.09 seconds).

The compression algorithm might be more efficient for certain types of

data compared to others, leading to faster processing for specific files.

The performance of the compression code might be influenced by file-

specific characteristics.

Figure 3. ‘n’ vs Compression Ratio for Compressed Files

Figure 3 shows a negative correlation between ‘n’ and the compression

ratio. This means that files with larger n generally have lower

compression ratios compared to files with lesser n.

Figure 4. ‘n’ vs Runtime for Compression Algorithm on Calgary Corpus

Files

Figure 4 shows the positive relation between ‘n’ and Runtime. More the

value of n, higher will be the runtime.

4. Conclusion

The paper introduces a novel approach to compactly represent integers

through variable-length integer codes. This method involves converting

the “base-2 representation” of integers to their radix-r counterparts.

Furthermore, this technique serves as the ultimate encoding step in the

“BWT Compressor”, enhancing information size reduction capabilities.

Experimental evaluations conducted on the files compare the execution

of the proposed code against established methods like EGC, EDC, and

GC. The findings indicate that the proposed code outperforms EGC and

GC while delivering competitive results compared to EDC. These

results signify advancements in understanding and underscore the

potential of the proposed method in data compression applications.

However, despite these advancements, certain knowledge gaps remain

unaddressed, particularly concerning the scalability and adaptability of

the proposed code across diverse datasets. Addressing these gaps could

offer valuable insights for future research endeavors in the field of data

compression.

5. Author contributions

Kanak Pandit: Methodology, Algorithm-building

Harshali Patil: Data curation, Validation, Field study

Poonam Joshi: Algorithm-building, Validation

Tarunima Mukherjee: Review, Data Curation

6. Conflicts of interest

The authors declare no conflicts of interest.

References

[1]Uthayakumar Jayasankar, Vengattaraman Thirumal, Dhavachelvan

Ponnurangam, A survey on data compression techniques: From the

perspective of data quality, coding schemes, data type and applications,

Journal of King Saud University - Computer and Information Sciences,

Volume 33, Issue 2, 2021, Pages 119-140, ISSN 1319-1578,

https://doi.org/10.1016/j.jksuci.2018.05.006.

[2]Tania Banerjee, Jong Choi, Jaemoon Lee, Qian Gong, Jieyang Chen,

Scott Klasky, Anand Rangarajan, Sanjay Ranka: “Scalable Hybrid

Learning Techniques for Scientific Data Compression”, 2022.

http://arxiv.org/abs/2212.10733 arXiv:2212.10733.

[3]Elakkiya, S., Thivya, K.S. Comprehensive Review on Lossy and

Lossless Compression Techniques. J. Inst. Eng. India Ser. B 103, 1003–

1012 (2022). https://doi.org/10.1007/s40031-021-00686-3.

[4]A. Gopinath and M. Ravisankar, "Comparison of Lossless Data

Compression Techniques," 2020 International Conference on Inventive

Computation Technologies (ICICT), Coimbatore, India, 2020, pp. 628-

633, doi: 10.1109/ICICT48043.2020.9112516.

[5]Congero, Spencer, and Kenneth Zeger. Competitive Advantage of

Huffman and Shannon-Fano Codes.

2023.https://ar5iv.labs.arxiv.org/html/2311.07009.

[6]Rowley, Jamie. “Run-Length Encoding in Data Compression.”

Endless Compression, 28 Nov. 2022,

www.endlesscompression.com/encoding-data-compression/. Accessed

20 Feb. 2024.

[7]Addepalli, Phani & Lakshmi, P.V.. (2021). An Efficient Lossless

Medical Data Compression using LZW compressionfor OptimalCloud

Data Storage. 25. 17144-17160.

https://www.researchgate.net/publication/353514407.

[8]Kumari, B., Kamal, N.K., Sattar, A.M., & Ranjan, M.K. (2023).

Adaptive Huffman Algorithm for Data Compression Using Text

Clustering and Multiple Character Modification. RECENT TRENDS IN

PROGRAMMING LANGUAGES. DOI:10.37591/rtpl.v10i1.509.

[9]Anis Suliman Ali Bakouri, "TIFF Image Compression through

Huffman Coding Technique", International Journal of Science and

https://doi.org/10.1016/j.jksuci.2018.05.006

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 374–379 | 379

Research (IJSR), Volume 11 Issue 10, October 2022, pp. 277-279,

https://www.ijsr.net/getabstract.php?paperid=SR22929233828.

[10]Virendra Nikam, Sheetal Dhande. (2023). A Historical Perspective

on Approaches to Data Compression. Mathematics and Computer

Science, 8(3), 68-72. https://doi.org/10.11648/j.mcs.20230803.11.

[11]Manikandan VM, Murthy KSR, Siddineni B, Victor N, Maddikunta

PKR, Hakak S. A High-Capacity Reversible Data-Hiding Scheme for

Medical Image Transmission Using Modified Elias Gamma Encoding.

Electronics. 2022; 11(19):3101.

https://doi.org/10.3390/electronics11193101.

[12]Fante, Kinde & Bhaumik, Basabi. (2022). Low-Power Endoscopic

Image Compression Algorithms Using Modified Golomb Codes.

10.1007/978-981-16-2123-9_5.

[13]Rahman, Md. (2020). Burrows–Wheeler Transform Based Lossless

Text Compression Using Keys and Huffman Coding. Symmetry. 12.

10.3390/sym12101654.

[14]Nelson Raja, J., Jaganathan, P., & Domnic, S. (2015). A New

Variable-Length Integer Code for Integer Representation and Its

Application to Text Compression. In Indian Journal of Science and

Technology (Vol. 8, Issue 24). Indian Society for Education and

Environment. https://doi.org/10.17485/ijst/2015/v8i24/80242.

[15]Hariska, Elvia & Yuliani, Ega & Nasution, Surya. (2021).

Performance Comparison Analysis of the Elias Delta Code Algorithm

with the Even Rodeh Code Algorithm for Compressing Image Files. The

IJICS (International Journal of Informatics and Computer Science). 5.

29. 10.30865/ijics.v5i1.2888.

[16]S. Kalaivani, C. Tharini, Analysis and implementation of novel Rice

Golomb coding algorithm for wireless sensor networks, Computer

Communications, Volume 150, 2020, Pages 463-471, ISSN 0140-3664,

https://doi.org/10.1016/j.comcom.2019.11.046.

[17]Hassan N. Noura, Joseph Azar, Ola Salman, Raphaël Couturier, and

Kamel Mazouzi. 2023. A deep learning scheme for efficient multimedia

IoT data compression. Ad Hoc Netw. 138, C (Jan 2023).

https://doi.org/10.1016/j.adhoc.2022.102998.

