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Abstract: The objective of this paper is to introduce a new variable sized integer encoding technique for file compression. The paper 

aims to compare the performance of the proposed method with established codes like Elias Gamma, Elias Delta, and Golomb. The 

study also seeks to examine the impact of varying log base values on compression ratio and runtime efficiency. The proposed method 

utilizes radix conversion and the Burrows Wheeler Transform for file compression. Performance comparison is conducted on the 

Calgary corpus, which includes both text and binary files. Existing codes like Elias Gamma, Elias Delta, and Golomb are executed on 

the files before evaluating the proposed code. Graphs are used to analyze the impact of log base values on compression ratio, while 

runtime efficiency is assessed. The proposed compression code achieves varied compression ratios (1.67 to 1.87) at radix r=4, 

highlighting its effectiveness over existing algorithms. A non-linear relationship between the log base and compression ratio is 

observed, plateauing as the log base increases. Runtime varies among files, with 'bib1' at the longest time (6.41 seconds) and 'obj1' the 

shortest (0.09 seconds). A positive correlation exists between the number of data points (n) and runtime, while a negative correlation is 

seen between 'n' and compression ratio, indicating lower ratios for larger 'n' files. Comparing its performance with established codes 

provides a benchmark for evaluation. Analyzing compression ratio trends and runtime efficiency offers insights into the effectiveness 

of the proposed method, adding to its novelty. 
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1. Introduction 

As technology rapidly evolves, supported by increasingly 

advanced software and hardware, the dissemination of 

information worldwide via the internet has become swift and 

widespread[1]. While information technology experts can easily 

communicate through the internet, not all data can be 

transmitted effortlessly. Compression techniques alleviate 

challenges posed by large file sizes, facilitating quicker data 

transmission and conserving storage space on computers. By 

converting data sets into codes, compression reduces storage 

requirements and streamlines data transmission processes. Data 

compression can be considered a segment of information theory 

focused on reducing the quantity of data required for 

transmission[2]. The aim is to minimize the storage space 

required for storing data in devices and to facilitate data 

transmission through low-bandwidth channels of 

communication. One such technique is lossy compression and 

another is lossless[3].  In lossless compression, data can be 

decompressed to precisely replicate the original source data, 

whereas in latter, the restored data is not entirely 

indistinguishable from the source and may incur some content 

loss. It is typically applied to textual information such as 

financial records, software applications, written documents, and 

programming source code, while lossy compression is utilized 

for compressing multimedia items. Lossy compression methods 

often yield higher compression ratios compared to lossless 

techniques due to the removal of redundant or less essential 

data[4].  

Some of the compression algorithms include: 

1. Shannon Fano Algorithm 

The Shannon Fano algorithm, employed in compression 

methods like zip and .rar formats, is a pivotal technique for data 

compression. While it offers compression benefits, its 

conventional implementation often results in relatively long 

codes. However, further advancements are needed to address 

inherent limitations in its length and to optimize their 

compression performance. Shannon Fano coding is more 

complex than Huffman coding, which is a similar algorithm that 

guarantees optimal codes[5]. 

2. Run Length Encoding (RLE): 

It is a straightforward lossless methodology effective for 

sequences of identical data values. While highly useful for 

specific data types like icon files and line drawings, it may not 

be suitable for general datasets due to potential increases in file 

size. Despite its simplicity and applicability, RLE algorithms 

require enhancements to handle diverse data types and improve 

compression efficiency across various scenarios. For instance, 

RLE may not achieve optimal compression when data comprises 

short sequences of similar elements or consecutive non-identical 

elements. In such cases, alternative methods like Huffman 

coding may prove more effective[6]. 

3. Lempel Ziv Welch (LZW): 

It is a widely used technique employing dictionaries, forms the 

basis for many compression applications. While effective, its 

conventional implementation may not always achieve optimal 

compression results. This paper compares conventional LZW 

coding with proposed modifications, highlighting the 
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importance of efficient dictionary management and compression 

output optimization[7].  LZW compression works best for files 

that have more repetitive data, which is only in case of 

monochrome images and text. 

 

4. Tunstall Algorithm: 

The Tunstall algorithm, introduced in 1967, revolutionized 

noiseless compression codes by mapping source symbols to 

fixed-length codewords. Despite its pioneering nature, the 

Tunstall algorithm may face challenges in effectively handling 

stochastic sources with variable-length codewords. Before 

initiating the parsing process, Tunstall coding necessitates the 

algorithm's awareness of the probability distribution associated 

with each letter of the alphabet. 

5. Huffman Compression: 

Huffman compression, a static method based on frequency 

analysis, offers efficient compression by allocating abbreviated 

codes to frequently appearing characters. While highly effective, 

it may not fully optimize compression for all datasets and 

scenarios. This algorithm relies on unique codes and character 

frequency distributions to achieve compression efficiency. 

However, this method does not endorse adaptive encoding.[8]. 

 

Diverse sized codes are created for the purpose of shrinking the 

content. Statistical coding methods, unlike fixed-length codes 

,accomplish compression through the allocation of briefer 

symbols to more often occurring symbols and longer codes to 

less common symbols in the input document being compressed. 

These statistical methods necessitate knowledge of the 

probabilities associated with input symbols for generating 

variable-length codes. Examples of statistical methods include 

Huffman coding[9] and Shannon-Fano methods[10], which utilize 

symbol tables during the decoding process. However, the two-

pass approach of statistical methods can be slow for certain 

systems like storage and sensory systems. 

Alternatively, coding techniques like Elias Gamma Code 

(EGC)[11] , Elias Delta Code (EDC), and Golomb Code (GC)[12] 

abstain from necessitating likelihood measures of source 

information for generating codes, making them known as 

varying sized whole number  encoding techniques. As such 

numeric encodings do not depend on symbol tables or likelihood 

values, they are favored in sectors requiring swift encoding and 

storage. 

This paper proposes a new variable-length integer code based on 

radix conversion, which serves as the ultimate stage encoder in 

the Burrows-Wheeler compressor[13]. The effectiveness of the 

newly suggested code is contrasted with current cutting-edge 

methods like EGC, EDC, and GC using the Calgary corpus 

dataset. Section II provides an overview of current codes. 

Section III introduces the innovative code, while Section IV 

investigates its effectiveness when utilized alongside the 

Burrows-Wheeler Transform (BWT) for textual content 

compaction, evaluated on the Calgary Corpus data. Finally, 

Section V concludes the study. 

 

Some Variable-Length Integer Codes: 

Such codes serve the purpose of efficiently representing non-

negative integers in a compact format. Due to their ease of 

construction, these codes find extensive applications in 

compression of images, compression of videos, and 

compression of text. 

We introduce such codes including Golomb Code (GC), Elias 

Gamma Code (EGC), and Elias Delta Code (EDC). These codes 

are specifically designed for the depiction of non-negative 

integers, offering efficient encoding and decoding mechanisms. 

 

Unary Code  

The Unary Code (UC), denoted as UC1, is versatile that adheres 

to the characteristic of having a prefix. It is characterized by its 

simplicity and effectiveness in encoding integers. The 

representation of an integer “n” consists of a sequence of “(n-

1)” zeros or one, succeeded by a single one or zero. 

Consequently, the length of the Unary Code for an integer n is 

equivalent to n bits. 

Table 1. UC foer the whole numbers 1 to 5 

Numbers UC 
Symbol Quantity 

1 0  magnetic flux 

2 10 B magnetic flux 

density,  

  magnetic 

induction 

3 110 H magnetic field 

strength 

4 1110 ,  susceptibility 

5 11110  mass 

susceptibility 

 

As seen in Table 1[14],  UC is depicted for 1 to 5. 

 

2. Elias Gamma Code  

It was introduced by Peter Elias in 1975. It is designed to encode 

integers efficiently. The representation of an integer  n 

comprises two main components: the unary part denoted as 

UC(L) and the binary part represented as ~B(n). Here, UC(L) 

refers to the unary code representing the length (L) of the binary 

encoding of n, while ~B(n) denotes the binary form of n 

excluding its leading bit. The EGC is constructed by 

concatenating UC(L) and ~B(n), represented as UC(L) | ~B(n).  

Table 2. EGC for the whole numbers 1 to 5 

Integer (n) EGC 
Symbol Quantity 

1 1  magnetic flux 

2 10 B magnetic flux 

density,  

  magnetic 

induction 

3 11 H magnetic field 

strength 

4 100 ,  susceptibility 

5 101  mass 

susceptibility 

 

Table 2[14] illustrates EGC for the whole numbers 1 to 5. 

3. Elias Delta Code 

Peter Elias developed the Elias Delta Code (EDC)[15]. It consists 

of primary components: the Gamma Part and the binary part 

denoted as ~B(n). The Gamma Part represents the Elias Gamma 

Code representing the bit length (L) of ~B(n), while the binary 

part signifies the binary form of the integer n excluding its 

highest bit. Therefore, EDC is constructed as EGC(L) | ~B(n), 

where EGC(L) represents the Elias Gamma Code of the bit 

length (L).  
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Table 3. EDC for the whole numbers 1 to 5 

Integer (n) EDC 
Symbol Quantity 

1 1  magnetic flux 

2 100 | 0 B magnetic flux 

density,  

  magnetic 

induction 

3 100 | 1 H magnetic field 

strength 

4 101 | 00 ,  susceptibility 

5 101 | 01  mass 

susceptibility 

 

Table 3[14] illustrates EDC for the whole numbers 1 to 5. 

 

4. Golomb Code 

Golomb codes partition all index values i into uniform groups of 

equal size[16]. A number a>0 is initially divided by a divisor b. 

The remainder r and quotient q are then utilized to encode the 

given number a (>0). These values are obtained using the 

following equations[16]: 

𝑥=(𝑎−1)/𝑏         Eq. (1) 

r=a-qb-1             Eq. (2) 

The Golomb Code consists of two parts. The initial segment of 

GC encodes the value of q+1 in unary, while the second part 

encodes the binary value of r. For instance, when the divisor, 

b=5, it results in five possible remainders. These remainders, 0, 

1, 2, 3 and 4 are encoded as 00, 01, 10, 11 and 100 respectively. 

These codes are illustrated in Table 4, which presents the 

Golomb Codes for divisors b=3 and b=4. 

Table 4. GC for the whole numbers 1 to 5 

Integer n Goulomb Code 
Symbol Quantity 

 d=3  magnetic flux 

1 0 | 0 B magnetic flux 

density,  

  magnetic 

induction 

2 0 | 10 H magnetic field 

strength 

3 0 | 11 ,  susceptibility 

4 10 | 0  mass 

susceptibility 

 

Table 4[14] illustrates GC for the whole numbers 1 to 5. 

2. Methodology 

In this section, we introduce a fresh approach to encoding 

integers, grounded in the concept of radix conversion. 

Representing integers efficiently holds paramount importance, 

reducing storage overheads and facilitating swift integer 

retrieval. Our proposed encoding method involves transforming 

the binary representation of integers into a radix-r format. The 

crux of this approach lies in recognizing that higher radix-r 

systems often require fewer digits for representation compared 

to lower radix-r systems. Consequently, encoding integers in a 

higher radix-r system demands fewer bits for the length part of 

the code. Thus, our encoding scheme comprises two main 

components: the length part, indicating the essential digits for 

representing the integer in the chosen greater radix-r, while the 

part consisting of data, encapsulating the base-2 (radix-2) 

depiction of the integer. Leveraging a higher radix system, 

which necessitates fewer digits, results in a streamlined 

representation, reducing the number of bits needed to preserve 

the length portion of the integer. 

Furthermore, advanced techniques like “EGC” and “EDC” also 

segment integers into parts: the “length” part and the “data” 

part. While the former signifies the binary digits necessary for 

integer representation, the unary coding in both mentioned 

coders may not provide optimal results. The primary deviation 

between our suggested code and EGC lies in the role of the size 

segment. In our approach, the “size” part denotes the count of 

radix-r digits needed for integer portrayal, whereas Elias code 

utilizes the length part to specify the count of base-2 (radix-2) 

digits necessary for for representing integers. Despite this 

distinction, both our proposed code and Elias codes utilize the 

data section for representing the base-2 form of the integer. 

Procedure to Encode the Text: 

The process for creating a variable-length integer code for an 

integer n involves the following steps: 

a. Choose any radix-r to represent the provided integer n. 

b. Determine the number of digits needed to express n in 

the radix-r system using Eq. 3. 

c. k=[log[1/1+e-(n/r)]]+1                   (Eq. 3) 

d. Code k in unary (A series of k-1 zeros followed by 

1, or k-1 ones followed by 0). 

e. Create the binary representation, denoted as b, of the 

integer n in k[log nr] bits. 

f. If  r=2, append the binary code without its leading bit; 

otherwise, attach the the binary representation 

of integer n to the encoding of k obtained in 

step 3.  

Repeat the above steps for all whole numbers. 

Table 5. The suggested encoding method for the numbers 1 through 10 

n Proposed Code 

r=2 r=3 

1 1 1|01 

2 1|0 1|10 

3 1|1 1|0011 

4 1|00 1|0100 

5 1|01 1|0101 

6 1|10 1|0110  

7 1|11 1|0111 

8 1|000 1|1000 
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9 1|001 1|001 

10 1|010 1|01010 

 

As per Table 5, the values are generated on ‘n’ and radix ‘r’ 

using proposed integer. 

3. Results and Discussion 
Compression codes are being used in various fields like multimedia 

processing [17]. In this study, the suggested encoding method is utilized 

for file compression using BWT compressor. The Burrows-Wheeler 

Transform (BWT) compressor is structured into four distinct phases. In 

the initial stage, the BWT calculates the permutation of the input. data, 

rearranging it to facilitate compression. Following this permutation, the 

second phase involves encoding the output of the BWT using the Move-

To-Front (MTF) coder, a technique that reorders symbols in accordance 

with their frequency of appearance. Subsequently, in the third phase, the 

MTF output undergoes compression through Run-Length Encoding 

(RLE), which identifies consecutive identical symbols and represents 

them with a count and a single instance of the symbol. Finally, in the 

fourth phase, the output of the RLE process is encoded using Variable 

Length Integer Codes (VLC), which efficiently represent integers with 

varying lengths, contributing to overall compression effectiveness. This 

multi-phase approach systematically reduces redundancy and optimizes 

the compression of data, making it a versatile tool for various 

compression tasks. 

Table 6. Performance of Proposed code on various files of Calgary 

Corpus 
 

File Size n Compression 

Ratio at r=4 

Runtime 

bib 111 KB 2,73,226 1.67 6.41 sec 

geo 102 KB 2,11,149 1.71 1.98 sec 

obj1 22 KB 44,241 1.87 0.09 sec 

paper1 53 KB 1,37,959 1.70 0.55 sec 

progc 40 KB 96,054 1.72 0.30 sec 

progl 72 KB 1,74,879 1.75 0.93 sec 

progp 49 KB 1,19,407 1.73  0.49 sec 

trans 94 KB 2,15,609 1.68 1.44 sec 

Table 6 shows the performance of a proposed compression code on eight 

files: bib, geo, obj1, paper1, progc, progl, propg, and trans. The files 

have different sizes, ranging from 22 KB to 111 KB. The compression 

ratio achieved at radix r=4 varies from 1.67 to 1.87, indicating that the 

code is effective in compressing the files as compared to existing 

algorithms. There seems to be an inverse relationship between ‘n’ and 

the compression ratio, although it is not perfectly inverse. This means 

that files with higher value of ‘n’ tend to have lower compression ratios. 

The proposed code seems to be more effective at compressing smaller 

files with lower value of ‘n’ (e.g., obj1) compared to larger files with 

higher value of n (e.g., bib). 

 

 

 

Table 7. Performance(Compression Ratio) of Coders on various files of 

Calgary Corpus 

 

File EDC EGC GC Proposed Code 

d=2 d=4 r=2 r=4 

bib 0.33 0.27 0.12 0.21 1.10 1.67 

geo 1.09 0.89 0.14 0.25 1.18 1.71 

obj1 1.23 0.99 0.14 0.25 1.26 1.87 

paper1 1.18 0.92 0.11 0.20 1.10 1.70 

progc 1.16 0.89 0.12 0.21 1.13 1.72 

progl 1.19 0.91 0.12 0.21 1.14 1.75 

progp 0.33 0.28 0.12 0.21 1.13 1.73 

trans 0.35 0.29 0.13 0.22 1.13 1.68 

 

As shown in Table 7, the efficiency of different encoding methods with 

the BWT compressor is assessed using the Calgary corpus dataset. The 

assessment is based on the compression ratio computed using Eq. 4. The 

experimental findings are presented in the Table 7. This study compared 

the performance of a novel compression code with existing coders on 

the Calgary Corpus. The proposed code consistently achieved 

compression ratios greater than 1, demonstrating its effectiveness in 

reducing file sizes compared to most existing methods. Notably, at 

radix=4, the proposed code outperformed all coders, including EDC, for 

all files. At radix=2, the proposed code's compression ratio is lower than 

the EDC coder for some files (paper1, progc, progl). 

Compression Ratio= Size of Original File /Size of Compressed File    

(Eq.4) 

It can hence, be inferred that the higher compression ratio signifies 

increased compression efficiency as it represents a greater reduction in 

data size.  

In lossless compression, the goal is to represent the original data using 

fewer bits without losing any information.The compression ratio 

quantifies how much smaller the compacted information is compared 

to the source data. The log base is a parameter that controls the 

balance between compression ratio and computational complexity. 

 
Figure 1. Log Base vs Compression Ratio of ‘paper1’ in Calgary 

Corpus. 
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Figure 1 shows that the compression ratio increases as the log base 

increases. However, this increase is not linear. The compression ratio 

starts to level off as the log base gets higher. This is because there is a 

limit to how much data can be compressed without losing information. 

The graph also shows that the compression ratio varies depending on the 

specific data being compressed.  

Overall, the graph shows that there is a balance between compression 

ratio and computational complexity in lossless compression. By 

choosing the right log base, it is possible to achieve a good balance 

between these two factors. 

 

 
Figure 2. Runtime of the Proposed Compression Code on Calgary 

Corpus Files 

Figure 2 shows a clear variation in runtime across different files from 

the Calgary Corpus. It can be observed that ‘bib1’ takes the longest 

time(6.41 seconds) while ‘obj1’ takes the shortest time (0.09 seconds). 

The compression algorithm might be more efficient for certain types of 

data compared to others, leading to faster processing for specific files. 

The performance of the compression code might be influenced by file-

specific characteristics.  

 
 

Figure 3.  ‘n’ vs Compression Ratio for Compressed Files 

Figure 3 shows a negative correlation between ‘n’ and the compression 

ratio. This means that files with larger n generally have lower 

compression ratios compared to files with lesser n. 

 
Figure 4.  ‘n’ vs Runtime for Compression Algorithm on Calgary Corpus 

Files 

Figure 4 shows the positive relation between ‘n’ and Runtime. More the 

value of n, higher will be the runtime. 

4. Conclusion 

The paper introduces a novel approach to compactly represent integers 

through variable-length integer codes. This method involves converting 

the “base-2 representation” of integers to their radix-r counterparts. 

Furthermore, this technique serves as the ultimate encoding step in the 

“BWT Compressor”, enhancing information size reduction capabilities. 

Experimental evaluations conducted on the files compare the execution 

of the proposed code against established methods like EGC, EDC, and 

GC. The findings indicate that the proposed code outperforms EGC and 

GC while delivering competitive results compared to EDC. These 

results signify advancements in understanding and underscore the 

potential of the proposed method in data compression applications. 

However, despite these advancements, certain knowledge gaps remain 

unaddressed, particularly concerning the scalability and adaptability of 

the proposed code across diverse datasets. Addressing these gaps could 

offer valuable insights for future research endeavors in the field of data 

compression. 
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