

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 811–819 | 811

Empowering Collaborative Programming: The Colab Code Strategy for

Consistency and Awareness

1Mr. Girish Navale, 2Dr. Pallavi V Baviskar, 3Ms.Shital Abhimanyu Patil, 4Indira P. Joshi, 5Dr. Shraddha

R. Khonde , 6Miss. Sneha Ramdas Shegar

Submitted: 04/02/2024 Revised: 12/03/2024 Accepted: 18/03/2024

Abstract: The ColabCode is a ground-breaking solution that empowers geographically dispersed individuals working on the same

project to collaborate seamlessly and simultaneously. Leveraging advanced technologies and an intuitive user interface, ColabCode

provides a comprehensive platform where participants can collaborate, share code, and communicate effectively in real time.ColabCode

addresses the challenges faced by distributed teams, allowing them to work cohesively on shared projects. By providing a unified

workspace accessible from anywhere, participants can log in to the platform and instantly join the project in progress. Regardless of their

location or time zone, team members can start working together, eliminating delays caused by coordination issues. The heart of

ColabCode lies in its diverse programming language support. With built-in capabilities for various programming languages such as

Python, Java, JavaScript, C++, and more, team members can seamlessly contribute code in their preferred language. This flexibility

fosters inclusivity and encourages diverse skill sets, ensuring each member can work efficiently using their expertise.

Keywords: real-time collaborative editor, remote collaboration, code sharing, code synchronization

1. Introduction

The advent of remote work has transformed the way

teams collaborate and contribute to projects. However,

when working on the same project from different

locations,[1] teams often face challenges such as

coordination issues, communication gaps, and

difficulties in sharing and synchronizing code. To

address these obstacles, we present the ColabCode, a

powerful platform that revolutionizes remote

collaboration by enabling simultaneous work and code

sharing across multiple programming languages[2-4].A

key feature of ColabCode is its support for multiple

programming languages. Recognizing that different team

members may have expertise in diverse languages,

ColabCode provides an environment that caters to

individual preferences. Whether one prefers Python,

Java, JavaScript, C++, or any other language, team

members can contribute code seamlessly, fostering an

inclusive environment that harnesses the strengths and

talents of each individual[5-10].In addition to code

sharing, ColabCode incorporates a comprehensive chat

feature, enabling real-time communication among team

members. The chat functionality allows for instant

discussions, brainstorming sessions, and problem-

solving, fostering effective collaboration even when

physically separated. Participants can exchange ideas,

seek feedback, and provide support, creating a cohesive

and interactive virtual workspace[11-13].

2. Literature Survey

In today's increasingly interconnected world, remote

work has become a prevalent practice, enabling teams to

collaborate regardless of their physical locations.

However, remote collaboration brings its own set of

challenges, particularly when it comes to working on

shared projects and sharing code across multiple

programming languages. The ColabCode addresses these

challenges by providing a unified platform that enables

simultaneous remote collaboration and code sharing

across various programming languages[12].The domain

of the ColabCode lies at the intersection of remote work,

collaborative software development, and project

management. It recognizes the need for remote teams to

have a centralized workspace where they can work

together seamlessly, communicate effectively, and

contribute code in their preferred languages.When

developing the ColabCode[14-15], comprehensive

comparison research was conducted to evaluate existing

tools and platforms that enable remote collaboration and

1Assistant Professor, Computer Engineering department, Aissms Institute

Of Information Technology Pune
2Assistant Professor, Computer Engineering department, Sandip Institute

of Engineering and Management, Sandip Foundation Nashik
3Assistant Professor, Computer Engineering department, SSBT COET

Bambhori
4Assistant Professor, Computer Engineering department, NHITM clg

Thane West.

Maharashtra. Mumbai University.
5Assistant Professor, Computer Engineering department, Modern

Education Society's Wadia College of Engineering Pune
6HOD, Computer Engineering department, Samarth Group of Institutions

College of Engineering, Belhe

Email - girish.navale@aissmsioit.org, palbaviskar@gmail.com

,shital.a.patil2014@gmail.com, ipj.indira@gmail.com,

khonde.shraddha@gmail.com, snehashegar1@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 01–11 | 812

code sharing. The purpose of this research was to

identify the strengths, weaknesses, and unique features

of these tools, in order to ensure that CPH provides a

distinct and valuable solution for remote teams.By

conducting this comprehensive comparison research,

ColabCode identified the gaps and opportunities in

existing tools and platforms. It enabled the development

team to understand the requirements of remote teams,

anticipate potential challenges, and incorporate unique

features and functionalities into ColabCode. The

research findings ensured that ColabCode offers a

distinct and valuable solution[16-19], addressing the

limitations of existing tools and providing an enhanced

collaborative experience for remote teams working on

shared projects and code sharing across multiple

programming languages.

1. GitHub: GitHub is a widely used platform for

version control and code collaboration. It provides

features such as code repositories, issue tracking, pull

requests, and project management. While it supports

collaboration, it does not offer simultaneous real-time

collaboration or built-in support for multiple

programming languages.

2. GitLab: GitLab is another popular platform that

offers version control, code collaboration, and CI/CD

(continuous integration and continuous deployment)

capabilities. It provides features similar to GitHub,

including code review, issue tracking, and project

management. GitLab also offers real-time editing for

certain file types, but it may not support simultaneous

collaboration across multiple programming languages.

3. Visual Studio Live Share: Visual Studio Live

Share is an extension for Visual Studio Code that enables

real-time collaboration on code editing, debugging, and

running applications. It allows developers to share their

development environment and work together on the

same codebase in real-time. However, it may have

limitations in terms of supporting multiple programming

languages.

4. JetBrains Space: JetBrains Space is an

integrated team collaboration platform that offers a range

of tools for software development teams. It provides

features such as code hosting, version control, project

management, and chat. JetBrains Space aims to provide a

comprehensive platform for remote collaboration, but its

specific support for simultaneous collaboration and

multiple programming languages may vary.

1. Visual Studio Code (VSCode)

2. Eclipse

3. IntelliJ IDEA

4. PyCharm

5. Sublime Text

6. Atom

7. Xcode (for macOS and iOS development)

8. NetBeans

9. Android Studio (for Android app development)

10. Jupyter Notebook

11. MATLAB

12. RStudio (for R programming)

13. Arduino IDE (for Arduino development)

14. Unity (for game development)

15. Scratch (for educational programming)

These platforms offer different features, languages, and

target specific domains. They range from general-

purpose code editors to integrated development

environments (IDEs) tailored for specific languages or

frameworks. It's important to choose the platform that

aligns with our programming needs and preferences.

Many of the programming platforms mentioned,

programmers have the ability to work in parallel or

collaborate with others. However, the extent of parallel

work and collaboration capabilities may vary depending

on the specific platform. Here are a few examples:

1. Visual Studio Code (VSCode): While VSCode is

primarily designed for individual development, it offers

extensions like Live Share that enable real-time

collaboration, allowing multiple developers to work on

the same codebase simultaneously.

2. Eclipse: Eclipse supports team collaboration through

features like collaborative editing, version control

integration (such as Git), and project sharing capabilities.

Developers can work together on shared projects and

access common resources.

3. IntelliJ IDEA and PyCharm: These IDEs provide

built-in support for collaboration and version control

systems. Developers can use features like code sharing,

code reviews, and remote development, enabling parallel

work on projects.

4. Jupyter NotebookJupyter Notebook is a popular

platform for interactive computing and data analysis. It

supports collaboration by allowing multiple users to

work on the same notebook concurrently, with each user

able to see the changes made by others in real-time.

5. Google Colab: As a cloud-based platform, Google

Colab is designed for collaboration. Multiple users can

simultaneously work on the same Colab notebook,

making it suitable for group projects or collaborative

coding sessions.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 01–11 | 813

6. GitHub/Bitbucket/GitLab: While not programming

platforms in themselves, these version control platforms

provide collaboration features such as code reviews,

issue tracking, and pull requests. They facilitate parallel

work and coordination among developers working on the

same codebase.

3. Drawbacks of Existing Platforms-

While the programming platforms mentioned in the

previous response offer numerous benefits, they also

have some potential drawbacks. Here are some common

drawbacks associated with these platforms:

1. Learning Curve: Some platforms, particularly full-

featured IDEs like Eclipse, IntelliJ IDEA, and PyCharm,

can have a steep learning curve for beginners. Their

extensive features and configurations may require some

time and effort to become proficient in using them

effectively.

2. Resource Requirements: Certain platforms, especially

those with rich features and extensive tooling support,

can be resource-intensive. They may require a significant

amount of memory and processing power, potentially

affecting the performance of older or less powerful

machines.

3. Complexity: With increased functionality and

flexibility, programming platforms can sometimes

become complex. This complexity may be

overwhelming for novice programmers or those seeking

simplicity in their development environment.

4. Customization Overload: Some platforms, like Visual

Studio Code, offer a vast number of extensions and

customization options. While this can be advantageous

for tailoring the platform to your specific needs, it can

also lead to decision fatigue or spending excessive time

searching for and configuring the right set of extensions.

5. Limited Language Support: Certain platforms may be

designed with a primary focus on specific programming

languages or frameworks, potentially limiting their

effectiveness for projects involving multiple languages

or less commonly used languages.

6. Offline Limitations: Cloud-based platforms, such as

Google Colab, require an internet connection to access

and run code. This can be a disadvantage if you need to

work in offline environments or have limited

connectivity.

7. Lack of Integration: Some platforms may have limited

or no built-in integration with certain tools or

technologies, requiring developers to find and configure

additional plugins or workarounds to fulfill their specific

requirements.

8. Platform Lock-In: Some platforms have proprietary

formats or workflows that may make it difficult to

migrate projects to other platforms or IDEs, potentially

leading to vendor lock-in.

It's important to note that these drawbacks may vary in

significance depending on individual preferences, project

requirements, and the specific programming tasks at

hand. Ultimately, it's essential to evaluate these factors

and choose a platform that best aligns with your needs

and provides the right balance between functionality and

usability.

4. Algorithm

Yjs is a JavaScript framework that enables collaborative

editing and real-time synchronization of shared data

structures among multiple users. When it comes to

integrating CodeMirror with Yjs, the goal is to create a

collaborative code editor where changes made by one

user are instantly reflected for all other connected users.

Yjs achieves this by using a data type called a Shared

Type, specifically the Y.Text type, which represents a

shared text document.

Algorithmic explanation of how to achieve real-time

synchronization using Yjs:

1. Initialize the shared document: Create a new

instance of Y.Doc to represent the shared

document. Add the required shared types (e.g.,

Y.Text) to the document to represent different data

structures.

2. Set up communication: Establish a connection

between clients using a communication channel

like Web Socket. Implement the necessary event

handlers or listeners to send and receive messages

between clients.

3. Share the document: Once the connection is

established, share the Y.Doc instance with other

clients in the session. Transmit the shared

document to connected clients using the

communication channel.

4. Handle local changes: Listen for local changes

made by the user in the editor or input fields. When

a change occurs, update the corresponding shared

type (e.g., Y.Text) in the Y.Doc instance.

5. Handle remote changes: Implement event handlers

or listeners to receive incoming messages from

other clients. Extract the changes made by remote

clients, including the affected shared type and the

corresponding delta. Apply the received changes to

the corresponding shared type in the local Y.Doc

instance.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 01–11 | 814

6. Synchronize changes: When local changes are

made, transmit the delta to other clients via the

communication channel. Receive incoming deltas

from other clients and apply them to the local

Y.Doc instance.

7. Update the user interface: Monitor changes in the

shared types within the Y.Doc instance. When

changes occur, update the user interface elements

(e.g., CodeMirror editor) to reflect the

modifications.

8. Terminate the session: Implement a termination

mechanism to gracefully close the connection and

end the collaboration session. Perform any

necessary cleanup tasks, such as removing event

listeners and releasing resources.

The step-by-step algorithm explaining how to bind

CodeMirror with Yjs without diving into code details:

1. Set up CodeMirror: Create an instance of

CodeMirror and attach it to an HTML element

on your web page. Specify configuration

options such as the theme, language mode, and

initial content.

2. Create a Yjs document: Initialize a new instance

of Y.Doc, which represents the shared

document. Attach a Y.Text type to the

document. Y.Text is used to represent shared

text data.

3. Bind CodeMirror with Yjs: Listen for the

'change' event in CodeMirror, capturing

changes made by the local user.Retrieve the

changes made (delta) and apply them to the

Y.Text shared type.

4. Observe changes from Yjs: Set up an observer

on the Y.Text type to detect changes made by

other users. When a change is detected, retrieve

the delta (changes) and apply them to

CodeMirror.

5. Connect to a shared editing session: Establish a

connection to a shared editing session using a

communication channel like WebSocket. Use

the appropriate Yjs provider (e.g.,

WebsocketProvider) to exchange updates

between users.Share the Y.Doc instance in the

editing session to enable real-time

collaboration.

 Yjs is a JavaScript framework that enables

collaborative editing and real-time synchronization of

shared data structures among multiple users. When it

comes to integrating CodeMirror with Yjs, the goal is to

create a collaborative code editor where changes made

by one user are instantly reflected for all other

connected users. Yjs achieves this by using a data type

called a Shared Type, specifically the Y.Text type,

which represents a shared text document.

Real-Time synchronization using Yjs

 Create a new instance of Y.Doc to represent the shared

document. Add the required shared types (e.g., Y.Text)

to the document to represent different data structures.

Establish a connection between clients using a

communication channel like WebSocket. Implement the

necessary event handlers or listeners to send and receive

messages between clients. Share the document: Once the

connection is established, share the Y.Doc instance with

other clients in the session. Transmit the shared

document to connected clients using the communication

channel. Listen for local changes made by the user in the

editor or input fields. When a change occurs, update the

corresponding shared type (e.g., Y.Text) in the Y.Doc

instance. Implement event handlers or listeners to receive

incoming messages from other clients. Extract the

changes made by remote clients, including the affected

shared type and the corresponding delta. Apply the

received changes to the corresponding shared type in the

local Y.Doc instance. When local changes are made,

transmit the delta to other clients via the communication

channel. Receive incoming deltas from other clients and

apply them to the local Y.Doc instance.

Update the user interface: Monitor changes in the shared

types within the Y.Doc instance. When changes occur,

update the user interface elements (e.g., CodeMirror

editor) to reflect the modifications. Implement a

termination mechanism to gracefully close the

connection and end the collaboration session. Perform

any necessary cleanup tasks, such as removing event

listeners and releasing resources.

Codemirror binding with Yjs

 Create an instance of CodeMirror and attach it to an

HTML element on your web page. Specify configuration

options such as the theme, language mode, and initial

content. Initialize a new instance of Y.Doc, which

represents the shared document. Attach a Y.Text type to

the document. Y.Text is used to represent shared text

data. Listen for the 'change' event in CodeMirror,

capturing changes made by the local user. Retrieve the

changes made (delta) and apply them to the Y.Text

shared type. Set up an observer on the Y.Text type to

detect changes made by other users. When a change is

detected, retrieve the delta (changes) and apply them to

CodeMirror. Establish a connection to a shared editing

session using a communication channel like WebSocket.

Use the appropriate Yjs provider (e.g.,

WebsocketProvider) to exchange updates between users.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 01–11 | 815

Share the Y.Doc instance in the editing session to enable

real-time collaboration.

5. Prototype Implementation and Evaluations

Following the system architecture in figure 2 , the

workflow and functional design in Section figure 1(a),(b)

and various techniques proposed and devised in Section

5, we have successfully implemented the CoVSCode

prototype. In this section, we demonstrate the prototype

system and present preliminary user evaluations along

with a comprehensive set of experimental evaluations.

Fig 1(a)- Proposed Model Flow

Fig 1(b)- Proposed Model Flow

Fig 2- Proposed Architectural Diagram

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 811–819 | 816

 6.1 Major User Interfaces of proposed Prototype

System

6.1.1 Login and Initialization: Preparation of Real-

Time Collaboration

Figure 3 presents the proposed client UI for a

programmer to start real-time collaborative

programming. Upon adding room ID , a login panel is

displayed in the IDE. The programmer don’t know have

room ID then simply create new room.

Fig 3- UI snapshot of the proposed client’s login panel.

Client-side -

 As you can see in the image below First we need to listen

to the endpoint/port on which the server is running and

need to emit(i.e. send) reserved event ‘JOIN’ which is

used for making connections with the server. We are

passing roomId and username as a payload.

 Fig 4 -UI snapshot of the CoVSCode client’s initialization panel.

On the server side -

 As we can see in the image below, first we need to use

on(‘connection’) which establishes the initial connection

and sets up event listeners for that particular client. After

that we listen for the event ‘JOIN’ which we have

emitted from the client side.

Fig 5- On Server side

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 811–819 | 817

In short, io. on is responsible for the overall connection

from client to server and then socket.on / emit will be

responsible for specific clients’ sockets.

 Further, as we can see in the image we have added the

user temporarily in an ArrayList and emitting and

message using the ‘message’ event which is from the

server side. This event is further listened to on the client

side and will be available for newly joined users in the

chat box.

 The socket.broadcast.to is used for broadcasting the

message i.e. all the users in that particular room will get

the notification of this user being joined except the new

user. This is one of the good features from the socket.io

library.

Server side –

Client side for sending messaging -

As you can see in the image below, We are sending the

message which we have stored in a usestate message

using an event named ‘sendMessage’ which will listen

on the server.

SendMessage on server side -

Here we are listening to the event ‘message’ which we

have emitted from the client side. First we will get user

details from the socket.id then we will send the message

to all the users in that particular room using

io.to(roomId). This will be done using the same emit

method which we will listen on the client side.

SendMessage listening on client side -

Here in client code, we are listening for that emit

‘message’ from the server for all the users. As we have

seen that emit took place using io not socket so that was

for all the users and not for specific client’s socket.

Here we listen for that message and populate our

message useState which will be used for displaying in

the UI.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 811–819 | 818

So the above explanation is how we are storing users in a

particular room and how they are able to chat with each

other while working on code using socket.io.

6. Conclusion

Real-time code editors have made significant strides in

revolutionizing collaborative coding. With their ability to

enable simultaneous editing, live synchronization, and

seamless communication, these editors have transformed

the way developers collaborate and work together on

code. Real-time code editors have successfully

implemented features such as real-time collaboration,

allowing multiple users to edit the same code

simultaneously, compile and see changes in real-time.

This functionality has greatly improved productivity and

teamwork among developers, enabling them to work

together efficiently and provide instant feedback.

CodeMirror, a popular code editor library, has been

integrated with real-time synchronization frameworks

like Yjs and communication technologies like Socket.

IO. This integration allows for seamless communication

between the editor and the server, ensuring that changes

made by one user are immediately synchronized and

reflected in the editor for all connected users.

Conflicts of Interest

The authors declare no conflict of interest. The funders

had no role in the design of the study; in the collection,

analyses, or interpretation of data; in the writing of the

manuscript, or in the decision to publish the results.

Reference:

[1] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh,

and P. Urso. Evaluating CRDTs for Real-time

Document Editing. In Proceedings of the 11th

ACM symposium on Document Engineering, pages

103–112. ACM New York, 2011

[2] G. Oster, P. Urso, P. Molli, and A. Imine. Data

Consistency for P2P Collaborative Editing. In

CSCW ’06, pages 259–268. ACM Press.

[3] DESIGN & IMPLEMENTATION OF A REAL-

TIME CHAT APPLICATION

Al-Riyami, SS and K.G. Paterson, 2003.

Uncertified public key cryptography. Methods for

the Ninth World Theoretical Conference

furthermore, Use of Cryptology and Information

Security, November 30- Dec. 4, Springer Berlin

Heidelberg, Taiwan, pages: 452-473. DOI:

10.1007/978-3-540-40061-5_29 Azab, A., P.

Watters and R. Layton, 2012

[4] A. R. S. Gerlicher. A Framework for Real-time

Collaborative Engineering in the Automotive

Industries. In CDVE’06, pages 164–173. Springer-

Verlag, 2006.

[5] S. Kumawat, M. T. Scholar, and A. Khunteta, “A

Survey on Operational Transformation Algorithms:

Challenges, Issues and Achievements",

International Journal of Engineering Science and

Technology, Vol. 2, No. 7, (2010), pp. 3311–3319.

[6] M. Goldman, G. Little, and R. C. Miller, “Real-

time Collaborative Coding in a Web IDE”, in

Proceedings of the 24th Annual ACM Symposium

on User Interface Software and Technology, pp.

155-164.

[7] A. Sarma, “A Survey of Collaborative Tools in

Software Development, Technical Report, UCI-

ISR-05-3”, Irvine, California

[8] CodeR: Real-time Code Editor Application for

Collaborative Programming December 2015

Procedia Computer Science 59:510-519

[9] International Research Journal of Engineering and

Technology (IRJET), BROWSER BASED CODE

EDITOR

[10] https://www.irjet.net/archives/V8/i5/IRJET-

V8I5440.pdf

[11] A Review on Server-Based Code Editor Sonali R.

Gujarkar, Samprada D.Nimrad, Shital Meshram

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 01–11 | 819

[12] INTERNATIONAL JOURNAL FOR RESEARCH

IN EMERGING SCIENCE AND TECHNOLOGY,

SPECIAL ISSUE-1-JAN-2017

[13] W. Kimpan, T. Meebunrot, and B. Sricharoen,

"Online code editor on Private cloud computing,"

2013 International

[14] Computer Science and Engineering Conference

(ICSEC), Nakhonpathom, Thailand, 2013, pp. 31-

36, doi:10.1109/ICSEC.2013.6694748

[15] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee.

Replicated Abstract Data Types: Building Blocks

for Collaborative Applications. Journal of Parallel

and Distributed Computing, 71(3):354–368, 2011.

[16] Wankhede, D.S., Pandit, S., Metangale, N., Patre,

R., Kulkarni, S., Minaj, K.A. (2022). Survey on

Analyzing Tongue Images to Predict the Organ

Affected. In: Abraham, A., et al. Hybrid Intelligent

Systems. HIS 2021. Lecture Notes in Networks and

Systems, vol 420. Springer, Cham.

https://doi.org/10.1007/978-3-030-96305-7_56

[17] D. Wankhede, V. Mishra, M. Karnik, A. Kekane

and A. Shukla, "The Impact of the Latest

Technology on Healthcare and how can it be

leveraged to improve patient outcomes and reduce

Healthcare costs," 2023 4th IEEE Global

Conference for Advancement in Technology

(GCAT), Bangalore, India, 2023, pp. 1-6, doi:

10.1109/GCAT59970.2023.10353516.

[18] Sutar, S., Jose, K., Gaikwad, V., Mishra, V.,

Wankhede, D., & Karnik, M. (2023). Enhancing

Data Management: An Integrated Solution for

Database Backup, Recovery, Conversion, and

Encryption Capabilities. International Journal of

Intelligent Systems and Applications in

Engineering, 12(6s), 720–734. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/401

1

[19] Sakhare, N. N., Bangare, J. L., Purandare, R. G.,

Wankhede, D. S., & Dehankar, P. (2024). Phishing

Website Detection Using Advanced Machine

Learning Techniques. International Journal of

Intelligent Systems and Applications in

Engineering, 12(12s), 329 –. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/451

9

[20] P. M, D. S. Wankhede, R. Kumar, G. Ezhilarasan,

S. Khurana and G. S. Sahoo, "Leveraging AI-

Driven Systems to Advance Data Science

Automation," 2023 International Conference on

Emerging Research in Computational Science

(ICERCS), Coimbatore, India, 2023, pp. 1-7, doi:

10.1109/ICERCS57948.2023.10434009.

[21] Mrs. Disha Sushant Wankhede, Dr. Selvarani

Rangasamy,"REVIEW ON DEEP LEARNING

APPROACH FOR BRAIN TUMOR GLIOMA

ANALYSIS" Journal of Information Technology in

Industry, VOL. 9 NO. 1 (2021) pp. 395 - 408 ,

DOI: https://doi.org/10.17762/itii.v9i1.144

[22] D. Rawat, A. Chaubey, P. Kumar, S.

HEMELATHA, P. GAJENDRAN and D. S.

Wankhede, "Examining 6G Infrastructure

Capabilities: Paving the Way for Future

Connectivity," 2023 International Conference on

Power Energy, Environment & Intelligent Control

(PEEIC), Greater Noida, India, 2023, pp. 594-597,

doi: 10.1109/PEEIC59336.2023.10451019.

