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Abstract: Matrix decompositions are fundamental methods for extracting knowledge from large data sets produced by contemporary 

applications. Processing extremely large amounts of data using single machines are still inefficient or impractical. Distributed matrix 

decompositions are necessary and practical tools for big data analytics where high dimensionalities and complexities of large datasets 

hinder the data mining processes. Current approaches consume more execution time making it imperative to reduce dataset feature counts 

in processing. This work presents a novel wrapper feature selection method utilising Adaptive Dragonfly Optimisation (ADO) algorithm 

for making the search space more appropriate for feature selections. ADO was used to transform continuous vector search spaces into their 

binary representations. Distributed Bayesian Matrix Decomposition (DBMD) model is presented for clustering and mining voluminous 

data. This work specifically uses, 1) accelerated gradient descent, 2) alternate direction method of multipliers (ADMM), and 3) statistical 

inferences to model distributed computing. These algorithms' theoretical convergence behaviours are examined where tests reveal that the 

suggested algorithms perform better or on par with two common distributed approaches. The methods also scale up effectively to large 

data sets. Clustering performances are assessed using the metrics of precision, recall, F-measure, and Rand Index (RI), which are better 

suited for imbalanced classes. 

Index Terms: Distributed algorithm, Bayesian matrix decomposition, clustering, data mining, feature selection, AdaptiveDragonfly 

Optimization (ADO), and big data. 

1. Introduction  

With the introduction of 5G technologies, enormous 

amounts of data are being produced extremely fast. This 

enormous volume of data is referred to as Big Data. Data 

analytics are extremely challenging due to characteristics 

like enormous volumes, multivalued data, high velocities, 

and broad diversities in data. Furthermore, it is not an easy 

process to extract useful information from such large 

amounts of data [1]. Clustering algorithms are vital 

techniques in data mining crucial to analyze large data. 

The amount of digitally saved data has increased 

dramatically over the past 20 years, and growing interest 

in investigating and creating cutting-edge big data 

processing and data mining approaches have also 

increased in paralell. Dealing with huge volumes of high-

dimensional data typically requires the adoption of 

suitable low-dimensional representations [2] as they can 

effectively disclose hidden structural information in high-

dimensional data while simplifying computations and 

improve learning. 

Matrix factorizations are popular dimensionality 

reduction techniques as they can learn low-dimensional 

representationsof high-dimensional data. Nonnegative 

matrix factorization (NMF) [3, 4], singular value 

decomposition (SVD) [5, 6], QR decomposition (QRD) 

[7], Linear Discriminant Analysis (LDA) [7], Principal 

Component Analysis (PCA) [8, and Independent 

Component Analysis (ICA) [9] are some more well-

known instances of canonical approaches. 

Standard matrix decomposition techniques, however, 

have a tendency to overfit the noisy, missing-value 

observed matrix. Overfitting can be minimised by the 

enforced regularizers, although careful parameter 

tweaking is necessary [10,11]. The majority of those 

algorithms often operate on the assumption that the data 

matrices have a similar basis matrix, which allows the 

approaches to conduct an integrative analysis. The 

analysis of low noise data may be impacted by the high 

noise data perspective, as not all current approaches take 

into account the heterogeneity of the noise [11,12]. In 

order to tackle this issue, Zhang and Zhang [13] utilised 

the Bayesian methodology and suggested the 

implementation of Bayesian joint matrix decomposition 

(BJMD). Their research demonstrated that by considering 

heterogeneous noises, clustering efficiencies could be 

enhanced. Yet there is still a paucity of theoretical 

analysis. Thus, it is crucial to create effective matrix 

decomposition techniques in distributed systems. 

Numerous distributed matrix decomposition techniques 

have been created by researchers, such as distributed NMF 

[15], distributed Bayesian probabilistic matrix 
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factorization (BPMF) [14], and so on. The partition 

strategy of the distributed data should be taken into 

consideration while developing effective distributed 

algorithms for matrix decomposition techniques, and an 

appropriate optimisation approach should subsequently be 

adopted. Few research, nonetheless, have examined 

various optimisation techniques and clarified how they 

vary. The fact that so few approaches address the 

variability of noise among dispersed data is even more 

concerning.  

One of the most popular methods for reducing the high 

dimensionality of large-scale data is feature selection 

(FS), which builds an effective clustering by selecting a 

small subset of relevant and related features and removing 

redundant and unrelated features. In order to improve 

classification performance, feature selection techniques 

seek to remove characteristics that are noisy, redundant, 

or irrelevant [16, 17]. Nevertheless, conventional 

techniques are not sufficiently scalable to handle datasets 

containing millions of occurrences and get good outcomes 

within a restricted timeframe. In order for the results of 

the data mining techniques used over the reduced dataset 

to be as near as possible—or even better—to the results 

produced using all attributes, the feature selection 

procedure aims to get a minimum set of attributes. 

However, when working with really big issues, an 

excessive increase in the individual size may restrict their 

usefulness since they cannot deliver a pre-processed 

dataset in a fair amount of time. There are no methods for 

dealing with the feature space using evolutionary big data 

models in the literature as of yet [19].Evolutionary 

approaches are among the methods now in use that have 

shown effective for feature selection [18]. 

In order to lower the overall amount of features in the 

dataset, a novel wrapper feature selection via ADO 

approach is suggested in this study. For massive data 

mining and clustering, a DBMD model that expands on 

the Bayesian joint matrix decomposition (BJMD) is 

developed. In particular, three approaches—namely, the 

Accelerated Gradient Descent (AGD), the ADMM, and 

the Communication-Efficient Accurate Statistical 

Estimation (CEASE)—are presented in order to 

implement distributed computing. Their convergence 

behaviour is then examined in the context of distributed 

computing. Their research demonstrated that taking 

heterogeneous noise into account improves clustering 

efficiency. 

2. Literature Review  

Chavoshinejad et al [3] proposed Self-Supervised Semi-

Supervised Nonnegative Matrix Factorization (S4NMF) in 

semi-supervised clustering settings for effectiveness. The 

schema derived consensus results directly using 

regularisations for similarities/ dissimilarities from 

ensembled NMF. These data were iteratively sent back to 

the suggested model for enhancing semi-supervised 

learning and generate unique clusters. The optimisation 

issue with well-specified objective functionswere defined 

in the suggested iterative approach. Additionally, the 

convergence of the suggested optimisation method is 

examined by the theoretical and empirical investigations. 

Extensive tests are undertaken on common benchmark 

datasets to illustrate the efficacy of the proposed approach 

in semi-supervised clustering. 

Wang et al [20] proposed generalized deep learning 

clustering (GDLC) algorithm based on NMF. First, a 

nonlinear constrained Nonnegative Matrix Factorization 

(NNMF) method was built with learning rates as guides to 

accomplish sequential updates of matrixcomponents. 

Gradients corresponding to element updates are 

transformed into weights and generalised biases by 

feeding into non-linear activation functionsfor 

understanding complex inference processes and develop 

GDLC algorithm. The results show that GDLC functions 

well from the experimental findings of eight datasets. 

Zhang et al [21] proposed DBMD for mining and 

clustering big data.Three approaches demonstrated 

distributed computing: 1) statistical inferences, 2) 

ADMM, and 3) AGD. Zhang et al. [22] created three 

methods: MSC IAS (Multi-view Subspace Clustering 

with Intactness-Aware Similarity), LMSC (Latent Multi-

view Subspace Clustering), and SwMC (Self-weighted 

Multiview Clustering). The three most important 

measurements are accuracy (ACC), normalised mutual 

information (NMI), and purity. Tensor decomposition 

approaches based on constraint selections have been 

developed to extract more comprehensive latent 

components. Several tensor models were also investigated 

in trials  ofapplicationlinked to supervised learning and 

dimensionality reductions. 

Wang et al [23]exploited tensor training decompositions 

and for learning data’s low-dimensional representations 

using high-dimensional tensors’ stable representations. 

Support Vector Machine (SVM)and tensor train 

decompositions were combined SVM based on lowly 

ranked tensor decompositions on voluminous data. The 

proposed method resulted in significant processing 

savings while maintaining high classification 

performances. Duan et al. [24] proposed an effective 

extreme learning machine (SELM) based on the Spark 

framework. It was made up of three simultaneous 

subalgorithms for categorising enormous amounts of data. 

Hidden layer output matrix computation procedures were 

achieved Through rational divisions of data sets,.The costs 

were reduce by saving intermediaty results in distributed 

memories and caches and using diagonal matrices as 
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broadcast variables for job copies. These moves improved 

SELM's capacity for learning. 

Xie et al [25]explored feature space clustering as a 

solution to the low efficiency that K-means clustering of 

large data sets produced. In contrast to conventional 

techniques, the algorithm ensured accuracy of clusters 

both before and after reducing dimension, accelerated K-

means when distance functions and clustering centres met 

specific requirements, matched exactly in both 

preprocessing and clustering stages, and increased 

accuracy and efficiency. Results from experiments have 

shown that the suggested strategy is successful. 

 Chen et al [26] suggested deep matrix 

factorizationsof  large data sets with non-negative 

constraints that attempted to generate deeper 

interpretabilitiesof representations. Deep architectures are 

designed specifically for pattern mining where supervisor 

networks reduce noises in inputs and learndeep 

representations of interpretability. Deep matrix 

factorization architectures learn from 

constructedintreprabilitylosses, which constitutes 

symmetric, opposition, and non-negative constraint 

losses. This ensures knowledge transmissions from 

supervisor networks to learning networks, enhancing deep 

representative durability. The work’s experiments on 

benchmarked datasets indicated advantages of deep 

matrix factorization techniques. 

Tang and Feng [27] suggested a unique strong clustering 

for robust local-coordinate NMF with adaptive graph 

(RLNMFAG). It lessens the disruption caused by noise 

(outliers) in space exploration and data restoration. 

Furthermore, orthogonal regularisation terms are added to 

models, guaranteeing factor matrix's orthogonality and 

improving capacity of discriminantions. The resulting 

model is then solved using an effective method, and its 

convergence is examined from both theoretical and 

experimental perspectives. Experimental findings on 

benchmark databases and random synthetic data sets show 

that the proposed technique performed  better than robust 

NMF methods in terms of resilience, discriminanations, 

and learning of spatial structures. 

3. Proposed Methodology 

A novel wrapper feature selection via ADO approach is 

suggested in this study in order to lower the overall 

amount of features in the dataset,. To make the search 

space more appropriate for the feature selection issue, the 

ADO technique was used to transform the continuous 

vector search space into a binary one. The DBMD model 

is presented for clustering and massive data mining. 

Large-scale studies confirm the theoretical findings, and 

practical tests demonstrate the applicability and efficacy 

of suggested techniques. 

2.1 ADO algorithm 

One type of evolutionary algorithm is ADO. The concept 

developed from the way dragonflies behaved, both 

dynamically and statically. A static swarm of dragonflies 

is defined as having characteristics intended for hunting 

prey inside a limited area. Swarm DF's dynamic behaviour 

is utilised to describe the exploring stage. This lays the 

groundwork for ADO. Five characteristics of dragonflies 

are presented in order to create the mathematical model 

for representing the flies' movements in a dataset: 

separation, alignment, cohesiveness, feeding, and 

adversary. The separation, alignment, cohesion, food, and 

enemy properties of an i sample dragonflies in a dataset 

are represented by the variables Sei, Ali, Coi, afi, and Eei. 

In the given locale, the distance between neighbouring DF 

is required to maximise the feature search space and 

prevent collision. Let i be the number of samples with 'n' 

neighbours in a dataset. Divorce The location of the k_th 

neighbouring DF is indicated by xk, and Sei of an 

individual with x being the current feature position of DF. 

𝑆𝑒𝑖 = ∑ 𝑥 − 𝑥𝑘

𝑛

𝑘=1

 
(1) 

Matching velocities of features with other DFswithin 

same localities are based on alignments𝐴𝑙𝑖  as represented 

in Equation (2) and where  𝑣𝑘  represents velocities 

of kthneighboring DF. 

𝐴𝑙𝑖 =
∑ 𝑉𝑘

𝑛
𝑘=1

𝑛
 

(2) 

All individuals of DF are inclined to move in directions of 

mass centers of neighboringflies. The cohesion 

features 𝐶𝑜𝑖of DF can be determined using Equation (3),  

𝐶𝑜𝑖 =
∑ 𝑉𝑘

𝑛
𝑘=1

𝑛
 

(3) 

Given that food is necessary for survival, all the 

characteristics in a dataset have a tendency to migrate in 

that direction. Equation (4) is used to obtain the attraction 

for food Afi feature at position xfood. 

𝐴𝑓𝑖 = 𝑥𝑓𝑜𝑜𝑑 − 𝑥 (4) 

DatasetSamples tend to move away from the enemy. The 

enemy feature 𝐸𝑒𝑖 at locations𝑥𝑒 can be computed using 

equation(5). 

𝐸𝑒𝑖 = 𝑥𝑒 + 𝑥 (5) 

The behavior of DF in a dataset is influenced by the 

combining all the five attributes. The updated location of 
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the individual DF is calculated by step Δ𝑥𝑖 wasdenoted in 

equation (6). 

𝑥𝑖 = 𝑥𝑖 + Δ𝑥𝑖 (6) 

Δ𝑥𝑖 = 𝑎𝑤𝑖Δ𝑥𝑖 + 𝑎. 𝑆𝑒𝑖 + 𝑏. 𝐴𝑙𝑖 + 𝑐. 𝐶𝑜𝑖

+ 𝑑. 𝐴𝑓𝑖 + 𝑒. 𝐸𝑒𝑖 

(7) 

where the food component is represented by d and the 

adversary factor by e. The inertial weight is denoted by 

awi, while the separation, alignment, and cohesiveness 

weights are represented by a, b, and c, respectively. The 

properties of an individual dragonfly in a cluster that are 

utilised to express separation, alignment, cohesiveness, 

food, and enemy are represented by Sei, Ali, Coi, afi, and 

Eei. By utilising various parameter values, the DF's 

exploratory and exploitative behaviours may be varied.  In 

the ith dimension, the weight vector  awi may be computed 

as follows: 

𝑎𝑤𝑖 = 𝑥 +
𝑝 × (𝑝 + 1)

2
× 𝐷 

(8) 

where awstands for weight vectors, 𝑝 ∈ {1, … , ⌈
𝐻′

2
⌉} 

which is dependent on sub-interval weight vectors t, D 

implies selections from 𝑑1,𝑖  or 𝑑2,𝑖 .H’ represents weight 

vector counts generated from feature ranges in ith samples. 

The overall flow of the proposed ADO algorithm is 

illustrated in the figure 1. 

 

FIG 1. FLOW DIAGRAM OF THE PROPOSED ADO ALGORITHM 

 The pseudo code for the application of ADO algorithm is discussed in algorithm 1.  

Algorithm 1. ADO algorithm 

Initilization of DF population 𝑥𝑖(𝑖 = 1, … , 𝑛) 

Initilizing step values𝑥𝑖 

While end condition is not met  

Determine classification accuracies of features by DF 

      Update food sources and enemies 

      Update values of a,b,c,d and e 

      Calculatre Sei ,  Ali,  Coi,  afi, and Eeiusing equations (1-5) 

      Update nearest feature accuracies 
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    If DF has atleast one neighbour 

     Update feature positionvectors using equation (6) 

      Update velcoity vectorsusing  equation (7) 

    Else  

       Update feature position vectorswith adaptive weights using equation (8) 

  End if  

        Examine and correct new feature positions based on attribute boundaries  

End while  

3.1. DBMD model  

Assumedata matrices are represented byX ∈ Rm×n, where 

m implies feature counts, n stands for sample counts and 

n≫m. Processing X on single machines is complex due to 

large values of n and X is split and stored on C machines 

{XC}c=1
C  based on columns swhere XC ∈ Rm×nc  and 

∑ nc = nC
c=1 . Assuming {XC}c=1

C based on [13]sharing 

same basis matrix W can be generated using: 

Xc = WHc + Ec (9) 

where W ∈ Rm×r, Hc ∈ Rr×nc and Ec represents IID 

Gaussiannoises, (eij)c
~ N(0, σc

2) . Moreover, zero-mean 

Laplaceis placed onW for enforcing  sparsity.  

wik~p(wik|0, λ0) (10) 

where density functions are,  

p(y|μ, λ) =
1

2λ
exp (−

|y − μ|

λ
) 

(11) 

Which are proportional to complete likelihoodnessbased 

on Bayes theorem and written as: 

p(W, H1, … . , HC, σ1
2, … . , σC

2 , X1, … , XC; λ0, α0)

= p(W; λ) ∏ p(Xc|W, Hc,

C

c=1

σc
2) p(Hc; α0)  

(12) 

Optimization problem as follows,  

min
W,Hc

∑
1

2

C

c=1

‖Xc − WHc‖F
2 + λ‖W‖1

− ∑ ∑ αk

k,j

C

c=1

ln(hkj)c
 s. t ∑(hkj)c

r

k=1

= 1, (hkj)c
> 0 

(13) 

where L1-norm regularizerensures W’s sparsity. Dirichlet 

prior results in 3rd term and regularizes coefficient 

matrices {Hc}c=1
C of Dirichlet prior. Hence, third term 

enforces(h.j)con prior and reduces overfit risks.Generally, 

W and Hcare alternatively updated. 

 

FIG  2. ILLUSTRATION OF UPDATING W 

AGD optimizes W on central processors. Wc is updated 

on the nodes by ADMM and CEASE, and subsequently 

results are ahhregatedon central processors. Figure 2A 

summarises AGD, Figure 2B summarises ADMM, and 

Figure 2C summarises CEASE. 

AGD:By storing corresponding Hc on cth nodes and W on 

central processors, maximum posterior algorithm in [13] 

solves equation (13) by updating W and 
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{Hc}c=1
C alternatively. Specifically, W is updated with 

other parameters fixed,  

min
W

1

2
‖Xc − WHc‖F

2 + λ‖W‖1 
(14) 

Let 𝐟𝐜(𝐖) =
1

2
‖Xc − WHc‖F

2  and g(W) = λ‖W‖1 . The 

quadratic loss terms and the non-smooth L1-norm 

regularizer g(W) make up objective functionsin equation 

(14). Consequently, fast iterative shrinkage-thresholding 

method (FISTA) may solve it effectively. The AGD 

algorithm FISTA has a quadratic rate of convergence. 

Specifically, two sequences {Yk} and {Wk} are 

constructed, and alternatively update them,  

Wk = arg min
W

g(W)

+
L

2
‖W

− (Yk −
1

L
∇f̃c(Yk))‖

F

2

 

(15) 

Yk+1 = Wk +
vk − 1

vk+1

(Wk − Wk−1) 
(16) 

where Lf  = ‖∑ HcHc
TC

c=1 ‖
2

> 0  0 implies Lipschitz 

constants of ∑ ∇fc(W)c . Wk includes approximations of 

minimized proximal functions. Equation (15) depicts 

closed-form solutions,  

Wk = Sλ L⁄ + (Yk −
1

L
∑ ∇fc(Yk)

c

) 
(17) 

Sλ L⁄ (X) = sign(X) ∘ max (|X| −
λ

L
, 0) 

(18) 

Sλ L⁄ (X)  represents soft thresholding operators, and 

∘ implies Hadamard products. Yk+1 saves search points 

constructed by linearcombinations of two recent 

approximate solutions ( Wk−1 and Wk ). vt+1 , the 

coefficient combinations were designed using: 

vk+1 =
1 + √4vk

2 + 1

2
 

(19) 

Current Yk  is broadcastedto all nodesduring cycles for 

computing their gradients. Subsequently, computed 

gradients are gathered and Wk updatedbefore sending 

them to central processors. Wk  and Yk are updated 

iteratively until convergence. {Hc}c=1
C  aresimple updates. 

The following issues can be fixed by using the same 

method once Broadcast W is sent out by central processors 

to nodes [13]: 

min
Hc

1

2
‖Xc − WHc‖F

2

− ∑ ∑ αk

k,j

C

c=1

ln(hkj)c
 s. t. ∑(hkj)c

r

k=1

= 1, (hkj)c

> 0 

(20) 

with respect to Hc in parallel.There is no data transmission 

necessary to solve equation (20). As a result, it is identical 

to the single machine algorithm. One issue, on updating 

W in a distributed system is that it might take a long time 

to broadcast W to nodes and pntaingradients. In a 

distributed system, internode communication can occur at 

a substantially slower speed than intranode processing 

[28]. As a result, data transfer is frequently the distributed 

algorithm's bottleneck, therefore updating W needs 

careful thought. 

ADMM: ADMM implementations update W. Note that 

W in equation (22) are global variables and optimization 

problem can be formulated as: 

min
W,Wc

∑
1

2

C

c=1

‖Xc − WcHc‖F
2 + λ‖W‖1 s. t. Wc

= W 

(21) 

where W represents  consensus variables and their 

augmentedLagrangian is ,  

Lρ(W, Wc, Uc) = ∑
1

2

C

c=1

‖Xc − WcHc‖F
2

+ λ‖W‖1

+ ∑〈Uc, W − Wc〉

C

c=1

+
1

2
ρ ∑‖Xc − Wc‖F

2

C

c=1

 

(22) 

where ρ >  0implies parameters used for penalties, and 

Ucrepresents corresponding dual variables. W stands for 

global variables stored on central processors, and nodes 

locally store Wc, Uc, Hc . ADMM at (k + 1)th iterations 

encompass steps given below,  

Wc
k+1 = arg min

Wc

Lρ (Wk, Wc, Uc
k) (23) 

Wk+1 = arg min
W

Lρ (W, Wc
k+1, Uc

k) (24) 

Uc
k+1 = Uc

k + ρ(Wk+1 − Wc
k+1) (25) 

Both equation (23) and equation (24) have the closed-

form solutions,  
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Wc
k+1 = (

XcHc
T + Uc

k

ρ
+ Wk) (Ir +

HcHc
T

ρ
)

−1

 
(26) 

Wk+1 = Sλ Cρ⁄ (W̅c
k+1 −

U̅c
k

ρ
) 

(27) 

where soft thresholding operators Sλ Cρ⁄  with 

parametersλ Cρ⁄ are defined. Wcget optimised locally on 

nodes parallelly and doesnot  needto be transmitted. 

Parallel local optimisation is also applied to Uc. W̅c
k+1 −

U̅c
k

ρ
  is all that is required, along with a gentle thresholding 

procedure. Wc
k − Uc

k is calculated concurrently on each 

node computer, and the results are aggregated on the 

central node. After obtaining the updated W, apply the 

thresholding operator and broadcast it to every node. It 

should be noted that just a matrix of size m×rhas to be 

collected and broadcast at each iteration. As a result, there 

was a noticeable decrease in the data communication 

burden. 

Efficient Distributed Statistical Inference: Because of 

its efficacy, CEASE is presented to design an efficient 

distributed statistical process. Assume that W is Wk at 

iteration k. As per the CEASE system, every node 

computer calculates, 

Wc
k = arg min

W
f̃c (W) (28) 

f̃c(W) = fc(W) − 〈∇fc(Wk) − ∇f(Wk), W〉

+
γ

2
‖W − Wk‖

F

2
+ g(W) 

(29) 

where  γ ≥ 0 represents parameters of proximal points 

algorithm. fc(W) − 〈∇fc(Wk) − ∇f(Wk), W〉 signifies 

gradient-enhanced loss (GEL) functions where local data 

lossesXcare enhanced by global gradients∇f(Wk). Global 

gradients adaptively enhancesimilarities of fc  and 

accelerateconvergences. The solutions are closed ones 

when λ =  0 , while λ> 0equation (28) encompasses non-

smooth L1-norm regularizer g(W) and remaining smooth 

terms which are sums of quadratic loss terms and linear 

terms which can also be effectively solved by FISTA. 

Optimizations of Wk c does not require any data 

communications. The central processors collect Wc
k  and 

aggregate by averaging Wk+1 =
1

C
∑ Wc

kC
c=1 . 

4. Experimental Results 

The proposed strategies for clustering datasets are 

contrasted with Scalable-NMF and distributed k-means 

and where experiments of synthetic data were conducted 

on 2GHz Intel Xeon E5-2683 v3 CPU desktop with GTX 

1080 GPU card, and 16GB RAM, while real-world data 

was tested on a small Spark cluster comprising of eight 

workstations (one central processor and nodes) where 

every system had a 16GB memory with an Intel i7 CPU. 

DATABASE: In total, there are three datasets. 

Specifically, UCI Machine Learning Repository 

(https://archive.ics.uci.edu/ml/datasets.php) downloaded 

RCV1. Data on forest cover types is called CoverType. 

There are seven classes in all, and two classes account for 

85% of the occurrences. There are 23 courses in KDD-

99.Eleven classes were kept, while those that happened 

less than 100 times were eliminated. 97% of cases are 

accounted for by the three largest classes, which are 57%, 

21%, and 19%, respectively. SUSY has only two classes 

and is a physical dataset. 

METRICS: Pairand instance-level measures can be 

calculated within cluster-level calculation framework 

with performance metrics of precision, recall, f-measure, 

and RI . 

F-measures are harmonic means of Cluster Recall (CR) 

and Cluster Precision (CP) values and depicted in 

equations (30-32), 

CR =
|P ∩ T|

|𝑇|
 

(30) 

CP =
|P ∩ T|

|𝑃|
 

(31) 

𝐶𝐹 =
2 × 𝐶𝑅 × 𝐶𝑃

(𝐶𝑅 + 𝐶𝑃)
 

(32) 

Where, P implies sets of predicted clusters, while T stands 

for sets of truth clusters. The numerator |𝑃 ∩  𝑇| counts 

predicted clusters that contain all and only instances 

belonging to same truth clusters. CR signifies ratio of 

numerator over truth cluster counts (|𝑇 |). CPstands for 

ratio of this numerator over predicted cluster counts (|𝑃|). 

RI  as measures of percentages of correct decisions made 

by algorithms. They can be computed using equation (33), 

RI =
TP + TN

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

(33) 

where TP implies  true positive counts, TN stands for true 

negative counts, FP implies false positive counts, and FN 

signifies false negative counts. 
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TABLE 1. SUMMARY OF THE DATASETS 

Dataset  No.of instances  No.of features No.of classes 

Covertype ~540,000 54 7 

KDD-99 ~4,900,000 41 11 

SUSY ~50,00,000 18 2 

TABLE 2. CLUSTERING PERFORMANCE ON REAL-WORLD DATASETS 

Covertype 

Clustering methods Precision (%) Recall (%) F-Measure (%) RI (%) 

NNMF 72.15 75.10 73.59 76.72 

S4NMF 75.62 78.91 77.23 79.05 

RLNMFAG 80.25 82.41 81.32 82.19 

DBMD-AGD 83.40 92.73 91.03 81.56 

DBMD-ADMM 90.92 92.99 91.94 81.63 

DBMD- CEASE 91.76 93.50 92.62 82.69 

KDD-99 

Clustering methods Precision (%) Recall (%) F-Measure (%) RI (%) 

NNMF 74.37 76.21 75.28 78.09 

S4NMF 76.15 80.65 78.33 80.25 

RLNMFAG 79.24 82.54 78.86 81.61 

DBMD-AGD 83.48 86.69 79.54 81.49 

DBMD-ADMM 84.44 87.19 80.64 81.73 

DBMD- CEASE 86.47 88.21 81.65 82.45 

SUSY 

Clustering methods Precision (%) Recall (%) F-Measure (%) RI (%) 

NNMF 77.23 75.77 76.49 75.66 

S4NMF 79.45 77.81 78.62 77.25 

RLNMFAG 81.56 80.23 80.89 80.34 

DBMD-AGD 82.21 80.79 80.97 81.29 

DBMD-ADMM 85.86 85.96 85.91 81.62 

DBMD- CEASE 87.68 87.75 87.72 81.74 

 

Suggested clustering methodachieves competitive/superior performances compared others in terms of values for precision, 

recall, F-measure, and RI on three datasets (Table 2). 
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FIG 3. PRECISION RESULTS COMPARISON VS. CLUSTERING METHODS 

Figure 3 shows performance comparisons of precision 

results obtained by clustering methods.  The results are 

measured by various clustering methods and three 

datasets. From the results it shows that the proposed 

system has highest precision results of 91.76%, 86.47%, 

and 87.68% for covertype, KDD-99, and SUSY dataset. 

Other existing methods like NNMF, S4NMF, RLNMFAG, 

DBMD-AGD, and DBMD-ADMM gives lesser precision 

of 77.23%, 79.45%, 81.56%, 82.21%, and 85.86% for 

SUSY dataset.  

 

FIG 4. RECALL RESULTS COMPARISON VS. CLUSTERING METHODS 

Recall results with respect to clustering methods by three 

datasets are illustrated in figure 4. It shows that the 

proposed system has highest results of 93.50%, 88.21%, 

and 87.75% for covertype, KDD-99, and SUSY dataset. 

NNMF, S4NMF, RLNMFAG, DBMD-AGD, and 

DBMD-ADMM methods provides lesser recall of 

75.77%, 77.81%, 80.23%, 80.77%, and 85.96% for SUSY 

dataset.  
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FIG 5. F-MEASURE RESULTS COMPARISON VS. CLUSTERING METHODS 

Clustering methods by three datasets among f-measure are 

illustrated in figure 5. Proposed clustering algorithm has 

highest results of 92.62%, 81.65%, and 87.72% for 

covertype, KDD-99, and SUSY dataset. NNMF, S4NMF, 

RLNMFAG, DBMD-AGD, and DBMD-ADMM methods 

provides lesser f-measure of 76.49%, 78.62%, 80.89%, 

80.97%, and 85.91% for SUSY dataset.  

 

FIG 6. RI RESULTS COMPARISON VS. CLUSTERING METHODS 

RI results of clustering methods among three datasets are 

illustrated in figure 6. Proposed clustering algorithm has 

highest results of 82.69%, 82.45%, and 81.74% for 

covertype, KDD-99, and SUSY dataset. NNMF, S4NMF, 

RLNMFAG, DBMD-AGD, and DBMD-ADMM methods 

provides lesser RI of 75.66%, 77.25%, 80.34%, 81.29%, 

and 81.62% for SUSY dataset.  

5. Conclusion and Future Work 

An ADO feature selection for large data analytics is 

suggested in this research. As a pre-processing step to 
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decrease dataset dimensionality, the ADO method was 

introduced for the most informative features and 

classification accuracy. A static swarm of dragonflies is 

defined as having characteristics intended for hunting prey 

inside a limited area. Swarm DF's dynamic behaviour is 

utilised to describe the exploring stage. It is employed to 

randomly sample and analyse vast amounts of data into 

subsets. DBMD is then introduced for large data mining 

and grouping based on the characteristics that have been 

chosen. To develop distributed computing, three 

methodologies are introduced: 1) AGD, 2) ADMM, and 

3) statistical inference. Numerous tests confirm the 

theoretical findings of clustering that have been 

suggested, while practical trials demonstrate the 

scalability and efficacy of clustering techniques. The 

accuracy with feature selection (ADO) and precision, 

recall, f-measure, and recall were used to gauge the 

effectiveness of the suggested clustering technique. Future 

research should look at a number of these concerns. First, 

various algorithms can benefit from the weighted average 

approach. Second, consider that there is a finite tall-and-

skinny transposition of the data matrix. Modern 

applications often include a thick and tall data matrix, 

meaning that there are a lot of rows and columns. More 

research is required to determine this algorithm's 

convergence rate. 
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