

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1040–1044 |1040

Assessment of Conflict Flows in Software-Defined Networks using a

Novel Nature-Inspired Optimization-Tuned Kernelized SVM

Amit Sharma1, Veena M.2, Dr.Hirald Dwaraka Praveena3, Dr. V. Selvakumar4, Bhuvana J.5, Dhiraj
Singh6

Submitted: 07/02/2024 Revised: 15/03/2024 Accepted: 21/03/2024

Abstract: The centralizing management and flexibly customizing network resources, Software-Defined Networks (SDN) completely

transform network administration. As networks become more intricate, the likelihood of conflicts arising data flows increases, potentially

leading to a decline in overall performance and the emergence of security vulnerabilities. This paper presents a tree-seed optimization-

tuned kernelized support vector machine (TSO-KSVM) for the assessment of conflict flows in SDN environments. Initially, we gather data

samples of SDN in conflict flows to analyze the performance of the proposed method. Applying the min-max scaling method to preprocess

the raw data samples and linear discriminant analysis (LDA) is carried out to reduce the dimension. In the proposed framework, TSO is

applied to enhance the assessment in the KSVM model. The proposed method is implemented in the Python tool. The proposed method's

performance is analyzed in terms of various metrics compared with other methods. From the experimented results, we conclude that the

proposed method attains the greatest accuracy rate of other methods in assessing conflict flows in SDN networks.

Keywords: Conflict Flow, Security, Software-Defined Network (SDN), Tree-Seed Optimization-Tuned Kernelized Support Vector

Machine (TSO-KSVM)

1. Introduction

Network performance can be enhanced through Software-Defined

Networks (SDNs) using dynamic and adaptable network

architecture. To accommodate changing business requirements,

network engineers and administrators can easily modify this

architecture using a centralized management center [1].

Additionally, it makes possible for network engineers and

managers to adapt the changing business demands through a

centralized management dashboard. SDNs combine network

technologies and detach control functions from forwarding planes

to provide agility and flexibility [2]. System experts can have total

control over the network's operations due to this divide, which

might enable a separate network control plane setup. Aside from

its core benefits, an SDN is economical, dynamic, controlled,

adaptive and adaptable, which makes an ideal answer to the

growing size and high-bandwidth problems and internet-based

apps [3]. A range of network technologies are included in the SDN,

which are intended to make the network strong and scalable

enough to support virtualized servers and storage infrastructures in

a contemporary data center [4]. SDNs are well suited for the

dynamic demands of modern high-bandwidth applications since

they are inexpensive, controlled, dynamic and adaptable [5].

Network control operations are isolated from the original network

sending traffic in reverse by SDN's virtualized execution

architecture. Apart from the integration of diverse network devices

such as switches, routers and access points in SDN, which

facilitates the execution of multiple network management

operations, the SDN controller permits intricate network setup [6].

Essentially, the basic giving consumers greater choice over their

setup while maintaining network efficiency standards is the aim of

SDN. One significant development in SDN is conflict flow [7].

Flow conflicts can take many various shapes, such as in the case

of SDN design. There can be a variety of conflicts between the

controller and flow table due to variations in the flow rule policy

or flow entry. An SDN's success is influenced by the controller's

actions [8]. To distribute, categorize and allocate packets

depending on flow entries, a conflict flow switch contains many

flow tables connected to the controller through the conflict flow

protocol identified, in this study uses machine learning (ML)

techniques for SDN.

➢ To assess the network administration is revolutionized by

SDN, which centralizes control and allows for flexible

customization of network resources.

➢ For the assessment of conflict flows in SDN environments, in

this study we employed a TSO-KSVM.

➢ The evaluation of the suggested algorithms' performance using

criteria such as precision, accuracy, recall, False alarm rate and

F1-score.

1 Professor School of Computer Applications Lovely Professional

University, Phagwara, Punja, India. profamitsharma@gmail.com
2 Assistant Professor, Department of Computer science and

Engineering, PES College of engineering, Mandya, Karnataka, India.

veenakemps@gmail.com
3 Assistant Professor, Department of ECE, School of Engineering,

Mohan Babu University (Erstwhile Sree Vidya nikethan Engineering

College) Tirupati, Andhra Pradesh, India. hdpraveena@gmail.com
4 Assistant Professor, Maths and Statistics Bhavan's Vivekananda

College of Science, Humanities and Commerce Hyderabad-94,

Telangana, India. drselva2022@gmail.com
5 Associate Professor, Department of Computer Science and

Information Technology, Jain (deemed to be University), Bangalore,

Karnataka, India. j.bhuvana@jainuniversity.ac.in
6 Centre of Research Impact and Outcome, Chitkara University,

Rajpura, Punjab, India. dhiraj.singh.orp@chitkara.edu.in

mailto:profamitsharma@gmail.com
mailto:veenakemps@gmail.com
mailto:hdpraveena@gmail.com
mailto:drselva2022@gmail.com
mailto:j.bhuvana@jainuniversity.ac.in
mailto:dhiraj.singh.orp@chitkara.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1040–1044 |1041

The rest of the paper is divided into parts: The objective is based

on the related studies presented in part 2. The data collection and

their proposed techniques are shown in part 3. The result analysis

and their discussion are shown in parts 4 and 5. The end of the

paper was concluded in section 6.

2. Related Works

The study [9] suggested a unique flow schedule-generating model

that adds no additional update cost and ensures no frame loss

during network updates, even with the most basic two-phase

update method. The study [10] suggested the method reveals

significant barriers. By examining network behavior with many

applications and traffic profiles applied to various topologies, the

experimental technique generates conflict classes and detection

patterns. The study [11] provided the flow conflicts in SDN by

identifying and categorizing every flow conflict in the Open Flow

switch using ML methods. The study [12] suggested in an attempt

to address the problem. Initially, the information on the flow rules

to be issued by watching and recording Open Flow messages amid

the forwarding plane and the control plane. The study [13]

suggested the novel networking design called SDN separates the

administrative and control planes from the data plane of

forwarding devices. The controller is a centralized entity that

implements the management and organization planes. The study

[14] focused on the identification of conflicts in SDN.The flexible

deployment of network functionalities was made easier by the

SDN architecture. Compared to traditional networks, this design

increases the likelihood of disputes while encouraging innovation.

The study [15] examined the separating network operations from

devices and centralizing them at a logical location so-called SDN

controller while keeping a shared communication interface, the

SDN architecture makes easier to install network services flexibly.

The study [16] examined the SDN, which was extensively utilized

in many different settings allows for flexible network

configuration can identify and resolve conflicts between flow

entries using the approach suggested in the work. The study

[17] addressed the problem of detecting situations when the SDN

stack was unable to stop these components' policies from

becoming inconsistent. The study [18] provided a hybrid SDN

flow control method based on clusters and the method leverages

both centralized SDN routing and distributed legacy routing,

making it hybrid.

2.1. Problem statement

Efficiency is negatively impacted by many conflict types in both

SDNs and traditional networks. Based on their guidelines and

outcomes, interpretative along with intelligible conflicts are the

two primary categories of disputes. When resolving flow conflicts,

packet counts and timeout numbers are not crucial. Action and

priority modifications are two examples of qualities that might lead

to conflicts in SDN. The controller and flow table can become

incompatible with modifications made to the flow rule policies or

entries. To create SDN rules and flow entries must decide and take

action. It is acknowledged that traditional networks and SDNs have

quite different qualities, especially when it comes to priority and

action. By dynamically arranging behaviors, intelligently

managing flow entry constraints and adjusting to the unique

characteristics of both types of connections, the TSO-KSVM

method effectively resolves conflicts in both SDNs and standard

networks, providing optimum efficiency and solving conceptual

and comprehensible conflicts.

3. Methods

This study provides further details on the conflict flow in SDN that

was utilized for this work to support the suggested TSO-KSVM-

based SDN architecture. Fig 1 shows the suggested methodology.

Fig.1 Proposed Flow

3.1. Dataset

The collection of data that utilized Ryu controller architecture and

10 performance servers per host, Iperf is a program that creates and

gathers Open Flow data [19]. Different destination ports can be

listened by each server and new flows are created, depending on

the source and destination ports and protocols, in addition to the

source and destination IP addresses. The controller is in charge of

adding new flows to the switch, revising policy guidelines and

compiling all flow inputs into a CSV file. An SDN controller can

build flows using a new way suggested by the study. The absence

of SDN datasets with crucial flow entry attributes like priority and

action elements made this essential. The network flows that the

switch has detected and handled are represented by these flow

entries.

3.2. Data preprocessing using Min-Max scaling

There can be multiple values and possibly missing values in the

SDN data. An error is produced at the end of the assessment if there

are any missing or duplicate values in the dataset. Equation (1)

provides the mean of the estimation.

𝐾𝑖 =
𝐾𝑖+1+𝐾𝑖−1

2
 (1)

Where following missing value is indicated as 𝐾𝑖+1, whereas the

value before shown as 𝐾𝑖−1.The Min-Max scalar function is used

to remove redundant data. This scaling strategy allows features in

an SDN dataset to have similar scales, preventing specific features

from dictating how the ML models learn. Equation (2) is the

fundamental formula for applying Min-Max scaling to numerical

data that has to be scaled withthe framework of a monitoring and

control system.

𝑍𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑧−𝑧𝑀𝑖𝑛

𝑧𝑀𝑖𝑛−𝑧𝑀𝑎𝑥
 (2)

Where scaling values of the source feature are represented by

𝑍𝑠𝑐𝑎𝑙𝑒𝑑 . The feature's initial value is represented by 𝑍. The SDN

dataset's feature's minimum value is denoted by𝑍𝑀𝑖𝑛. The highest

possible value of the feature in the dataset is represented by 𝑍𝑀𝑎𝑥.

3.3. Feature Extraction using Linear Discriminant Analysis

(LDA)

Linear discriminant analysis (LDA) is increasingly used to extract

critical information from SDN data and reduce the dimensionality

of data. LDA can be influenced by several factors operating

simultaneously. Multi-feature prediction issue is well-suited to

dimensionality reduction, the central idea of LDA, which seeks to

convert the transformation of high-dimensional data into a pleasing

low-dimensional form. Specifically, suppose 𝑌𝑗 , 𝜇𝑗 , Σ𝑗 indicating

𝑗 − 𝑡ℎ the data set, the average, and the matrix of correlations for

the sample. 𝜔𝑇𝜇1and𝜔𝑇𝜇2 entails projecting the middle of the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1040–1044 |1042

samples 𝐽𝜖 {1,2} on line 𝜔 whereas 𝜔𝑇Σ1𝜔 and 𝜔𝑇Σ2𝜔 represent

the matrix of the two samples' covariance. Distance between

homogenous sample points is the target of LDA, i.e.𝜔𝑇Σ1𝜔 +

𝜔𝑇Σ2𝜔 minimize the distance between points in the sample that

are diverse, i.e. ‖𝜔𝑇𝜇1−. 𝜔𝑇𝜇2‖2
2 2 over an extended period. Here

provide the objective function𝐼as in equation (3)

𝐽 =
‖𝜔𝑇𝜇1−𝜔𝑇𝜇2‖

2

2

𝜔𝑇Σ1𝜔+𝜔𝑇Σ2𝜔
=

𝜔𝑇(𝜇1−𝜇2)(𝜇1−𝜇2)𝑇𝜔

𝜔𝑇(Σ1+Σ2)𝜔
 (3)

This is the definition of the inner-class divergence matrix in

equation (4)

𝑆𝑊 = Σ1 + Σ2 = ∑ (𝑌 − 𝜇1)𝑦∈𝑌1
(𝑌 − 𝜇2)𝑇 + ∑ (𝑌 −𝑦∈𝑌2

𝜇1) (𝑦 − 𝜇2)𝑇 (4)

Thus the matrix of divergence between classes can be written as

equation (5)

𝑆𝑏 = (𝜇1 − 𝜇2)(𝜇1 − 𝜇2)𝑇 (5)

Consequently, (3) is reduced to equation (6)

𝐽 =
𝜔𝑇𝑆𝑏𝜔

𝜔𝑇𝑆𝑊𝜔
 (6)

This 𝜔matrix is solved using the Lagrangian multiplier technique

and the singular value decomposition (SVD) method 𝜔 = 𝑆𝑤
−1 =

(𝜇1 − 𝜇2) i.e. the optimal direction for projection. The next step is

to determine the optimal course of action using the training

data𝜔𝑎𝑠𝑍 = 𝜔𝑇𝑌.

{
𝑍 > 𝑦0 ⇒ 𝑦𝜖𝐶𝑙𝑎𝑠𝑠1

𝑍 < 𝑦0 ⇒ 𝑦𝜖𝐶𝑙𝑎𝑠𝑠2
 (7)

𝑧0 =
𝑁1𝜇1+𝑁2𝜇2

𝑁1+𝑁2
 (8)

Equations (7) and (8) determine the discrimination outcome of

𝑁1𝑎𝑛𝑑𝑁2 to show the amounts of actual and simulated collisions.

3.4. Conflict flow in SDN environment using TSO-KSVM

The tree-seed optimization-tuned kernelized support vector

machine (TSO-KSVM), which optimizes flow management for

effective and safe data transfer, improves conflict detection in an

SDN context with the ability to adjust the changes in the network,

guaranteeing dependable and effective communication. This

mixture improves classification precision and smoothly resolves

disagreements.

3.4.1. Kernelized Support Vector Machine (KSVM)

The kernelized Support Vector Machine (KSVM) is a statistical

learning theory-based tool for classifying data that is linear and

nonlinear. It creates a linear optimum splitting hyperplane with a

higher dimension (or classes) by separating the data into two

groups using margins and support vectors. The initial training data

is transferred using a suitable non-linear mapping. In the design,

“the eigenvector𝑦𝑗 , the kernel function 𝐾, the output vector𝑈, and

the bias term 𝑐” are all shown. The following describes the model's

final decision function in equation (9).

𝑓(𝑈) = 𝑠𝑔𝑛(∑ 𝑌𝑗𝐿(𝑢,𝑠
𝑗=1 𝑈𝑗) + 𝑐) (9)

Equation (10) shows that the highest predictive power is provided

by the radial basis function. It requires absolute improvements in

time spent, mistakes or fit quality.

𝑅(𝑢𝑜 − 𝑒𝑗) = 𝑒𝑥𝑝 (−
1

2𝜎2 𝑢𝑜 − 𝑒𝑗
2), (10)

Where𝑢𝑜 − 𝑒𝑗is the Euclidean norm, 𝑒𝑗is the center of the

Gaussian function and its variance. The output of the neural

network structure supplied with the radial basis function is follows:

𝑣𝑗 = ∑ 𝑦𝑗𝑖𝑒𝑥𝑝
𝑔
𝑗=1 (−

1

2𝜎2 𝑢𝑜 − 𝑒𝑗
2) , 𝑖 = 1,2, … 𝑠 (11)

Where𝑢𝑜 = (𝑢1
𝑜, 𝑢2

𝑜, … 𝑢𝑛
𝑜)𝑆is the input sample (𝑜 = 1,2,3, … , 𝑂)

is the overall count of pieces, 𝑥𝑗𝑖is the weight of the

connection(𝑗 = 1, 2, 3, . . . , 𝑔), where 𝑔 is the number of nodes.

The variance of the basis function can be defined as follows using

the least squares method:

𝜎 =
1

𝑂
= ∑ 𝑐𝑖 − 𝑧𝑗

𝑛
𝑖 𝑒𝑗

2 (12)

Typically, the default value of the parameter in the gamma function

is set to the opposite of the attribute count. Equation (11) has the

potential to develop into a new function for making decisions

based on Equations (12) and (13).

𝑓(𝑢)𝑠𝑔𝑛(∑ 𝑦𝑗𝑒𝑥𝑝𝑚
𝑗=1 (−𝑔𝑎𝑚𝑚𝑎𝑦𝑗 − 𝑢2) + 𝑏), (13)

To make sure the model behaves as intended, the gamma term and

penalty term of the KSVM must also be supplied. As the penalty

term value decreases, the probability of under fitting rises, whereas

the probability of overfitting increases. If the punishment term's

value is too high or low, it will hinder the KSVM's ability to

generalize. Moreover, research ignores the importance of the

gamma value of the KSVM. Algorithm 1 shows the KSVM

Algorithm.

Algorithm 1: KSVM

𝑅𝑒𝑞𝑢𝑖𝑟𝑒: 𝑊 𝑎𝑛𝑑 𝑧 𝑙𝑜𝑎𝑑𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑑𝑎𝑡𝑎, 𝛼

⇐ 0 𝑜𝑟 𝛼 ⇐ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐾𝑆𝑉𝑀

1: 𝐷 ⇐ 𝑠𝑜𝑚𝑒 𝑣𝑎𝑙𝑢𝑒 (10 𝑓𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒)

2: 𝑟𝑒𝑝𝑒𝑎𝑡

3: 𝑓𝑜𝑟 𝑎𝑙𝑙 {𝑤𝑗 , 𝑧𝑗}, {𝑤𝑗 , 𝑧𝑗}, 𝑑𝑜

4: 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝛼𝑗 𝑎𝑛𝑑 𝛼𝑖

5: 𝐸𝑛𝑑 𝑓𝑜𝑟

6: 𝑢𝑛𝑡𝑖𝑙 𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑖𝑛 𝛼 𝑜𝑟 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎𝑙 𝑚𝑒𝑡 𝐸𝑛𝑠𝑢𝑟𝑒:

 𝑅𝑒𝑡𝑎𝑖𝑛 𝑜𝑛𝑙𝑦 𝑡ℎ𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝛼𝑗 > 0)

3.4.2. Tree-Seed Optimization

Discovering the ideal answer to an issue becomes more

challenging as its complexity rises. Therefore, we have to change

parts of the original algorithms' structures to get efficient results.

When the problem's dimension rises, it becomes more difficult to

solve optimally using the original Tree-Seed Optimization (TSO).

Because of this, the TSO has undergone several modifications to

enhance its operations. The original TSO had the acceleration

coefficient 𝐶 parameter, which is determined andbased on the

problem's dimensions. The novel equations employed in this work

are (14) and (15), which are shown below.

∆𝑗,𝑖= (𝐵𝑒𝑠𝑡𝑇𝑟𝑒𝑒𝑖 − 𝑇𝑟𝑒𝑒𝑠𝑞,𝑖) ∗ (𝑟𝑎𝑛𝑑 − 0.5) ∗ 𝐷 (14)

∆𝑗,𝑖= (𝑃𝑎𝑟𝑒𝑛𝑡𝑇𝑟𝑒𝑒𝑖 − 𝑇𝑟𝑒𝑒𝑠𝑞,𝑖) ∗ (𝑟𝑎𝑛𝑑 − 0.5) ∗ 𝐷 (15)

Equation (16) is used to obtain the 𝐶 parameter that is utilized in

equations (14) and (15). The size of the issue is represented by the

𝐷 parameter in Equation (16).

𝐷 = 2 − (𝐶2 ∗ 0.0001) (16)

Equation (17) provides the upper and lower limits for ∆𝑗,𝑖.

𝑚𝑖𝑛 ≤ ∆𝑗,𝑖≤ 𝑀𝑎𝑥 (17)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1040–1044 |1043

∆𝑖, minimum and maximum values are computed successively =

−0.1 ∗ (𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛)𝑎𝑛𝑑𝑚𝑖𝑛 = −0.1 ∗ (𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛). 𝑐𝑚𝑖𝑛.

The problem's top limit is represented by 𝑑𝑚𝑎𝑥, while the lower

bound is represented by 𝑑𝑚𝑖𝑛. Then, for the seed location, ∆𝑗,𝑖is

added to the current parent tree. Equation (18) shows a seed's

location.

𝑆𝑒𝑒𝑑𝑗,𝑖 = 𝑃𝑎𝑟𝑒𝑛𝑡𝑇𝑟𝑒𝑒𝑖 + ∆𝑗,𝑖 (18)

4. Results

The experimental setup with 16 GB of RAM, an Intel Core i7 CPU,

and Ubuntu 18.04 running, the user's system makes use of the Ryu

SDN controller, Python 2.7 for scripting, and OpenFlow Switch

Version 1.3 or above. The research is verified based on five distinct

metrics that consist of False alarm rate (FAR), F1-measure,

Accuracy, Precision, and Recall. Assessing the conflict flow for

SDN by utilizing TSO-KSVM methods was the focus of this study

we compared our suggested technique to Decision Tree (DT) [20],

Deep Neural network (DNN) [20], K-nearest neighbor (KNN) [20]

and Multi-level hybrid classification (MLHC) [20].

Accuracy: The proportion of accurately predicted occurrences to

all instances is known as accuracy. SDN improves result accuracy

by streamlining network performance. Conflicts in flow control

might occur and reduce effectiveness.

Precision: Precision is defined as the ratio of predicted positive

observations to the total number of anticipated positives. The

precision of results is improved by SDN, which minimizes

conflicts by controlling network traffic. Table 1 and Fig 2 provide

the accuracy and precision comparison. In contrast to other current

approaches, our suggested strategy produced superior results with

97.12% accuracy and 96.15% precision.

Table 1 Comparison of Accuracy and Precision

Methods Accuracy (%) Precision (%)

DT [20] 74.43 92.5

DNN [20] 75.75 83

KNN [20] 77.09 77.09

MLHC [20] 84.29 94.18

TSO-KSVM [Proposed] 97.12 96.15

Fig.2 Outcome of (a) Accuracy, (b) Precision

Recall: The ratio of all observations in the actual class to the

anticipated positive observations is known as recall. In SDN,

rerouting traffic, enforcing policy and resolving conflicts are all

part of result recall. By using historical results to settle disputes

and maintain reliable flow control, it guarantees effective network

functioning.

F1-score: The F1-score represents the balanced average of recall

and accuracy. When the distribution of classes is not uniform, it is

helpful and current initiatives to enhance flow management for

better performance and aligning F1-scores in contexts with

software-defined networking. A comparison of recall and F1-score

is shown in Table 2 and Fig 3. Compared to other existing

methodologies, our proposed methodology produced better

outcomes with 92.1% of recall and 90.2% of F1-score.

Table 2 Comparison of Recall and F1-score

Methods Recall (%) F1-score (%)

DT [20] 59.95 72.75

DNN [20] 76 75

KNN [20] 62.84 75.75

MLHC [20] 77.18 84.83

TSO-KSVM [Proposed] 92.1 90.2

Fig.3 Outcome of (a) Recall, (b) F1-score

False alarm rate (FAR):The ratio of falsely projected positive

observations to all real negative observations is known as the FAR.

Table 3 and Fig 4 show the comparison of False Alarm Rate.

Compared to other existing methods, our suggested techniques

provide a lower FAR percentage of 2.31.

Table 3 Comparison of FAR

Methods False Alarm Rate (%)

DT [20] 6.43

DNN [20] 3.21

KNN [20] 4.07

MLHC [20] 6.3

TSO-KSVM [Proposed] 2.31

Fig.4 Outcome of FAR

5. Discussion

The experimental investigation made clear that traditional ML

techniques, such as DT [20], KNN [20] and DNN [20], would not

always provide the best outcomes. It was recommended to

investigate other approaches, especially multi-level systems to

improve performance. The research also highlighted the

difficulties in tackling problems like conflict flow, emphasizing

those findings utilizing ML techniques for the MLHC [20] method

could not always transfer to effective detection of unknown threats

in SDN. To summarize, the study recommends exploring various

approaches, including multi-level systems, to get the intended

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1040–1044 |1044

outcomes and emphasizes the significance of complexity of the

context, especially in SDN contexts, our proposed TSO-KSVM

system shows that fewer false alarms are generated, which can be

a consequence of our recommended techniques for attaining high

accuracy through a Conflict flow of level in SDN.

6. Conclusion

To discover and categorize SDN model in conflict flows inside, the

research offers ML techniques. By using the protocol, IP source

address, flow rules' priorityand action, the various conflict kinds

are identified and grouped. Increased network complexity

increases the likelihood of flow collisions, which can lead to poor

performance and security vulnerabilities. In this research, a new

kernelized support vector machine (TSO-KSVM) optimized via

tree-seed optimization is presented for the evaluation of conflict

flows in SDN systems. The proposed TSO-KSVM method

achieved the greater outcomes of precision 96.15%, accuracy

97.12%, f1-score 90.2%, recall 92.1%, and FAR 2.31%.

Significant improvements in the identification and categorization

of conflict fluxes inside SDN have been shown by the suggested

method. This study is the first effort, to identify and categorize

conflict flows using ML methods. Using the same dataset, future

research will concentrate on investigating other ML techniques for

conflict flow detection and classification.

References

[1]. LUDWIG–MAXIMILIANS–UNIVERSIT, A. M.

Experimental Examination of Distributed Conflicts in

Software Defined Networks.

[2]. Kafetzis, D., Vassilaras, S., Vardoulias, G., &Koutsopoulos,

I. (2022). Software-defined networking meets software-

defined radio in mobile ad hoc networks: state of the art and

future directions. IEEE Access, 10, 9989-10014.

[3]. Guidara, A., Pomares Hernandez, S. E., Rodriguez

Henriquez, L. M. X., HadjKacem, H., &HadjKacem, A.

(2020). Towards causal consistent updates in software-

defined networks. Applied Sciences, 10(6), 2081.

[4]. Khanmirza, H. (2022). WildMinnie: compression of

software-defined networking (SDN) rules with wildcard

patterns. PeerJ Computer Science, 8, e809.

[5]. Häckel, T., Meyer, P., Korf, F., & Schmidt, T. C. (2022).

Secure time-sensitive software-defined networking in

vehicles. IEEE Transactions on Vehicular Technology,

72(1), 35-51.

[6]. Tan, E., Chong, Y., & Anbar, M. F. (2022). Flow

management mechanism in software-defined network.

Comput. Mater. Cont, 1(70), 1437-1459.

[7]. Ujcich, B. E., Jero, S., Skowyra, R., Gomez, S. R., Bates, A.,

Sanders, W. H., &Okhravi, H. (2020, January). Automated

discovery of cross-plane event-based vulnerabilities in

software-defined networking. In Network and Distributed

System Security Symposium.

[8]. Farooq, M. S., Riaz, S., &Alvi, A. (2023). Security and

Privacy Issues in Software-Defined Networking (SDN): A

Systematic Literature Review. Electronics, 12(14), 3077.

[9]. Pang, Z., Huang, X., Li, Z., Zhang, S., Xu, Y., Wan, H., &

Zhao, X. (2020). Flow scheduling for conflict-free network

updates in time-sensitive software-defined networks. IEEE

Transactions on Industrial Informatics, 17(3), 1668-1678.

[10]. Tran, C. N., &Danciu, V. (2020). A general approach to

conflict detection in software-defined networks. SN

Computer Science, 1, 1-14.

[11]. Khairi, M. H. H. (2021). Flow Conflict Eliminations through

Machine Learning for Software Defined Network (Doctoral

dissertation, Ph. D. dissertation, UniversitiTeknologi

Malaysia).

[12]. ZHANG, L., LIN, H., HUAN, W., & BI, W. (2022).

Software defined network flow rule conflict detection system

based on OpenFlow. Journal of Computer Applications,

42(2), 528.

[13]. Asif, A. B., Imran, M., Shah, N., Afzal, M., &Khurshid, H.

(2021). ROCA: Auto‐resolving overlapping and conflicts in

Access Control List policies for Software Defined

Networking. International Journal of Communication

Systems, 34(9), e4815.

[14]. Tran, C. N. (2022). Conflict detection in software-defined

networks (Doctoral dissertation, lmu).

[15]. Danciu, V., & Tran, C. N. (2020). Side-effects causing

hidden conflicts in software-defined networks. SN Computer

Science, 1(5), 278.

[16]. Tang, L., Fu, Y., Zeng, Y., Li, Z., & Li, S. (2021). Flow entry

conflict detection and resolution scheme for software-

defined networking. The International Journal of Electrical

Engineering & Education, 0020720921998237.

[17]. Lee, S., Woo, S., Kim, J., Yegneswaran, V., Porras, P., &

Shin, S. (2020, July). AudiSDN: Automated detection of

network policy inconsistencies in software-defined

networks. In IEEE INFOCOM 2020-IEEE Conference on

Computer Communications (pp. 1788-1797). IEEE.

[18]. Liu, Q., Cheng, L., Alves, R., Ozcelebi, T., Kuipers, F., Xu,

G., ...& Chen, S. (2021). Cluster-based flow control in hybrid

software-defined wireless sensor networks. Computer

Networks, 187, 107788.

[19]. Khairi, M. H., Abdalla, B. M. A., Hassan, M. K., Ariffin, S.

H., &Hamdan, M. (2024). Utilizing Extremely Fast Decision

Tree (EFDT) Algorithm to Categorize Conflict Flow on a

Software-Defined Network (SDN) Controller. Engineering,

Technology & Applied Science Research, 14(2), 13261-

13265.

[20]. Latah, M., &Toker, L. (2020). An efficient flow-based multi-

level hybrid intrusion detection system for software-defined

networks. CCF Transactions on Networking, 3(3-4), 261-

271.

