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Abstract: The centralizing management and flexibly customizing network resources, Software-Defined Networks (SDN) completely 

transform network administration. As networks become more intricate, the likelihood of conflicts arising data flows increases, potentially 

leading to a decline in overall performance and the emergence of security vulnerabilities. This paper presents a tree-seed optimization-

tuned kernelized support vector machine (TSO-KSVM) for the assessment of conflict flows in SDN environments. Initially, we gather data 

samples of SDN in conflict flows to analyze the performance of the proposed method. Applying the min-max scaling method to preprocess 

the raw data samples and linear discriminant analysis (LDA) is carried out to reduce the dimension. In the proposed framework, TSO is 

applied to enhance the assessment in the KSVM model. The proposed method is implemented in the Python tool. The proposed method's 

performance is analyzed in terms of various metrics compared with other methods. From the experimented results, we conclude that the 

proposed method attains the greatest accuracy rate of other methods in assessing conflict flows in SDN networks. 

Keywords: Conflict Flow, Security, Software-Defined Network (SDN), Tree-Seed Optimization-Tuned Kernelized Support Vector 

Machine (TSO-KSVM) 

 

1. Introduction 

Network performance can be enhanced through Software-Defined 

Networks (SDNs) using dynamic and adaptable network 

architecture. To accommodate changing business requirements, 

network engineers and administrators can easily modify this 

architecture using a centralized management center [1]. 

Additionally, it makes possible for network engineers and 

managers to adapt the changing business demands through a 

centralized management dashboard. SDNs combine network 

technologies and detach control functions from forwarding planes 

to provide agility and flexibility [2]. System experts can have total 

control over the network's operations due to this divide, which 

might enable a separate network control plane setup. Aside from 

its core benefits, an SDN is economical, dynamic, controlled, 

adaptive and adaptable, which makes an ideal answer to the 

growing size and high-bandwidth problems and internet-based 

apps [3]. A range of network technologies are included in the SDN, 

which are intended to make the network strong and scalable 

enough to support virtualized servers and storage infrastructures in 

a contemporary data center [4]. SDNs are well suited for the 

dynamic demands of modern high-bandwidth applications since 

they are inexpensive, controlled, dynamic and adaptable [5]. 

Network control operations are isolated from the original network 

sending traffic in reverse by SDN's virtualized execution 

architecture. Apart from the integration of diverse network devices 

such as switches, routers and access points in SDN, which 

facilitates the execution of multiple network management 

operations, the SDN controller permits intricate network setup [6]. 

Essentially, the basic giving consumers greater choice over their 

setup while maintaining network efficiency standards is the aim of 

SDN. One significant development in SDN is conflict flow [7]. 

Flow conflicts can take many various shapes, such as in the case 

of SDN design. There can be a variety of conflicts between the 

controller and flow table due to variations in the flow rule policy 

or flow entry. An SDN's success is influenced by the controller's 

actions [8]. To distribute, categorize and allocate packets 

depending on flow entries, a conflict flow switch contains many 

flow tables connected to the controller through the conflict flow 

protocol identified, in this study uses machine learning (ML) 

techniques for SDN. 

➢ To assess the network administration is revolutionized by 

SDN, which centralizes control and allows for flexible 

customization of network resources. 

➢ For the assessment of conflict flows in SDN environments, in 

this study we employed a TSO-KSVM. 

➢ The evaluation of the suggested algorithms' performance using 

criteria such as precision, accuracy, recall, False alarm rate and 

F1-score. 
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The rest of the paper is divided into parts: The objective is based 

on the related studies presented in part 2. The data collection and 

their proposed techniques are shown in part 3. The result analysis 

and their discussion are shown in parts 4 and 5. The end of the 

paper was concluded in section 6.  

2. Related Works 

The study [9] suggested a unique flow schedule-generating model 

that adds no additional update cost and ensures no frame loss 

during network updates, even with the most basic two-phase 

update method. The study [10] suggested the method reveals 

significant barriers. By examining network behavior with many 

applications and traffic profiles applied to various topologies, the 

experimental technique generates conflict classes and detection 

patterns. The study [11] provided the flow conflicts in SDN by 

identifying and categorizing every flow conflict in the Open Flow 

switch using ML methods. The study [12] suggested in an attempt 

to address the problem. Initially, the information on the flow rules 

to be issued by watching and recording Open Flow messages amid 

the forwarding plane and the control plane. The study [13] 

suggested the novel networking design called SDN separates the 

administrative and control planes from the data plane of 

forwarding devices. The controller is a centralized entity that 

implements the management and organization planes. The study 

[14] focused on the identification of conflicts in SDN.The flexible 

deployment of network functionalities was made easier by the 

SDN architecture. Compared to traditional networks, this design 

increases the likelihood of disputes while encouraging innovation. 

The study [15] examined the separating network operations from 

devices and centralizing them at a logical location so-called SDN 

controller while keeping a shared communication interface, the 

SDN architecture makes easier to install network services flexibly. 

The study [16] examined the SDN, which was extensively utilized 

in many different settings allows for flexible network 

configuration can identify and resolve conflicts between flow 

entries using the approach suggested in the work. The study 

[17] addressed the problem of detecting situations when the SDN 

stack was unable to stop these components' policies from 

becoming inconsistent.  The study [18] provided a hybrid SDN 

flow control method based on clusters and the method leverages 

both centralized SDN routing and distributed legacy routing, 

making it hybrid. 

 

2.1. Problem statement 

Efficiency is negatively impacted by many conflict types in both 

SDNs and traditional networks. Based on their guidelines and 

outcomes, interpretative along with intelligible conflicts are the 

two primary categories of disputes. When resolving flow conflicts, 

packet counts and timeout numbers are not crucial. Action and 

priority modifications are two examples of qualities that might lead 

to conflicts in SDN. The controller and flow table can become 

incompatible with modifications made to the flow rule policies or 

entries. To create SDN rules and flow entries must decide and take 

action. It is acknowledged that traditional networks and SDNs have 

quite different qualities, especially when it comes to priority and 

action. By dynamically arranging behaviors, intelligently 

managing flow entry constraints and adjusting to the unique 

characteristics of both types of connections, the TSO-KSVM 

method effectively resolves conflicts in both SDNs and standard 

networks, providing optimum efficiency and solving conceptual 

and comprehensible conflicts.  

 

3. Methods 

This study provides further details on the conflict flow in SDN that 

was utilized for this work to support the suggested TSO-KSVM-

based SDN architecture. Fig 1 shows the suggested methodology. 

 

Fig.1 Proposed Flow 

3.1. Dataset 

The collection of data that utilized Ryu controller architecture and 

10 performance servers per host, Iperf is a program that creates and 

gathers Open Flow data [19]. Different destination ports can be 

listened by each server and new flows are created, depending on 

the source and destination ports and protocols, in addition to the 

source and destination IP addresses. The controller is in charge of 

adding new flows to the switch, revising policy guidelines and 

compiling all flow inputs into a CSV file. An SDN controller can 

build flows using a new way suggested by the study. The absence 

of SDN datasets with crucial flow entry attributes like priority and 

action elements made this essential. The network flows that the 

switch has detected and handled are represented by these flow 

entries. 

 

3.2. Data preprocessing using Min-Max scaling 

There can be multiple values and possibly missing values in the 

SDN data. An error is produced at the end of the assessment if there 

are any missing or duplicate values in the dataset. Equation (1) 

provides the mean of the estimation.  

𝐾𝑖 =
𝐾𝑖+1+𝐾𝑖−1

2
     (1) 

Where following missing value is indicated as 𝐾𝑖+1, whereas the 

value before shown as 𝐾𝑖−1.The Min-Max scalar function is used 

to remove redundant data. This scaling strategy allows features in 

an SDN dataset to have similar scales, preventing specific features 

from dictating how the ML models learn. Equation (2) is the 

fundamental formula for applying Min-Max scaling to numerical 

data that has to be scaled withthe framework of a monitoring and 

control system. 

𝑍𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑧−𝑧𝑀𝑖𝑛

𝑧𝑀𝑖𝑛−𝑧𝑀𝑎𝑥
     (2) 

Where scaling values of the source feature are represented by 

𝑍𝑠𝑐𝑎𝑙𝑒𝑑 . The feature's initial value is represented by 𝑍. The SDN 

dataset's feature's minimum value is denoted by𝑍𝑀𝑖𝑛. The highest 

possible value of the feature in the dataset is represented by 𝑍𝑀𝑎𝑥. 

 

3.3. Feature Extraction using Linear Discriminant Analysis 

(LDA) 

Linear discriminant analysis (LDA) is increasingly used to extract 

critical information from SDN data and reduce the dimensionality 

of data. LDA can be influenced by several factors operating 

simultaneously. Multi-feature prediction issue is well-suited to 

dimensionality reduction, the central idea of LDA, which seeks to 

convert the transformation of high-dimensional data into a pleasing 

low-dimensional form. Specifically, suppose 𝑌𝑗 , 𝜇𝑗 , Σ𝑗  indicating 

𝑗 − 𝑡ℎ the data set, the average, and the matrix of correlations for 

the sample. 𝜔𝑇𝜇1and𝜔𝑇𝜇2 entails projecting the middle of the 
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samples 𝐽𝜖 {1,2} on line 𝜔 whereas 𝜔𝑇Σ1𝜔 and 𝜔𝑇Σ2𝜔 represent 

the matrix of the two samples' covariance. Distance between 

homogenous sample points is the target of LDA, i.e.𝜔𝑇Σ1𝜔 +

𝜔𝑇Σ2𝜔  minimize the distance between points in the sample that 

are diverse, i.e. ‖𝜔𝑇𝜇1−. 𝜔𝑇𝜇2‖2
2  2 over an extended period. Here 

provide the objective function𝐼as in equation (3) 

𝐽 =  
‖𝜔𝑇𝜇1−𝜔𝑇𝜇2‖

2

2

𝜔𝑇Σ1𝜔+𝜔𝑇Σ2𝜔
=

𝜔𝑇(𝜇1−𝜇2)(𝜇1−𝜇2)𝑇𝜔

𝜔𝑇(Σ1+Σ2)𝜔
   (3)  

This is the definition of the inner-class divergence matrix in 

equation (4) 

𝑆𝑊 =  Σ1 +  Σ2 =  ∑ (𝑌 − 𝜇1)𝑦∈𝑌1
(𝑌 − 𝜇2)𝑇 + ∑ (𝑌 −𝑦∈𝑌2

𝜇1) (𝑦 − 𝜇2)𝑇      (4) 

Thus the matrix of divergence between classes can be written as 

equation (5)  

𝑆𝑏 = (𝜇1 − 𝜇2)(𝜇1 − 𝜇2)𝑇                                      (5) 

Consequently, (3) is reduced to equation (6) 

𝐽 =  
𝜔𝑇𝑆𝑏𝜔

𝜔𝑇𝑆𝑊𝜔
                                                                     (6) 

This 𝜔matrix is solved using the Lagrangian multiplier technique 

and the singular value decomposition (SVD) method 𝜔 =  𝑆𝑤
−1 =

(𝜇1 − 𝜇2) i.e. the optimal direction for projection. The next step is 

to determine the optimal course of action using the training 

data𝜔𝑎𝑠𝑍 =  𝜔𝑇𝑌.  

{
𝑍 > 𝑦0 ⇒ 𝑦𝜖𝐶𝑙𝑎𝑠𝑠1

𝑍 < 𝑦0 ⇒ 𝑦𝜖𝐶𝑙𝑎𝑠𝑠2
                                                   (7) 

𝑧0 =  
𝑁1𝜇1+𝑁2𝜇2

𝑁1+𝑁2
                                                              (8) 

Equations (7) and (8) determine the discrimination outcome of 

𝑁1𝑎𝑛𝑑𝑁2 to show the amounts of actual and simulated collisions. 

 

3.4. Conflict flow in SDN environment using TSO-KSVM 

The tree-seed optimization-tuned kernelized support vector 

machine (TSO-KSVM), which optimizes flow management for 

effective and safe data transfer, improves conflict detection in an 

SDN context with the ability to adjust the changes in the network, 

guaranteeing dependable and effective communication. This 

mixture improves classification precision and smoothly resolves 

disagreements. 

 

3.4.1. Kernelized Support Vector Machine (KSVM) 

The kernelized Support Vector Machine (KSVM) is a statistical 

learning theory-based tool for classifying data that is linear and 

nonlinear. It creates a linear optimum splitting hyperplane with a 

higher dimension (or classes) by separating the data into two 

groups using margins and support vectors. The initial training data 

is transferred using a suitable non-linear mapping. In the design, 

“the eigenvector𝑦𝑗 , the kernel function 𝐾, the output vector𝑈, and 

the bias term 𝑐” are all shown. The following describes the model's 

final decision function in equation (9). 

𝑓(𝑈) = 𝑠𝑔𝑛(∑ 𝑌𝑗𝐿(𝑢,𝑠
𝑗=1 𝑈𝑗) + 𝑐)                 (9) 

Equation (10) shows that the highest predictive power is provided 

by the radial basis function. It requires absolute improvements in 

time spent, mistakes or fit quality.  

𝑅(𝑢𝑜 − 𝑒𝑗) = 𝑒𝑥𝑝 (−
1

2𝜎2 𝑢𝑜 − 𝑒𝑗
2),                          (10) 

Where𝑢𝑜 − 𝑒𝑗is the Euclidean norm, 𝑒𝑗is the center of the 

Gaussian function and its variance. The output of the neural 

network structure supplied with the radial basis function is follows: 

𝑣𝑗 = ∑ 𝑦𝑗𝑖𝑒𝑥𝑝
𝑔
𝑗=1 (−

1

2𝜎2 𝑢𝑜 − 𝑒𝑗
2) , 𝑖 = 1,2, … 𝑠             (11) 

Where𝑢𝑜 = (𝑢1
𝑜, 𝑢2

𝑜, … 𝑢𝑛
𝑜)𝑆is the input sample (𝑜 = 1,2,3, … , 𝑂) 

is the overall count of pieces, 𝑥𝑗𝑖is the weight of the 

connection(𝑗 = 1, 2, 3, . . . , 𝑔), where 𝑔 is the number of nodes. 

The variance of the basis function can be defined as follows using 

the least squares method: 

𝜎 =
1

𝑂
= ∑ 𝑐𝑖 − 𝑧𝑗

𝑛
𝑖 𝑒𝑗

2    (12) 

Typically, the default value of the parameter in the gamma function 

is set to the opposite of the attribute count. Equation (11) has the 

potential to develop into a new function for making decisions 

based on Equations (12) and (13). 

𝑓(𝑢)𝑠𝑔𝑛(∑ 𝑦𝑗𝑒𝑥𝑝𝑚
𝑗=1 (−𝑔𝑎𝑚𝑚𝑎𝑦𝑗 − 𝑢2) + 𝑏),  (13) 

To make sure the model behaves as intended, the gamma term and 

penalty term of the KSVM must also be supplied. As the penalty 

term value decreases, the probability of under fitting rises, whereas 

the probability of overfitting increases. If the punishment term's 

value is too high or low, it will hinder the KSVM's ability to 

generalize. Moreover, research ignores the importance of the 

gamma value of the KSVM. Algorithm 1 shows the KSVM 

Algorithm. 

 

Algorithm 1: KSVM 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒: 𝑊 𝑎𝑛𝑑 𝑧 𝑙𝑜𝑎𝑑𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑑𝑎𝑡𝑎, 𝛼

⇐ 0 𝑜𝑟 𝛼 ⇐  𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐾𝑆𝑉𝑀 

1: 𝐷 ⇐  𝑠𝑜𝑚𝑒 𝑣𝑎𝑙𝑢𝑒 (10 𝑓𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒) 

2: 𝑟𝑒𝑝𝑒𝑎𝑡 

3: 𝑓𝑜𝑟 𝑎𝑙𝑙 {𝑤𝑗 , 𝑧𝑗}, {𝑤𝑗 , 𝑧𝑗}, 𝑑𝑜 

4: 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝛼𝑗 𝑎𝑛𝑑 𝛼𝑖  

5: 𝐸𝑛𝑑 𝑓𝑜𝑟 

6: 𝑢𝑛𝑡𝑖𝑙 𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑖𝑛 𝛼 𝑜𝑟 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎𝑙 𝑚𝑒𝑡 𝐸𝑛𝑠𝑢𝑟𝑒: 

 𝑅𝑒𝑡𝑎𝑖𝑛 𝑜𝑛𝑙𝑦 𝑡ℎ𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝛼𝑗 > 0) 

 

3.4.2. Tree-Seed Optimization 

Discovering the ideal answer to an issue becomes more 

challenging as its complexity rises. Therefore, we have to change 

parts of the original algorithms' structures to get efficient results. 

When the problem's dimension rises, it becomes more difficult to 

solve optimally using the original Tree-Seed Optimization (TSO). 

Because of this, the TSO has undergone several modifications to 

enhance its operations. The original TSO had the acceleration 

coefficient 𝐶 parameter, which is determined andbased on the 

problem's dimensions. The novel equations employed in this work 

are (14) and (15), which are shown below. 

∆𝑗,𝑖= (𝐵𝑒𝑠𝑡𝑇𝑟𝑒𝑒𝑖 − 𝑇𝑟𝑒𝑒𝑠𝑞,𝑖) ∗ (𝑟𝑎𝑛𝑑 − 0.5) ∗ 𝐷         (14) 

∆𝑗,𝑖= (𝑃𝑎𝑟𝑒𝑛𝑡𝑇𝑟𝑒𝑒𝑖 − 𝑇𝑟𝑒𝑒𝑠𝑞,𝑖) ∗ (𝑟𝑎𝑛𝑑 − 0.5) ∗ 𝐷        (15) 

Equation (16) is used to obtain the 𝐶 parameter that is utilized in 

equations (14) and (15). The size of the issue is represented by the 

𝐷 parameter in Equation (16).  

𝐷 = 2 − (𝐶2 ∗ 0.0001)               (16) 

Equation (17) provides the upper and lower limits for ∆𝑗,𝑖. 

𝑚𝑖𝑛 ≤ ∆𝑗,𝑖≤ 𝑀𝑎𝑥       (17) 
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∆𝑖, minimum and maximum values are computed successively =

−0.1 ∗ (𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛)𝑎𝑛𝑑𝑚𝑖𝑛 = −0.1 ∗ (𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛). 𝑐𝑚𝑖𝑛. 

The problem's top limit is represented by 𝑑𝑚𝑎𝑥, while the lower 

bound is represented by 𝑑𝑚𝑖𝑛. Then, for the seed location, ∆𝑗,𝑖is 

added to the current parent tree. Equation (18) shows a seed's 

location. 

𝑆𝑒𝑒𝑑𝑗,𝑖 = 𝑃𝑎𝑟𝑒𝑛𝑡𝑇𝑟𝑒𝑒𝑖 + ∆𝑗,𝑖                              (18) 

4. Results 

The experimental setup with 16 GB of RAM, an Intel Core i7 CPU, 

and Ubuntu 18.04 running, the user's system makes use of the Ryu 

SDN controller, Python 2.7 for scripting, and OpenFlow Switch 

Version 1.3 or above. The research is verified based on five distinct 

metrics that consist of False alarm rate (FAR), F1-measure, 

Accuracy, Precision, and Recall. Assessing the conflict flow for 

SDN by utilizing TSO-KSVM methods was the focus of this study 

we compared our suggested technique to Decision Tree (DT) [20], 

Deep Neural network (DNN) [20], K-nearest neighbor (KNN) [20] 

and Multi-level hybrid classification (MLHC) [20]. 

Accuracy: The proportion of accurately predicted occurrences to 

all instances is known as accuracy. SDN improves result accuracy 

by streamlining network performance. Conflicts in flow control 

might occur and reduce effectiveness. 

Precision: Precision is defined as the ratio of predicted positive 

observations to the total number of anticipated positives. The 

precision of results is improved by SDN, which minimizes 

conflicts by controlling network traffic. Table 1 and Fig 2 provide 

the accuracy and precision comparison. In contrast to other current 

approaches, our suggested strategy produced superior results with 

97.12% accuracy and 96.15% precision. 

Table 1 Comparison of Accuracy and Precision 

Methods Accuracy (%) Precision (%) 

DT [20] 74.43 92.5 

DNN [20] 75.75 83 

KNN [20] 77.09 77.09 

MLHC [20] 84.29 94.18 

TSO-KSVM [Proposed] 97.12 96.15 

 

Fig.2 Outcome of (a) Accuracy, (b) Precision 

Recall: The ratio of all observations in the actual class to the 

anticipated positive observations is known as recall. In SDN, 

rerouting traffic, enforcing policy and resolving conflicts are all 

part of result recall. By using historical results to settle disputes 

and maintain reliable flow control, it guarantees effective network 

functioning. 

F1-score: The F1-score represents the balanced average of recall 

and accuracy. When the distribution of classes is not uniform, it is 

helpful and current initiatives to enhance flow management for 

better performance and aligning F1-scores in contexts with 

software-defined networking. A comparison of recall and F1-score 

is shown in Table 2 and Fig 3. Compared to other existing 

methodologies, our proposed methodology produced better 

outcomes with 92.1% of recall and 90.2% of F1-score. 

Table 2 Comparison of Recall and F1-score 

Methods Recall (%) F1-score (%) 

DT [20] 59.95 72.75 

DNN [20] 76 75 

KNN [20] 62.84 75.75 

MLHC [20] 77.18 84.83 

TSO-KSVM [Proposed] 92.1 90.2 

 

Fig.3 Outcome of (a) Recall, (b) F1-score 

False alarm rate (FAR):The ratio of falsely projected positive 

observations to all real negative observations is known as the FAR. 

Table 3 and Fig 4 show the comparison of False Alarm Rate. 

Compared to other existing methods, our suggested techniques 

provide a lower FAR percentage of 2.31. 

Table 3 Comparison of FAR 

Methods False Alarm Rate (%) 

DT [20] 6.43 

DNN [20] 3.21 

KNN [20] 4.07 

MLHC [20] 6.3 

TSO-KSVM [Proposed] 2.31 

 

 

Fig.4 Outcome of FAR 

5. Discussion  

The experimental investigation made clear that traditional ML 

techniques, such as DT [20], KNN [20] and DNN [20], would not 

always provide the best outcomes. It was recommended to 

investigate other approaches, especially multi-level systems to 

improve performance. The research also highlighted the 

difficulties in tackling problems like conflict flow, emphasizing 

those findings utilizing ML techniques for the MLHC [20] method 

could not always transfer to effective detection of unknown threats 

in SDN. To summarize, the study recommends exploring various 

approaches, including multi-level systems, to get the intended 
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outcomes and emphasizes the significance of complexity of the 

context, especially in SDN contexts, our proposed TSO-KSVM 

system shows that fewer false alarms are generated, which can be 

a consequence of our recommended techniques for attaining high 

accuracy through a Conflict flow of level in SDN. 

6. Conclusion 

To discover and categorize SDN model in conflict flows inside, the 

research offers ML techniques. By using the protocol, IP source 

address, flow rules' priorityand action, the various conflict kinds 

are identified and grouped. Increased network complexity 

increases the likelihood of flow collisions, which can lead to poor 

performance and security vulnerabilities. In this research, a new 

kernelized support vector machine (TSO-KSVM) optimized via 

tree-seed optimization is presented for the evaluation of conflict 

flows in SDN systems. The proposed TSO-KSVM method 

achieved the greater outcomes of precision 96.15%, accuracy 

97.12%, f1-score 90.2%, recall 92.1%, and FAR 2.31%. 

Significant improvements in the identification and categorization 

of conflict fluxes inside SDN have been shown by the suggested 

method. This study is the first effort, to identify and categorize 

conflict flows using ML methods. Using the same dataset, future 

research will concentrate on investigating other ML techniques for 

conflict flow detection and classification. 
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