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Abstract— Maximum Power Point Tracking (MPPT) plays a pivotal role in photovoltaic (PV) solar systems, streamlining 

the harnessing of available power and bolstering energy conversion efficiency. Its significance lies in its alignment with the 

global push to heighten the efficacy of renewable energy sources. This article unfolds a meticulous examination of the 

predictive modeling specific to solar energy. The investigation spans various machine learning models such as Linear 

Regression (LR), Support Vector Regression (SVR), XGBoost Regressor, and Ensemble Learning (EL), each dissected to 

reveal the intricacies involved in solar energy system modeling. The research, conducted across two unique datasets—Solar 

Power Generation and Solar Radiation Prediction, employed rigorous statistical evaluation to uncover the distinctions in 

accuracy, unity, and efficacy among the models. A standout finding was the Ensemble Learning model's superior 

performance, notably through applying techniques like Bagging Regressor. This approach transcended the individual models 

in both datasets by ingeniously amalgamating the predictions of various underlying models, leading to enhanced predictive 

precision. This article's insights contribute considerably to the domain of solar energy modeling, elevating Ensemble 

Learning as a powerful instrument for refining prediction accuracy. Furthermore, the juxtaposition of various modeling 

methodologies unveils valuable insights into their respective trade-offs, enriching the foundation for future exploration and 

real-world implementations within the renewable energy landscape. In setting a novel standard in solar energy forecasting, 

this study also resonates with the broader objectives of sustainable energy governance and ecological preservation. 

Keywords— Solar Energy; Maximum Power Point Tracking; Ensemble Learning; Regression, PV. 

 

I. INTRODUCTION  

The quest for efficient energy production is 

paramount today with increasing emphasis on 

renewable energy sources and reducing reliance on 

fossil fuels. This shift is not only influenced by 

environmental concerns and the finite nature of fossil 

fuels but also by political and economic factors, along 

with substantial investments in green energy 

technologies [1]. Currently, much of the world’s 

energy is derived from fossil fuels, which contribute 

to pollution and the depletion of reserves. The demand 

for renewable energy, as a viable alternative for 

powering homes and industries, is rising [2]. Various 

renewable energies, such as wind, hydro, geothermal, 

and particularly solar energy, are experiencing rapid 

growth due to technological advancements and 

decreasing costs [3] [4]. Solar energy has emerged as 

a leading renewable technology, and its conversion 

into electricity through Photovoltaic (PV) systems is 

considered environmentally friendly [4]. However, 

challenges such as Partial Shading Conditions (PSC) 

can cause power loss, hotspots, and reliability issues 

[5]. Therefore, optimizing the output power and 

preventing damage is crucial for PV arrays. 

Maximizing power transfer from a photovoltaic 

generator to the load involves addressing the nonlinear 

characteristics of PV cells, affected by varying 

conditions like temperature and solar irradiance [6] 

[7]. Efficiency often suffers due to energy conversion 

challenges, but methods like maximum power point 

tracking (MPPT) have been developed to enhance 

power output [6] [7]. The high initial costs and lower 

conversion efficiency of PV systems, along with the 

susceptibility to weather fluctuations, have prompted 

considerable research into maximizing PV panel 

output under varying conditions [8] [9] [10]. 

Achieving a balance between the PV panel’s 

maximum power point and load requirements is a 

complex but essential task [11] [12] [6]. Traditional 

techniques like Perturb and Observe (PaO) and 

Incremental Conductance (IC) have been used, though 

not without drawbacks [8] [13] [14] [15]. Innovative 

solutions, including fuzzy logic-based techniques, 
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swarm optimization, and ant colony optimization, 

have been explored to enhance speed and stability 

[16] [17] [18] [19] [20] [21]. Machine learning 

algorithms, such as Artificial Neural Networks 

(ANNs) and Support Vector Regression (SVR), have 

also been employed to address these challenges [22] 

[23] [24] [25] [9] [26]. These approaches offer 

accuracy in estimating the maximum output power 

and quicker responses during testing phases. Learning 

or ensemble learning, which combines predictions 

from multiple models, is emerging as a promising 

field within renewable energy [27] [28]. By 

integrating individual models and ensemble 

techniques, a new frontier is being explored to 

maximize the efficiency and reliability of renewable 

energy systems, including photovoltaic systems [28] 

[29]. 

The primary aim of this article is to present and 

critically assess a novel methodology that incorporates 

diverse individual ML models, including SVR, LR, 

and XGBoost Regression, with EL techniques for 

enhancing Solar Power Generation and forecasting 

solar radiation. The article delves into thorough 

experimentation with these models, evaluating their 

efficacy under various environmental and operational 

circumstances. Specifically, the exploration is directed 

at understanding how different ensemble approaches 

can be customized for distinct scenarios to optimize 

solar radiation prediction and the power extracted 

from PV systems. By addressing this multifaceted 

aim, the article contributes to the ongoing evolution of 

renewable energy modeling, offering valuable 

perspectives that could transform how solar energy is 

predicted, harnessed, and applied. The ambition 

extends beyond mere theoretical exploration, aiming 

to convert these insights into actionable solutions that 

could significantly influence the renewable energy 

landscape. 

 

II. LITERATURCE REVIEW 

    A comprehensive survey of various techniques and 

methodologies related to MPPT and prediction in PV 

systems offers a rich insight into the advances and 

challenges in this field. Researchers in [30] compared 

several maximum power point tracking (MPPT) 

techniques for photovoltaic (PV) systems, assessing 

parameters like convergence speed, cost, and 

efficiency. They particularly highlighted a hybrid 

strategy involving NN and P&O for its dynamic 

adaptability. In [31], the authors targeted near-perfect 

efficiency in PV systems by introducing an 

innovative method for MPPT, focusing on enhancing 

the Fractional Short-Circuit Current (FSCC) 

approach, which traditionally has significant power 

losses and fluctuations. An off-grid Solar 

Photovoltaic Water Pumping System (SPVWPS) was 

proposed by researchers in [32], showcasing a control 

strategy that combined an improved fractional open-

circuit voltage (FOCV) method with scalar control, 

yielding excellent efficiency and power extraction. In 

[33], a novel apporach for longterm wind speed 

forecasting in India was put forth, using the k-nearest 

neighbors (kNN) algorithm combined with ANN, 

filling a research gap in energy management and 

wind farm planning. Researchers in [34] introduced a 

unique RF model to enhance MPPT in a solar energy 

system, achieving over 95% acceptability in testing, 

outperforming ANN and ANFIS methods. In [35], 

machine learning algorithms were applied to control a 

PV system at its maximum power point, with 

efficiencies higher than 95%, demonstrating superior 

performance compared to beta MPPT and ANN 

methods. An investigation into optimizing power 

harnessing under Partial Shading Conditions (PSC) 

was presented in [36], finding that the Weighted K-

Nearest Neighbors (WK-NN) method significantly 

outperformed other machine learning-based 

algorithms. Researchers in [37] proposed enhancing 

the traditional P&O method for tracking the MPP, 

achieving an average efficiency of 99.8% in 

estimating the MPP after extensive training. In [35], a 

Decision Tree (DT) regression algorithm for MPPT 

in isolated PV systems was presented, showing over 

93.93% efficiency despite erratic weather, 

outperforming other methods. A comparison of 

machine learning methods to forecast solar power 

generation was conducted in [38], reinforcing the 

superiority of ML techniques over statistical ones in 

forecasting. In [39], ANN and SVM were employed 

to enhance PV system performance by optimizing 

MPPT algorithms, with the SVM-based MPPT 

approach showing higher effectiveness. The 

application of the XGBoost regression algorithm for 

solar power prediction was explored in [40], 

demonstrating a lower error value compared to the 

SVM model, enhancing solar electric power 

generation stability. Finally, a study in [41] presented 

a comparative analysis of five ensemble machine 

learning methods for PV system applications, with 

CatBoost consistently outperforming other methods, 

showing over 99% accuracy in testing, emphasizing 

its effectiveness for MPPT under rapidly changing 

environmental conditions. 
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III. MATERIALS AND METHODS 

A. Proposed model for chest disease detection 

The proposed model takes a multifaceted approach to 

predicting solar energy production, weaving machine 

learning and ensemble learning techniques together. 

Two solar energy datasets are initially analyzed using 

Exploratory Data Analysis (EDA) [42] to identify 

underlying patterns and anomalies. Post EDA, the 

data is partitioned into training and test sets, with 

individual machine learning models such as LR [43], 

XGBoost Regressor [44] and SVR [45] being applied 

to the training data. Be- yond single model training; 

the process employs an ensemble learning technique 

with a Bagging Regressor. This meta-estimator fits 

base regressors on random subsets and then 

aggregates their predictions, enhancing predictive 

accuracy and robustness. Ultimately, the model is 

rigorously evaluated to assess its performance, 

representing a sophisticated and powerful approach to 

understanding solar energy production in the 

renewable energy sector. 

B. Dataset Description 

      This section provides a comprehensive overview 

of two critical datasets related to solar power, 

forming the bedrock for analyzing and understanding 

various facets of solar energy, such as power 

generation and solar radiation prediction. 

 

1)Solar Power Generation Data: The” Solar Power 

Generation Data” dataset1 consists of 8760 rows and 

8 columns, encompassing information from two 

Indian solar power plants over 34 days. It is divided 

into power generation and sensor readings, collected 

at the inverter and plant levels, respectively. The data 

facilitates predicting power generation, identifying 

the need for cleaning or maintenance, and 

recognizing faulty equipment. Specific features 

include: 

•  Date-Hour (NMT): Specifies the date and hour of 

the measurement. 

•  Wind Speed: Indicates wind speed, affecting solar 

panel efficiency. 

•  Sunshine: Reflects the amount of sunlight, vital for 

solar power generation. 

•  AirPressure: Denotes atmospheric pressure, 

influencing panel performance. 

•  Radiation: Represents solar energy reaching the 

panels. 

•  Air Temperature: Shows ambient temperature at 

the location. 

•  Relative Air Humidity: Indicates relative humidity, 

impacting panel performance. 

•  Label:” system prediction” or predicted power 

generation. 

 

 

2) Solar Radiation Prediction: The” Solar Radiation 

Prediction” dataset2, with 32,686 rows and 11 

columns, is sourced from the Space Apps Moscow 

event and emphasizes weather condition 

measurements. The dataset’s goal is to forecast solar 

radiation levels, considering the utilization of solar 

energy batteries. Specific features include: 

 

  Fig.1 proposed method.  

Fig. 1. Proposed 

Model 

Fig. 1. Proposed 

Model 
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Fig. 2. Total power production in 2017. 

• Temperature: The recorded temperature. 

• Pressure: The atmospheric pressure recorded. 

• Humidity: The humidity level recorded. 

• Wind Direction (Degrees): Wind direction in 

degrees. 

• Speed: Wind speed recorded. 

• Month, Day, Hour, Minute, Second: Time-

related fea tures. 

• SunPerDayHours: Duration of sunlight per 

day in hours. 

• Label: Radiation or the level of solar radiation 

recorded. These datasets play an instrumental role 

in the evaluation of solar power generation, panel 

efficiency, and radiation prediction, providing 

insights into weather dependencies, environmental 

factors, and temporal aspects influencing solar 

energy. 

C. Exploratory Data Analysis 

The Exploratory Data Analysis (EDA) section 

covers two main analyses for solar energy datasets. 

For the Solar Power Generation Data, a line plot was 

created to illustrate power production throughout 

2017, using seaborn library. The visualization, 

segmented by months or specific intervals, clearly 

depicts the production trends, peaks, and troughs for 

that year, providing valuable insights into the 

efficiency and challenges in power production. This 

graphical representation serves as a key reference tool 

for policymakers, energy companies, and researchers 

to understand the energy landscape of 2017, as 

presents in Fig.2. 

 

In the EDA of Solar Radiation Prediction, feature 

correlation analysis and histograms with kernel 

density estimation (KDE) plots were conducted. By 

selecting variables such as” Temperature,” 

Pressure,”” Humidity,” ”WindDirection (Degrees),” 

and ”Speed,” the analysis investigates their influence 

on solar radiation levels. as shown in Fig.3 and Fig.4 

The correlation matrix and various plots provide a 

concise understanding of the linear relationships, 

skewness, or outliers within the dataset, revealing 

how these meteorological variables collectively 

influence solar radiation levels. These insights are 

instrumental in predicting solar radiation based on the 

given features, revealing the underlying patterns and 

potential multicollinearity within the data, vital for 

subsequent modeling and analysis. 

D. Individual Machine Learning Models  

      In In the exploration of solar energy within the 

thesis, three distinct machine learning methods are 

utilized to understand and predict complex 

relationships in the data: Linear Regression (LR), 

XGBoost Regressor, and Support Vector Regression 

(SVR) with a Radial Basis Function (RBF) kernel. 

    1) Linear Regression Model: LR serves as a key 

component, employing the LinearRegression() 

function to understand the linear relationships 

between various meteorological attributes and solar 

power generation. The simplicity and efficiency of 

LR resonate well in modeling solar energy 

production, providing insights into current dynamics 

and future applications in renewable energy. 

    2)  XGBoost Regressor Model: The XGBoost 

Regressor uses the XGBRegressor() function, 

building on gradient boosting frameworks to improve 

accuracy and robustness. By handling diverse data 

such as temperature and wind speed, XGBoost offers 

computational efficiency and accurate predictions 

regarding solar radiation, aiding in energy efficiency 

and sustainability goals. 

   3)  Support Vector Regression Model: SVR with an 

RBF kernel offers a sophisticated approach to predict 

nonlinear relationships, commonly found in solar 

energy data. By defining a hyperplane and using 

specific hyperparameters, SVR models complex 

interactions between atmospheric conditions and 

solar output, assisting in predictive maintenance, 

efficiency optimization, and accurate energy 

forecasting. 
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E. Ensemble Learning Model  

     In solar energy modeling, Ensemble learning 

offers a powerful approach by integrating multiple 

individual regression models, such as LR, SVR with 

an RBF kernel, and XGBoost Regressor. Combined 

using the Bagging Regressor method, this ensemble 

model leverages the strengths of each base estimator 

to create a more robust and accurate predictive 

system. Linear Regression offers simplicity, SVR 

brings flexibility in handling nonlinear relationships, 

and XGBoost adds sequential learning to boost 

performance. Bagging, which trains each base 

estimator on a random subset of data and aggregates 

predictions, helps reduce variance and increase 

resilience. This ensemble approach embraces the 

complex interactions of various factors in solar 

energy data, providing a multifaceted and nuanced 

understanding beyond what any single model might 

achieve.  

 

IV. RESULTS AND DISCUSSION 

In the following chapter, the results obtained from 

the comprehensive analysis of various machine 

learning models applied to the Solar Radiation 

Prediction dataset are presented and discussed. 

Utilizing a diverse set of statistical metrics, the 

performance of individual models such as LR, SVR, 

XGBoost Regressor, and EL has been rigorously 

evaluated. The discussions delve into interpreting the 

significance of these results, and implications of each 

model in the context of solar radiation prediction. This 

analysis provides basic insights that contribute to the 

overarching goal of increasing the accuracy and 

efficiency of solar energy forecasting, thus aligning 

with the broader objectives of sustainable energy 

management. 

A. Evaluation Metrics  

In the following chapter, the results obtained from 

the comprehensive analysis of various machine 

learning models applied to the Solar Radiation 

Prediction dataset are presented and discussed. 

Utilizing a diverse set of statistical metrics, the 

performance of individual models such as LR, SVR, 

XGBoost Regressor, and EL has been rigorously 

evaluated. The discussions delve into interpreting the 

significance of these results, and implications of each 

model in the context of solar radiation prediction. This 

analysis provides basic insights that contribute to the 

overarching goal of increasing the accuracy and 

efficiency of solar energy forecasting, thus aligning 

with the broader objectives of sustainable energy 

management. 

B. Evaluation Result  

The equations are an exception to the prescribed 

specifications of this template. You will need to 

determine whether or not your equation should be 

typed using either the Times New Roman or the 

Symbol font (please no other font). To create 

multileveled equations, it may be necessary to treat 

the equation as a graphic and insert it into the text 

after your paper is styled. 

 

1. EVALUATION RESULTS WITH SOLAR 

POWER GENERATION DATASET (Data 1) 

The evaluation of individual methods with the Solar 

Power Generation Dataset serves as a critical 

component in assessing the effectiveness of various 

machine learning models applied to the solar energy 

prediction task. Focusing on models such as Linear 

Regression, Support Vector Regression (SVR), and 

XGBoost Regressor, this evaluation encompasses 

diverse quantitative measures including RMSE, R², 

MSE and MAE. These metrics provide a 

comprehensive perspective on how well the individual 

methods fit the specific characteristics of the Solar 

Power Generation Dataset. 

• Linear Regression 

The assessment of the Linear Regression (LR) model 

within the framework of solar energy analysis is 

elucidated through a comprehensive evaluation of its 

performance, as depicted in Table 1. The metrics 

presented in the table serve as vital indicators of the 

LR model's predictive capabilities in the context of 

solar energy outcomes. Notably, the RMSE is 

measured at 0.0721, reflecting the model's accuracy in 

predicting solar related variables. The R² stands at 

0.6401, signifying a substantial degree of variability 

captured by the LR model. Additionally, the MSE is 

calculated at 0.00519, further attesting to the model's 

precision. The MAE of 0.0410 underscores the 

average magnitude of the errors, offering a practical 

insight into the LR model's performance. 
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Fig.3 Actual vs Predicted Values of LR with Data 1. 

 

• Support Vector Regression 

The evaluation of the SVR model in the realm of solar 

energy prediction is presented with precision in Table 

2. This assessment involves a thorough scrutiny of the 

model's performance, with various statistical metrics 

shedding light on its predictive capabilities. Notably, 

the RMSE is reported at 0.0983, indicating the level of 

accuracy in the SVR model's predictions for solar 

energy related variables. The R² stands at 0.330, 

emphasizing the extent of variability captured by the 

SVR model. Furthermore, the MSE is calculated as 

0.00967, providing additional insights into the model's 

precision. The MAE is recorded at 0.07810, offering a 

practical measure of the average magnitude of errors 

in the SVR model's predictions.  

      
Fig.4 Actual vs Predicted Values of SVR with Data1. 

• XGBoost Regressor  

The evaluation of the XGBoost Regressor model in the realm of solar energy prediction reveals a robust 

performance characterized by strong predictive accuracy and efficiency. The model's ability to elucidate 

approximately 70.62% of the dependent variable's variance is particularly noteworthy, as indicated by an R² value 

of 0.70621. Table 3 further outlines the model's performance metrics, with a RMSE of 0.72251, attesting to the 

accuracy of its predictions. The MSE is reported at 0.00522, underscoring the model's precision in capturing solar 

energy related outcomes. Additionally, the MAE is noted at 0.03892, indicating a low average magnitude of 

errors in the XGBoost Regressor's predictions. These results collectively affirm the suitability and effectiveness 

of the XGBoost Regressor model in the solar energy prediction task, providing valuable insights for the broader 

research context. 

 
Fig.5 Actual vs Predicted Values of XGBoost Regressor with Data 1. 
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• Ensemble Leaning  

The results of the EL model made in evaluating the 

proposed solar energy prediction framework manifest 

a significant improvement in predictive performance. 

By leveraging the collective strengths of various 

underlying models, the ensemble approach has yielded 

an RMSE value of 0.06013, which demonstrates 

robust accuracy in prediction. The R2 stands at 0.75, 

indicating that nearly 75% of the variance in the 

dependent variable is predictable from the 

independent variables, an important achievement in 

model fitting. Moreover, the MSE and MAE values 

are 0.003616 and 0.02347 respectively, further 

attesting to the model's effectiveness in minimizing 

the error in predictions. These metrics collectively 

articulate the success of the Ensemble Learning model 

in achieving a nuanced and more accurate 

understanding of solar energy production, 

underscoring its utility and potential in the renewable 

energy sector. 

 
Fig.6 Actual vs Predicted Value of Ensemble Learning with Data 1. 

By aggregating predictions from multiple underlying models, it explained approximately 74.48% of the variance 

in power generation and achieved the lowest MSE and MAE values. The EL model demonstrated outstanding 

performance, showcasing its potential as the preferred choice for accurate power generation predictions. 
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Fig.7 Comparison results with Solar Power Generation Dataset. 

 

2. EVALUATION RESULTS WITH SOLAR 

RADIATION PREDICTION DATASET 

(Data 2) 

The evaluation of individual methods in the context 

of predicting solar radiation serves as a foundational 

step toward understanding the intricacies and 

dynamics that govern the behavior of solar energy 

phenomena. Utilizing the Solar Radiation Prediction 

dataset, various individual models, including LR, 

SVR, and XGBoost Regressor, were carefully tested 

to decipher their capabilities and limitations. Each 

model was subjected to tough testing and validation, 

with results expressed through diverse metrics. 

 

• Linear Regression  

The evaluation of the LR model in the context of 

predicting solar radiation with a specific dataset 

indicates a commendable fit, elucidating 62.37% of 

the observed variance. The model's performance is 

further scrutinized through various metrics, as 

outlined in Table 5, offering a comprehensive view of 

its strengths and areas for potential improvement. The 

RMSE is reported at 0.12083, providing insight into 

the accuracy of the LR model's predictions. The R² 

stands at 0.62371, reflecting a substantial proportion 

of the variability in the dependent variable accounted 

for by the model. The MSE is calculated at 0.01459, 

contributing additional perspective on the model's 

precision. Furthermore, the MAE is noted at 0.09130, 

providing a measure of the average magnitude of 

errors in the LR model's predictions. These metrics 

collectively offer a nuanced understanding of the LR 

model's performance, highlighting its strengths in 

explaining solar radiation variations while also 

indicating areas where refinement may enhance 

predictive accuracy. 

 

Fig.8 Actual vs Predicted Values of LR with Data 2. 
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• Support Vector Regression 

The evaluation results of the SVR model for solar 

radiation prediction reveal suboptimal performance 

characterized by high prediction errors, a weaker fit, 

and substantial discrepancies in predictions. The Root 

RMSE is reported at 0.25432, indicating a notable 

level of inaccuracy in the SVR model's predictions. 

The R² is documented at 0.73084, reflecting a weaker 

fit compared to ideal predictive models. The MSE is 

calculated at 0.01044, further emphasizing the 

model's challenges in achieving precise predictions. 

Additionally, the MAE is noted at 0.07391, indicating 

a considerable average magnitude of errors in the 

SVR model's predictions. These metrics collectively 

underscore the limitations of the SVR model in the 

solar radiation prediction task and emphasize the 

necessity for further refinement or exploration of 

alternative models to enhance predictive accuracy and 

overall model performance. 

 
Fig.9 Actual vs Predicted Values of SVR with Data2. 

      

 
Fig.10 Actual vs Predicted Values of XGBoost Regressor with Data 2. 

• Ensemble Learning  

The evaluation results of the Ensemble Learning 

model applied to the Solar Radiation Prediction 

dataset showcase a remarkable improvement in 

performance, underscoring the efficacy of combining 

multiple predictive models. The model demonstrates 

high prediction accuracy, as evidenced by an RMSE 

of 0.27349, indicating reduced error in predicting 

solar radiation. Impressively, the R² stands at 

0.93054, signifying that the model explains 

approximately 93.05% of the variance in solar 

radiation an indication of an outstanding fit. The 

MSE and MAE values further substantiate the 

model's excellence, recorded at 0.00269 and 0.01986, 

respectively. These metrics collectively affirm the 

Ensemble Learning model as a powerful and effective 

tool for solar radiation prediction. By harnessing the 

strengths of diverse models, it achieves superior 

results and emerges as a valuable asset in the domain 

of solar energy prediction. 
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Fig.11 Actual vs Predicted Value of Ensemble Learning with Data 2. 

The Ensemble Learning approach demonstrated enhanced prediction accuracy, precision, and robustness, 

explaining a remarkable 93.02% of the variance in solar radiation through a synergistic integration of different 

models while mitigating their weaknesses.  
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Fig.13 Comparison results with Solar Radiation Prediction dataset.   

 

V. CONCLUSION 

Solar energy, derived from the sun's radiant power, 

stands as a vast and sustainable energy source, 

offering an eco-friendly substitute to conventional 

fossil fuels. This thesis has delved into the critical 

task of predicting solar radiation, a cornerstone in 

converting solar energy into electricity. The research 

has shed light on each model's capabilities and 

restrictions through an exhaustive examination of 

various machine learning models, including LR, 

SVR, XGBoost Regressor, and Ensemble Learning 

(EL). Ensemble Learning, notably, exhibited 

extraordinary compatibility with actual solar radiation 

data. The outcomes of this investigation extend 

beyond academic interest, resonating with practical 

applications vital for energy producers, governmental 

bodies, and technology innovators. The improved 

precision in solar radiation predictions, as 

underscored by the findings, paves the way for better 

energy production, grid coordination, and energy 

preservation strategies. Such improvements catalyze 

cost reductions, foster more comprehensive 

acceptance of solar technology, and bolster global 

climate change mitigation efforts. Looking ahead, the 

promising avenues stemming from this thesis are 

manifold. The notably effective EL model offers 

scope for refinement by exploring varied base models 

and techniques to enhance prediction precision for 

distinct locations and weather circumstances. 

Incorporating more detailed weather data and 

utilizing deep learning and neural networks present 

additional paths for advancement. Collaborative 

efforts with industrial partners may hasten the 

transformation of these predictive models into real-

world applications, driving sustainable energy 

strategies and policymaking forward. These 

prospective endeavors harbor the promise of 

substantial progress in solar energy forecasting, 

aligning it with overarching aims of ecological 

conservation and a worldwide shift in energy 

paradigms. 
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