

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1217–1231 | 1217

Neurocomputing assisted Consensus Based Web-of-Service Software

Design Optimization: A Fault-Resilient Reusability Prediction Approach

Dr. Prakash V. Parande1*, Dr. M. K. Banga2

Submitted: 04/02/2024 Revised: 12/03/2024 Accepted: 18/03/2024

Abstract: In this paper, a state-of-art new neuro-computing assisted consensus-based ensemble model was developed for Web-of-

Service (WoS) software reusability prediction. In order to achieve higher accuracy with reliability of prediction, the proposed model

made enhancement in both data-model as well as classifier-model. More specifically, it applied WSDL-CKJM tool to extract object-

oriented-programming (OOP) metrics, which were subsequently processed using univariate logistic regression-based feature extraction

followed by sub-sampling method. In the proposed reusability prediction model, to alleviate data or class-imbalance and skewness

problem, three different sub-sampling methods were applied including up-sampling, down-sampling and SMOTE sampling. Once

obtaining the differently sampled data with the confidence interval of 95%, it was amalgamated together to give rise a composite feature

vector pertaining to WMC, CBO, DIT, LCOM, NOC, and RFC OOP-CK metrics, characterizing structural features of the software

program. Subsequently, to alleviate computational overhead Wilcoxon Rank Sum Test (WRST) was applied, which retained the most

suitable feature set towards reusability prediction. To alleviate the problem of convergence and over-fitting, Min-Max normalization was

performed over the selected feature set. Thus, the normalized input features were processed for two-class classification using the

proposed neuro-computing assisted homogenous ensemble model. Noticeably, being homogenous ensemble structure, we used ANN

variants with gradient descent (GD), radial basis function (RBF), Levenberg Marquardt (LM) and probabilistic neural network (PNN) as

base classifiers. The aforesaid base-classifiers helped in estimating the consensus to make each-class classification, where the proposed

consensus-based classification model achieved superior accuracy (96.57%), precision (0.94) and recall (0.99), signifying its robustness

over the classical standalone classifiers.

Keywords: Web-of-Service Software, Reusability Prediction, Fault-resilience, Ensemble learning, Machine learning, Neurocomputing.

1. Introduction

The high pace emergence in internet and allied software

computing technologies have enabled human-life more

effective, especially towards real-world decision making.

To achieve it, software technology has been playing

decisive role and is acknowledged as one of the most vital

innovation made across human history to serve varied

purposes including science and technology, business,

healthcare sector, defense, industries, and varied civic

personalized supports. Undeniably, software has become

inevitable need of humanity. This at the one hand has

broadened the horizon for business communities and

engineers to achieve and introduce products or services

with better efficacy; however, maintaining their reliability

has remained a challenge for all. Moreover, maintaining

low-cost solution too has become must for business

communities, and therefore firms focus more on reducing

costs such as development cost, maintenance cost etc.

Considering industrial perspective, software development

companies and allied developers often intend to reuse

software components of even free-open-source software

(FOSS) components

[1]. As a matter of fact, the reuse of existing or pre-

employed functions enables a developer or firm to reduce

hours of program or allied cost; however, there has been

the evidences where the exceedingly reuse of software

component caused system failure and loss(es) in terms of

finance, time as well as human-life [2][3]. On the contrary,

to cope up with competitive cost of the software solution,

maintaining lower development is equally significant. It

indicates the need of software design with optimal

reusability as well as uncompromising reliability [2].

However, in practical world, due to ineffective and

inappropriate software design with exceedingly high reuse

of the software components, a software turns into faulty,

smelling and eventually fails in delivering the expected

performance [4]. To alleviate such problem, assessing

“software reusability” is of great significance. Software

reusability assessment or prediction can enable assessing

whether a software program or allied class can be reused

anymore or not. Moreover, identifying a class of highly

reused it can be rectified to avoid any fault or smell [4].

This as a result can improve reliability of the system.

However, manual reusability assessment can be a highly

tedious task and even fault-prone, and therefore there is the

inevitable need of automated machine learning based

software reusability prediction system. Such reusability

1Assistant Professor, Department of Master of Computer Applications,

Visvesvaraya Technological University, Belagavi -590018

prakashvp2010@gmail.com
2Professor, Department of Computer Science & Engg, Dayananda Sagar

University, Bangalore - 560076 banga.mkrishna@gmail.com

mailto:prakashvp2010@gmail.com
mailto:banga.mkrishna@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1217–1231 | 1218

assessment models can be vital for small as well as large

software programs and allied developers, and would be

catalytic for WoS applications. WoS applications often

found in different scale with small size computation as well

as large real-time computation to serve data mining or

knowledge driven services or transactions. While,

designing such programs, developer often use FOSS or

small chunk of program iteratively to reduce cost.

Therefore, the use of machine learning assisted automated

reusability prediction model can be vital to ensure highly

accurate each-class reusability assessment.

In sync with above discussions, in this paper a state-of-art

new and robust machine learning based software

reusability prediction model. Realizing the fact that the

majority of the software programmes these days are

developed using objective oriented programming (OOP)

concept, and therefore, the proposed model intends to

exploit inter-element (architectural) association-features

such as coupling, cohesion, length of program, etc., to

perform reusability prediction [1-4]. With this motive, the

proposed work intends to use the different OOP metrics

including Line of Code (LOC), Depth of Inheritance Tree

(DIT), Weighted Method per Class (WMC), Number of

Children (NOC), Coupling between Object (CBO), and

Lack of Cohesion in Methods (LCOM) [5-8] to perform

software reusability prediction. Exploiting the aforesaid

OOP features, the proposed machine learning model

intends to perform each class classification as REUSABLE

and NON-REUSABLE. The overall proposed model

encompasses data collection, pre-processing, feature

extraction, selection and two-class classification. Being an

OOP based model at first, we perform at first Chidamber

and Kamrer (CK) metrics estimation, followed by feature

extraction and feature selection. As feature extraction

model, Univariate Logistic Regression model (ULR) which

obtained a total of 22 distinct features. Once obtaining 22

different CK-Metrics, we applied multi-phased feature

selection method applying Wilcoxon Rank Sum Test,

Information Gain and Gini value, in sequence to perform

feature selection. The proposed multi-phased feature

selection model obtained a total of six OOP-metrics

encompassing WMC, CBO, DIT, LCOM, NOC, and RFC

for further processing. Noticeably, since the proposed

model intended to perform each-class classification as

REUSABLE or NON-REUSABLE, we obtained above

stated six features for each class of the considered software

program. Considering the probability of class-imbalance,

which is highly probable in at-hand case where the

presence on Non-Reusable classes can be significantly

lower in comparison to the reusable classes, and therefore

we performed min-max normalization followed by data

sub-sampling. The proposed normalization model intended

to alleviate the problem of under-fitting or over-fitting as

well as convergence, while sub-sampling method helped

alleviating the class-imbalance problem. Thus, performing

above stated pre-processing and data sub sampling method

(using up-sampling, down-sampling and SMOTE

sampling), we obtained a composite feature-set, which was

applied for further two-class classification. Unlike classical

approaches where single machine learning algorithm is

applied to perform classification, in this research paper to

improve reliability and accuracy we designed a state-of-art

new “Neuro-Computing assisted Consensus based

classifier”. The proposed consensus classifier mimics

maximum voting ensemble [9] with different neural

networks such as ANN-GD, ANN-RBF, ANN-LM, and

PNN as base classifiers. In the proposed work, the

aforesaid base classifiers performed each-class

classification as REUSBALE or NON-REUSABLE, which

were labeled as 1 or 0. Thus, obtaining labels by each base

classifier, we applied MVE concept to achieve consensus

for each class, and with the higher label value (either 1 or

0), each class of the program was classified as REUSABLE

or NON-REUSABLE. Being a consensus-based approach,

the reliability of the proposed reusability prediction model

is higher in comparison to the existing state-of-art methods

[9][10]. To assess performance, we obtained confusion

metrics for each base classifier as well as the proposed

Neuro-Computing assisted Consensus based classifier,

where the relative analysis was done in terms of accuracy,

precision, recall and F-score. The proposed neuro-

computing assisted consensus model exhibited better than

other-state-of-art reusability prediction techniques. The

proposed reusability prediction model can be vital for

major WoS oriented software design optimization.

Implementation, while the simulated results are allied

inferences are given in Section V. Section VI presents the

conclusion, and the references used in this research are

given at the last of the manuscript.

2. Related Work

This research focuses on dual objectives; first to exploit

state-of-art advanced data model concept to use OOP-CK

metrics for class-level reusability prediction, while second it

intends to design a state-of-art new ensemble learning

concept for higher accuracy and reliability. With this

motive, this section discusses some of the key literatures

pertaining to reusability prediction and ensemble classifier

design to achieve a novel and robust fault-resilient software

reusability prediction system.

 Authors [11] applied Analytical Hierarchical Process

(AHP) to assess varied factors influencing testability of

OOP software; however, failed to address the key concerns

including class-imbalance, local minima and convergence,

which can have decisive impact on the accuracy of the

proposed model. Realizing the up-surge of OOP based

software design and corresponding CK metrics

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1217–1231 | 1219

characterizing architectural artifacts of the program, authors

[12-18] found that LOC, WMC, DIT, NLOC etc. are highly

associated with design robustness and fault-probability [19].

Authors [19] too observed that OOP extracted CK metrics

can provide better insight to characterize association in

between class-reusability and its fault-resilience. In other

words, authors [19] suggested that learning OOP-CK

metrics can help identifying reusability of a specific class in

a software module and its corresponding reliability over

unknown-operating period. To ensure fault-resilient

software design, authors in [20][21] focused on pre-defining

a threshold level for each CK metrics. However, its

accuracy and suitability with a large software program

could not be examined. Additionally, this research failed

addressing above stated class-imbalance problem, which is

common in major at-hand scenario where a program can

have the major classes as reusable or sometime non-

reusable. Thus, training a classical machine learning over

such imbalanced data might force it to exhibit false-

positive, and hance can impact overall design. Though, the

efforts made in [22][23] focused to use the different CK

metrics per class to achieve its reusability likelihood for

optimal OOP software design; however, could not address

aforesaid class-imbalance and convergence problem.

Authors [24] applied regression concept to assess

reusability of each class in a software where CK metrics

were considered as the independent variable while their

corresponding reuse-proneness was considered as the

dependent variable. Still, it failed to ensure generalization of

its solution, as other approaches such as [25][26] performed

better with the same OOP-CK metrics-based reusability

prediction. Later, authors in [27] stated that the key OOP-

CK metrics characterizing complexity, customizability, and

reusability can represent quality of software and its fault-

resilience. In this reference, they applied interface model

with component reuse level (CRL) to measure the extent of

reuse-proneness of a class in a software. Authors found that

LOC metric can be vital as reuse proneness indicator.

Undeniably, above stated approaches made significant

effort to use machine learning methods for reusability

prediction; however, failed in addressing accuracy problem,

which is must to generalize robustness of a single solution.

Considering this fact, enhancement is must not only in data

model, but also for classifier design. Unlike standalone

classifiers, the concept of consensus based learning, often

called Ensemble Learning are found more reliable

[9][10][28-45]. Being consensus-based approach (say,

decision level fusion), the eventual prediction output is

hypothesized to be more reliable than any comprising base

classifier or standalone classifier [29]. Amongst the major

decision level fusion concepts, maximum voting ensemble

(say, consensus or weighed ensemble) yields more reliable

classification outputs. Though, later authors [30] suggested

performing sub-sampling [31] to achieve better accuracy

using AdaBoost; however, its efficacy with highly

correlated features and due to large tree construction, it

undergoes convergence easily. Though, the concept of data

sub-sampling opens up the horizon for data-model

optimization to assist better training and class-imbalance

alleviation. Neuro-computing ensemble learning was

suggested in [32][34][35] as well, where the different

neuro-computing algorithms were used as base classifier to

perform multi-class classification. Decision level fusion was

suggested in [31] as well; however, it was designed towards

other classification problem, and had nothing to deal with

OOP-CK metrics-based reusability assessment. Though, it

indicated that the consensus or MVE can yield higher

accuracy with unparallel reliability for any classification

problem [36]. In [32][35][44], authors found that though an

ideal ensemble learning can be constructed with highly

correlated base-classifiers; however, the scope of

heterogeneous ensemble can’t be ruled out [37]. Still,

authors stated that an ensemble learning structure with

similar (highly correlated) base classifiers can yield better

accuracy. It can eb considered as one of the key driving

forces behind this study. Authors [38], designed a support

vector machine (SVM) ensemble [40] to perform

classification, where a standard SVM algorithm with

boosted decision tree were applied as the base classifiers.

However, applying MVE ensemble concept, it could yield

accuracy lower than 90%, signifying undeniable inferiority

towards at hand reusability prediction problem. Though,

authors suggested to enhance data model (with better

feature sets) as well as classifier model (with better

performing base classifiers with MVE) to achieve higher

accuracy. In this sync, authors [38] applied principal

component analysis (PCA) based feature selection and

classified selected features using random forest classifier.

To further enhance accuracy, approaches like rotation forest

and AdaBoost were applied together to constitute

consensus-based classification [39], still its suitability

remained unexplored for reusability prediction. To explore

efficacy of neural-network based ensemble, authors [42]

applied different variants; however, failed to address local

minima and convergence problem, which are the key

limitations of the neurocomputing based classifiers.

Though, authors in [32][34][45] found that the performance

of a NN can be improved by using an ensemble of similarly

configured NN. It can be considered as one of the key

motivations behind this research. Unlike MVE based

ensemble, authors [45] applied SVM, k-NN and Rocchio

machine learning algorithms with Dempster’s rule of

decision level fusion to perform classification. However, the

maximum accuracy could be confined and hence seems

limited towards class-level reusability prediction in large

OOP based software solution.

Inference-The above discussion indicates that the depth

exploitation of the different OOP-CK metrics can help

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1217–1231 | 1220

assessing relationship in between the different classes,

consequently can examine reuse proneness of a class in a

software. However, identifying a set of optimal OOP-CK

metrics is a problem, which can be solved by certain level-

of-significance centric feature extraction and selection.

Additionally, the use of sub-sampling concepts and

normalization can help alleviating over-fitting, under-

fitting, convergence and data imbalance problem. It can

help to reduce false-positive and hence can improve the

classification accuracy. Moreover, unlike classical

standalone classifier-based prediction, the use of

homogenous ensemble method or consensus-based

prediction can give higher accuracy as well as reliability,

which can be vital towards at-hand (class-level) reusability

prediction task. These key inferences can be considered as

the key driving force behind this study.

3. Research Questions

Considering overall research intends and allied scopes, in

this research paper a few questions were identified before

implementation. Noticeably, these research questions

signify the methodological paradigm to be implemented

and its respective possible outcomes. In other words, it

states whether the proposed methodology can yield the

eventual goal of “fault-resilient reusability estimation and

per-class reusability prediction”. The key research

questions identified are given as follows:

RQ1: Can the use of CK metrics be effective towards

reusability prediction in OOP based software systems?

RQ2: Can the use of a multi-phased feature selection

method by using Wilcoxon Rank Sum Test, Information

Gain and Gini-Index be able to retain most effective and

highly accurate OOP-CK metrics for reusability

prediction?

RQ3: Can the use of sub-sampling methods alleviate the

problem of data imbalance or class imbalance to support

highly accurate and low false positive rate performance?

RQ4: Can the use of Min-Max Normalization help in

alleviating the problem of over-fitting or under fitting

along with convergence?

RQ5: Can the use of a state-of-art new and robust

homogenous neurocomputing ensemble method be effective

to achieve highly accurate software reusability prediction?

The overall research intends to achieve answers for the

above stated research questions. The affirmative answers

for these questions would lead achievement of an optimal

model towards highly accurate software reusability

prediction.

4. System Model

In this section, the overall proposed fault-resilient software

reusability prediction model using neuro-computing assisted

consensus model is discussed. The overall proposed

reusability prediction model has been accomplished in six

subsequent (say, phase-wise) processes. These are:

4.1 Data Preparation

As already stated in the previous section, this research

primarily focuses on designing a state-of-art new and robust

software reusability prediction model for OOP-based WoS

software solution. Therefore, we selected an arbitrary

software module from www.sourceforge,com , which is

developed using OOP programming concept in Java

Language. In order to convert an OOP based Java program

and retrieve targeted Chidamber and Kamrer software

metrics, we applied Web-of-Service Data language

(WSDL) tool. Typically, WSDL represents the XML-based

interface definition language characterizing the different

functions or components of the web services. Here, each

function or allied functionalities used to be the component

considered as a port type i.e., 𝑃 =

{𝑀0(𝐼0, 𝑂0),𝑀1(𝐼1, 𝑂1), … . . , 𝑀𝑛(𝐼𝑛 , 𝑂𝑛)}. Practically, these

functions or ports perform different tasks 𝑀𝑖 by transferring

input Ii into output 𝑂𝑖 . In this mechanism, the functional

component along with its port-type can be characterized in

the form of a unique nomenclatures. These functional

components often encompass instructions or the specific

elements to perform data-exchange between the service

provider and user or consumers. Moreover, individual data

element states specific categorical definitions, which is

defined in terms of XML, while XML is stated in the form

of XML Schema Definition (XSD) language representing

the data type definition. Thus, the associated activities

including string, integer, restrictions, encapsulation and

extension are employed to represent the complex software

structure. Thus, the use of WSDL data enabled retrieval of

the XSD code by using type’s element. Moreover, XSD

code was stored into a separate file which was connected to

the WSDL document so as to obtain the type reuse. In the

proposed data collection method, at first the services were

coded, which was followed by conversion of codes into the

corresponding WSDL document. To obtain SDL document

or values from OOP based java programs other tools such

as Java2 WSDL, and SOAP can be applied. Moreover,

Apache CXF, eclipse Spring-Tool-Suite, Soap UI, and

WSImport too can be applied to convert WSDL document

into Java file for further software metrics estimation. In this

research, we applied “WSImport” tool to convert WSDL

documents into OOP-java file, which was later processed

using CKJM (Chidamber and Kamrer Java Machine) tool

[16]. CKJM tool helped extracting the different software

metrics characterizing software structure and corresponding

information including coupling, cohesion, complexity etc.

The overall implementation schematic for the proposed data

collection and CK metrics extraction is given in Fig. 1.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1217–1231 | 1221

WSDL File

Data

SoftAudit Tool Reusability

WSImport Tool

Java Files

Metrics
Collection

Source Code Metrics
Values for each class

Fig. 1 Data Preparation for the proposed use case-study

Though, the use of CKJM tool enables extracting a total of

22 software (OOP) metrics; however, in the proposed work

we extracted a total of 17 software metrics given as follows:

­ Weighted Methods per Class (WMC),

­ Depth of Inheritance Tree (DIT),

­ Number of Children (NOC),

­ Coupling between Object Classes (CBO),

­ Response for a Class (RFC),

­ Lack of Cohesion in Methods (LCOM),

­ Afferent Couplings (Ca),

­ Efferent Couplings (Ce),

­ Number of Public Methods (NPM),

­ Data Access Metric (DAM),

­ Measure of Aggregation (MOA),

­ Measure of Functional Abstraction (MFA),

­ Cohesion Among Methods of Class (CAM),

­ Cyclomatic Complexity (CC),

­ Lines of Code IC- Inheritance Coupling (LOC),

­ Coupling Between Methods (CBM), and

­ Average Method Complexity (AMC).

 Thus, once obtaining the above stated software metrics,

we further processed for feature extraction using Univariate

Logistic Regression. Though, the CKJM metrics can

directly be processed for further computation such as pre-

processing and classification; however, realizing the fact

that in a software program not each class or component can

have the equal significance towards reusability prediction,

and therefore in the proposed work, we applied ULR based

feature extraction followed by multi-phased feature

selection. The details for the same is given in the sub

sequential sections.

4.2 ULR based Feature Extraction

Logistic regression analysis typically performs statistical

assessment by using dependent (here, per-class software

reusability) as well as independent (software metrics)

variables. Being a two-class problem; REUSABLE or

NON-REUSABLE, the dependent variable serves two

labels or values 1 or zero, signifies REUSABLE CLASS

and NON-REUSABLE CLASS, respectively. In our

proposed method, we obtained the level of significance of

each metrics towards software reusability prediction.

Mathematically, we use (1) to estimate logistic regression

value.

𝑙𝑜𝑔𝑖𝑡[𝜋(𝑥)] = 𝛼0 + 𝛼1𝑋 (1)

In (1), the function logit[π(x)] states the dependent variable

while X presents the independent variable. The parameter π

signifies the likelihood factor signifying the importance of

each metrics. Mathematically we estimate 𝜋(𝑥) as per (2).

𝜋(𝑥) =
𝑒𝛼0+𝛼1𝑋

1 + 𝑒𝛼0+𝛼1𝑋

(2)

In synch with our proposed software reusability prediction

purpose, let the data be 𝑋 that possesses 𝑁 rows and 𝑀 + 1

columns, where 𝑀 signifies the number of independent

variables for each raw signifying software metrics. Let the

parameter vector, 𝛽 be a column vector of length 𝐾 + 1.

Additionally, there is single parameter pertaining to each 𝑀

columns of the independent variable. Thus, applying

logistic regression function also called 𝐿𝑜𝑔𝑖𝑡 function we

obtained the log-odds of the likelihood of success to the

linear component. Mathematically,

𝐿𝑜𝑔𝑖𝑡 (
𝜃𝑖

1 − 𝜃𝑖

) = ∑ 𝑥𝑖𝑚𝛽𝑚 𝑖 = 1,2, … , 𝑁

𝑀

𝑚=0

(3)

In (3), (
𝜃𝑖

1−𝜃𝑖
) states the component called odds-of-an-event.

Now, let 𝑦 takes a value 1 for REUSABLE and 0 for NON-

REUSABLE, 𝑦 can be stated to have a Bernoulli

distribution with a probability parameter 𝑝. Thus, obtaining

the probability parameter, also called p-value for each

instance, we select the one with 𝑝 ≥ 0.05 . Thus,

implementing ULR, out of 17 software metrics, we obtained

top-6 software metrics having higher significance towards

reusability prediction. The selected finally software metrics

were WMC, CBO, DIT, LCOM, NOC, and RFC, which

were used for further processing.

4.3 Data Sub-Sampling

This is the matter of fact that in a software the probability of

non-reusable or even reusable classes can be non-evenly

distributed. In other words, a software can have very less

non-reusable class as well or vice versa. Such probability

can have the class-imbalance problem characterizing either

majority of reusable class or non-reusable class. Thus,

training a machine learning model with such class-

imbalanced dataset often leads false-positive (prediction)

result. This as a result can affect the accuracy of the

prediction system and its reliability. Considering such class-

imbalance or data-imbalance problem, in this paper we

applied data-sub-sampling concept using UP-Sampling,

Down-Sampling and Synthetic Minority Oversampling

Technique (SMOTE) [47][48]. Noticeably, to alleviate the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1217–1231 | 1222

key problem of data-skewness [46], in this paper three

different sub-sampling methods have been applied whose

respective outputs are concatenated together to generate a

final feature vector for further computation.

To perform up-sampling and down-sampling we considered

the confidence level of 95%. In up-sampling we performed

random duplication of the observations or patterns from the

minority classes so as to reinforce its value. On the other

hand, down-sampling was performed in such manner that it

removes observations randomly from the majority class so

as to avoid its presence from dominating the learning

model. Undeniably, performing over-sampling of the

minority class or under-sampling of the majority class can’t

alleviate data-skewness or class-imbalance problem

completely, as it eventually turns into bias of the model

towards the majority class [49][50]. In such conditions,

when new sample comes into the learning model, it is

finally predicted as majority class due to bias towards the

majority class [51][52]. Such limitations can force most of

the machine learning to yield false prediction output(s) and

can reduce accurate of the prediction model. Considering

this fact, in addition to the up-sampling and down-sampling

we applied SMOTE technique. In our proposed SMOTE

model, we generated synthetic positive samples using K-

nearest neighbor (k-NN) algorithm. Here, we employed 5-

Nearest Neighborhood to the minority “NON-REUSABLE”

class, which was followed by equalization of the samples in

such manner that it yields the number of majority class

same as the number of minority class. Thus, performing

above stated three sampling techniques we obtained Up-

Sampled Data, Down-Sampled Data, SMOTE Data, which

were combined or concatenated together to result a final

feature set for further computation.

4.4 Wilcoxon Rank Sum Test based Feature

Selection

This is the matter of fact that the use of data sub-sampling

can alleviate the problem of data skewness or data-

imbalance; however, the use of Up-Sampling, Down-

Sampling and SMOTE altogether generates a significantly

large dataset, which can force a machine learning model to

undergo pre-mature convergence and hence can affect

overall prediction or classification accuracy [53].

Considering this problem, in this paper Wilcoxon Rank

Sum Test (WRST) based feature selection method, which is

also called significant predictor test has been applied.

WRST is a type of non-parametric test with independent

samples. Functionally this method examines the correlation

between the variables (software metrics or CK-metrics

WMC, CBO, DIT, LCOM, NOC, and RFC) and their

significance towards reusability prediction accuracy. Here.

WRST algorithm estimates correlation between or amongst

the software metrics per class and corresponding feature

values towards reusability likelihood. Here, we considered

different software metrics (i.e., WMC, CBO, DIT, LCOM,

NOC, and RFC) as independent variable while the

reusability likelihood was considered as dependent variable.

This method obtained p-value for each feature variable in

reference to its significance towards reusability prediction.

Thus, based on the p-value each feature element was

labeled as significant or insignificant. Since, we considered

𝑝 = 0.05 as the level of significance, the data instance

having p-value higher than the level of significance were

retained, while rest were dropped for further computation.

4.5 Min-Max Data Normalization

 This is the matter of fact that in major classification or

prediction systems, especially in large features-based

models data imbalance and convergence are the key

problems, which hinder the overall performance of the

system. Post feature extraction and selection the retrieved

data elements are of the different size and range and hence

computing over such unstructured data can force learning

model to undergo pre-mature convergence and even over-

fitting. It can affect overall computational efficiency (i.e.,

accuracy and reliability) and therefore to alleviate it, we

performed Min-Max normalization over the retained

significant features. The proposed Min-Max normalization

algorithm, as indicated in (4) mapped or normalized feature

values in the range of 0 to 1. This method linearly

transformed and mapped the input features in the range of

[0, 1]. Functionally, each data element xi of the selected

features X was mapped to the corresponding normalized

value xi
′ in the range of [0, 1]. We used (4) to estimate

normalized value(s) of the input data𝑥𝑖 .

𝑁𝑜𝑟𝑚(𝑥𝑖) = 𝑥𝑖
′ =

𝑥𝑖 − 𝑚𝑖𝑛 (𝑋)

𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛 (𝑋)

(4)

In (4), the data elements min(X) and max(X) state the

minimum and maximum values of X, respectively.

4.6 Neuro-Computing assisted Consensus based

Reusability Prediction

Amongst the major machine learning algorithms, neural

network has been applied extensively towards data learning

and classification purposes [32][34]. The robustness of

ANN makes it efficient to be used in diverse classification

problems, though based on computational complexities and

adaptive computation ANN has evolved through different

phases. Exploring in depth it can be found that the

performance of ANN is directly related to the

corresponding learning method. Thus, based on learning

method, ANN has been evolved as ANN with steepest

gradient (SD), ANN with gradient descent (GD), ANN with

RBF (ANN-RBF), ANN with Levenberg Marquardt (ANN-

LM), Probabilistic Neural Network (PNN), etc. However, in

sync with non-linear heterogeneous data classification

ANN-GD, ANN-RBF, ANN-LM and PNN have performed

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1217–1231 | 1223

well. Unlike ANN-SD, ANN-GD avoids local minima and

convergence issue, even with large non-linear feature set.

Similarly, ANN-LM possesses higher robustness than

ANN-SD and ANN-GD, individually. Moreover, ANN-LM

can be configured to possess feature of ANN-SD as well as

ANN-GD and therefore has better performance stability

even with large, non-linear and heterogeneous data.

However, in literatures ANN variants are found performing

distinctly with the different accuracy towards any

classification problem. Consequently, it makes ambiguity in

selecting the best neurocomputing algorithm. On the other

hand, the recent literatures [32][34] revealed that unlike

standalone classifier, ANN based ensemble can give more

accurate and reliable prediction result [54]. Considering this

fact, in this paper we applied different ANN variants or

algorithms as base-classifier to design an MVE ensemble

learning model, also called consensus learning model to

perform reusability prediction. More specifically, in the

proposed ensemble learning model, we applied the

following key classifiers as base classifiers.

1. ANN-GD,

2. ANN-RBF,

3. ANN-LM (with One and Two Hidden Layers), and

4. PNN.

Thus, the use of above stated neurocomputing model with

four ANN variants constitutes a homogenous ensemble

structure to perform consensus-based prediction.

Noticeably, being base classifiers, these ANN variants

functions independently and classifies each class as

REUSABLE or NON-REUSABLE, and subsequently

labels each class as 1 and 0, respectively. The voting per

class by each base classifier has been used to estimate

consensus or the maximum voting score. Thus, the higher

score label (0 or 1) has been applied to predict reusability

probability of that specific class.

The functional architecture of the applied ANN model with

the input layer, the hidden layer and the output layer is

given in Fig. 2. Functionally, it embodies multiple neurons

representing the input data (or the CK metrics) that are

processed at the distinct intermediate layers (say, hidden

layers) for two-class classification (at the output layer). To

learn over the input data, ANN applies error-reduction

method, where during learning it estimates the difference

between the expected output and the observed output

(signifying error). The learning process continues till the

error output becomes zero or near zero. Thus, achieving

zero-error the outputs at the output layer is predicted as the

final output. Considering the at-hand problem of link-

prediction, ANN is expected to perform two-class

classification at the output layer. At the input layer of the

ANN, it applied linear activation function, which generates

output same as the input (i.e.,Oo = Ii), while the output of

the hidden layer is fed to the input of the output layer.

Noticeably, output layer of the ANN applies Sigmoid

function (5) to generate Oh.

Input Layer

Hidden Layer

Output
Layer

REUSABLE/
NON-

REUSABLE

WMC

NOC

DIT

CBO

RFC

LCOM

W

Wk

5. Neuro-computing Based Reusability

prediction

𝑂ℎ =
1

1 + 𝑒−𝐼ℎ

(5)

In (5), 𝐼ℎ represents the input at the hidden layer. ANN is

often defined as 𝑌′ = 𝑓(𝑊, 𝑋) where Y′ states the output

vector, while 𝑋 and W presents the allied input and the

weight values, respectively. Functionally, ANN applies

certain error function such as mean square error (MSE) to

achieve the higher accuracy, which is estimated using (6).

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖

′ − 𝑦𝑖)
2

𝑛

𝑖=1

(6)

In (6), y presents the observed output value, while the

expected value is yi
′ . As stated above, the key difference

between the different ANN variants is the way it schedules

or updates its weight values over training. A snippet of the

different ANN variants (i.e., ANN-GD and ANN-LM) is

given as follows.

a. ANN-GD

Let the regression for the learning method, while reducing

error value be (7).

𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑤

𝐿(𝑤) (7)

𝐿(𝑤) = ∑ 𝐿(𝑦𝑡 , 𝑓𝑤(𝑥𝑡))

𝑁

𝑡=1

+ 𝜆𝑅(𝑤)

(8)

In ANN-GD setup, 𝑓𝑤(𝑥) factor states the non-linear weight

w, and thus it intends to achieve a local optimum for (8)

using GD method, which updates w iteratively by updating

wtbywt+1.

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝛻𝐿 (9)

𝑤𝑗,𝑡+1 = 𝑤𝑗,𝑡 − 𝜂𝑡

𝜕𝐿

𝜕𝑤𝑗

(10)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1217–1231 | 1224

In (9), the parameter 𝛻𝐿signifies the error value, which is

mathematically given as (11).

=
1

𝑛
∑(𝑦𝑖

′ − 𝑦𝑖)
2

𝑛

𝑖=1

(11)

In (10) 𝜂𝑡 states the learning rate, which reduces over time

𝑡. Thus, performing GD based weight estimation and

learning it classifies each software component or class as

REUSABLE or NON-REUSABLE, and labels each class as

1 and 0, respectively.

b. ANN-RBF

Similar to the standard ANN algorithm, ANN-RBF too

encompasses input layer, hidden layer and output layer;

however, unlike classical methods the neurons in the hidden

layer contains Gaussian transfer functions whose outputs

are reverse proportional to the distance from the center of

the neuron. Functionally, ANN-RBF is equivalent to K-

Means clustering concepts and Probabilistic Neural

Network (PNN); however, the prime disparity is that the

other methods such as PNN has single neuron for each data-

point (in training), while ANN-RBF comprises multiple

neurons (but lower as compared to the number of training

points). Though, for a low or medium size dataset, PNN can

be appropriate; however, its efficiency remains confined

over large, non-linear input pattern. Considering this

motive, we applied ANN-RBF as one of the base classifiers

to perform (each-class) software reusability prediction. In

the proposed ANN-RBF model, the hidden units enable a

set of functions comprising random basis for the input

patterns. In this approach the hidden units are called as the

radial centers which refer a vector c1, c2, … , ch.

In ANN-RBF, the input features, often called input-space is

transferred into hidden space by means of non-linear

transformation method. The transformation from the hidden

unit space to the output space remains the linear dimension

of each centre for n − point input network (i.e., n × 1

dimension). In the proposed ANN-RBF, the RBF in the

hidden layer generates non-zero response and each hidden

unit and contains its own receptive field in the input space.

Here, 𝑥𝑖 be the input vector present in the receptive field for

center 𝑐𝑗 , 𝑐𝑗 , is activated by selecting proper weights to

achieve expected target output (12).

𝑦′ = ∑∅𝑗𝑤𝑗

ℎ

𝑗=1

, ∅𝑗 = ∅(‖𝑥 − 𝑐𝑗‖)

(12)

In (12), 𝑤𝑗 states the weight of the j − th center, while ∅

represents the radial function. We applied GD weight

update method for ANN-RBF to learn over the input

features or the OOP-CK metrics to classify each class as

REUSABLE or NON-REUSABLE.

c. ANN-LM

ANN-LM is stated to be the most efficient neurocomputing

algorithm because of its ability to exploit efficacy of both

ANN-SD as well as ANN-GD. Additionally, better learning

and allied weight update mechanism enables ANN-LM to

exhibit higher accuracy amongst the other variants.

Functionally, ANN-LM performs localization of the

minimum value of the multivariate function, called Sum of

Squares (SoS) of the non-linear real-valued functions. It

strengthens ANN-LM algorithm to perform swift weight

estimation (13) and tuning, and thus helps in achieving

higher accuracy even without undergoing local-minima and

convergence, easily. It makes ANN-LM robust to be used

for large feature learning for classification. ANN-LM

applies equation (13) to perform weight update for efficient

learning.

𝑊𝑗+1 = 𝑊𝑗 − (𝐽𝑗
𝑇𝐽𝑗 + 𝜇𝐼)

−1
𝐽𝑗𝑒𝑗 (13)

In (13), Wj states the present weight while Wj+1 signifies

the updated weight. 𝐼presents the identity matrix, while the

Jacobian matrix is calculated as per (14). In (13), the

learning parameter µ signifies the combination coefficient.

Typically, the low value of µ triggers ANN-LM to behave

as ANN-GD, while higher value forces to act as ANN-SD.

J

=

[

𝑑

𝑑𝑊1

(𝐸1,1)
𝑑

𝑑𝑊2

(𝐸1,1) ⋯
𝑑

𝑑𝑊𝑁

(𝐸1,1)

𝑑

𝑑𝑊1

(𝐸1,2)
𝑑

𝑑𝑊2

(𝐸1,2) ⋯
𝑑

𝑑𝑊𝑁

(𝐸1,2)

⋮ ⋮ ⋮ ⋮
𝑑

𝑑𝑊1

(𝐸𝑃,𝑀)
𝑑

𝑑𝑊2

(𝐸𝑃,𝑀) ⋯
𝑑

𝑑𝑊𝑁

(𝐸𝑃,𝑀)
]

(14)

 In (14), 𝑁 states the total weight counts and P presents the

input features. The output is given by M. In our proposed

work, ANN-LM was designed with two distinct structures,

one comparison single hidden layer, while another model

was designed with two hidden layers. Thus, a total of two

ANN-LM models with 1 and 2 hidden layers were used as

the base classifiers.

Undeniably, above discussed neurocomputing models or

ANN variants (ANN-GD, ANN-RBF and ANN-LM) have

played vital role towards data science purposes, such as

classification or identification. However, iterative learning

and weight calculation confine their robustness and imposes

significantly large computation. To alleviate such problems,

recently a new variant named Probabilistic Neural Network

(PNN) has been proposed. In our proposed HEL model, we

applied PNN as one of the base classifiers. The details of

PNN are given as follow.

d. Probabilistic Neural Network (PNN)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1217–1231 | 1225

Probabilistic Neural Network (PNN) represents a variant of

feed forward neural network, often used for classification

problems. In our proposed PNN model, the parent

probability distribution function (PDF) of each subject-class

or patient is approximated by means of a Parzan window

and a non-parametric function. Subsequently, employing

PDF of each subject class label, the likelihood of a new

input is obtained as per Bayes rule. Here, the use of Bayes

rule helps in assigning class the highest posterior probability

to the new input. This method reduces probability of mis-

detection or mis-classification significantly. Structurally,

PNN model was derived from Bayesian network in

conjunction with Kernel Fisher discriminant analysis. It was

designed as a multi-layered feed forward network with four

layers; input later, pattern layer, summation layer and output

layer. Here, the first layer estimates the distance from the

input vector to the training input vector. Consequently, it

generates a vector where each element signifies how close

the input is to the training input. Similarly, the second layer

performs summation of the contribution of each class-label

of the input and eventually generates its output as a

probability vector. Eventually, a transfer function is applied

on the output of the second layer and thus selects the

maximum of the probability vector and generates 1 for

positive class (i.e., REUSABLE) and 0 for negative (i.e.,

NON-REUSABLE). The detailed discussion of the PNN

architecture and its function is given as follows.

We designed three-layered PNN architecture with input

layer, hidden layer and output layers. The overall model

was designed to perform two-class classification (i.e., K=2).

The input layer comprised six nodes each carrying WMC,

CBO, DIT, LCOM, NOC, and RFC metrics, distinctly.

These are the fan-out nodes that split or branch each

subject-feature to nodes in all hidden layers, so as to ensure

that each hidden layer received the complete subject-

features (say, feature vector 𝑥). Here, the hidden layer’s

nodes are transformed into groups, one group for each class

of target category. In the proposed design each hidden node

in a group for class K belongs to a Gaussian function,

centered on corresponding feature vector in the 𝑘th class.

The comprising Gaussians in a class group feed their

respective functional values to the same output layer node

for that class. This as a result generates 𝐾 output nodes. At

the output layer or output node for class K (say,

REUSABLE “1” and NON-REUSABLE as “0”), all the

Gaussian values for that class K are aggregated.

Subsequently, the sum is further scaled in such manner that

the probability value under the sum function remains unity

(it constitutes PDF). Let 𝑃 be the feature vector such that

{𝑥(𝑝): 𝑝 = 1,… , 𝑃} , which is labelled as Class 1 (i.e.,

REUSABLE). Similarly, let 𝑄 be the feature vector

{𝑦(𝑟): 𝑟 = 1,… , 𝑅} to be labeled as class 2 (i.e., NON-

REUSABLE). Thus, in the hidden layer of the PNN there

would be 𝑃 nodes in the group for Class 1 and R-nodes in

the group for class 2. The mathematical model for each

Gaussian centered on the corresponding class 1 and class 2

point be 𝑥(𝑝) and 𝑦(𝑞) (it signifies feature vector for N-

dimensional vector) for any input vector 𝑥 be (15) and (16).

𝑔1(𝑥) = [
1

√2𝜋𝜎2𝑁
] 𝑒𝑥𝑝 {−

−‖𝑥 − 𝑥(𝑝)‖
2

(2𝜎2)
}

(15)

𝑔2(𝑦) = [
1

√2𝜋𝜎2𝑁
] 𝑒𝑥𝑝 {−

−‖𝑦 − 𝑦(𝑞)‖
2

(2𝜎2)
}

(16)

 The value of 𝜎 is taken to be 50% of the average distance

between the feature vectors in the same group. The 𝑘 th

output node summarizes the values received from the

hidden nodes in the 𝑘-th group, which is also called Parzen

Window or the mixed Gaussian. We defined sum as (17)

and (18).

𝑓1(𝑥)

= [
1

(2𝜋𝜎2)𝑁
] (

1

𝑃
) ∑ 𝑒𝑥𝑝 {−

−‖𝑥 − 𝑥(𝑝)‖
2

(2𝜎2)
}

(𝑝−1,𝑃)

(17)

𝑓2(𝑦)

= [
1

(2𝜋𝜎2)𝑁
] (

1

𝑄
) ∑ 𝑒𝑥𝑝 {−

−‖𝑦 − 𝑦(𝑞)‖
2

(2𝜎2)
}

(𝑞−1,𝑄)

(18)

In (17-18), 𝑥 represents an input feature vector, 𝜎 represents

the standard deviation for Gaussians (in Class 1 and Class

2), 𝑁 =6 presents the input vector dimension, P be the

number of center vectors in Class 1, and R be the number of

centers in Class 2. 𝑥(𝑝) and 𝑦(𝑟) be the centers in the

corresponding classes 1 and 2. The nominator component

‖𝑥 − 𝑥(𝑝)‖
2
 presents the Euclidean distance between 𝑥and

𝑥(𝑝) . Here, any input vector 𝑥 is put-through both sum

functions 𝑓1(𝑥) and 𝑓2(𝑦) and therefore the highest value of

𝑓1(𝑥) and 𝑓2(𝑦) decides the class. Thus, implementing PNN

we performed two-class classification which labelled each

subject as “REUSABLE” or “NON-REUSABLE”.

• Consensus based Ensemble Learning

The above discussed machine learning algorithms were

applied as base classifier to perform two-class classification.

Each of the classifier labeled each class as REUSABLE

(“1”) or NON_REUSABLE (“0”). Thus, obtaining the

classified label for each class by all five base classifiers, we

applied MVE ensemble concept also called consensus-

based ensemble model. In this approach, the higher

prediction output (1 or 0) by each of the base classifier was

considered as the final prediction result. In other words, if

for a specific class in the software, in case out of five base

classifiers (i.e., ANN-GD, ANN-RBF, ANN-LM (with one

hidden layer), ANN-LM (with two hidden layers) and

PNN), if three classifiers predict a class as “1”, then the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1217–1231 | 1226

proposed consensus-based ensemble model predicts that

specific class as REUSABLE. On the contrary, in case three

base classifiers predicts a class as “NON-REUSABLE”.

Thus, unlike classical standalone classifier-based prediction,

the proposed consensus-based approach employs maximum

votes and hence has higher reliability towards software

component reusability prediction.

6. Results and Discussion

In this paper, a novel and robust neurocomputing assisted

homogenous ensemble learning model was developed for

per-class software reusability prediction in OOP based WoS

software solutions. Unlike classical approaches, in the

proposed method, the key emphasis was made on

improving both data model as well as classification model

so as to achieve higher accuracy. Realizing the fact that the

suitability and optimality of data often impacts eventual

classification output, at first, we focused on improving

dataset while alleviating classical problems of data

imbalance, local minima and convergence etc. Considering

OOP based software design demands, we considered open

to access software available at www.sourceforge.com.

Noticeably, the considered data was a WoS software

developed using OOP concept. Thus, obtaining the raw

software (for the present case study), at first, we applied

WSDL tool in conjunction with CKJM that helped

extracting a total of 17 OOP-CK metrics. However,

realizing the fact that not all metrics can have the decisive

significance towards reusability prediction, and therefore

we applied ULR based feature extraction followed by

WRST based significant predictor test. For WRST, we

assigned level of significance P=0.05. Thus, performing

feature selection a total of six OOP-CK metrics were

obtained. These were WMC, CBO, DIT, LCOM, NOC, and

RFC. Subsequently, realizing the likelihood of data-

imbalance, we performed data sub-sampling using up-

sampling, down-sampling and SMOTE sampling.

Noticeably, we performed sub-sampling with the

confidence interval of 95%. Once obtaining different data

samples, we concatenated together to constitute All Matrix,

though for comparison we considered up-sample data,

down-sampled data, and SMOTE sampled data as well for

which we performed each class classification. In other

words, we performed two-class classification over each

sample (i.e., up-sampled, down-sampled, SMOTE sampled

and All Matrix sample). Here, our prime motive was to

assess whether performing different sampling method can

help achieving higher accuracy or not. The accuracy

precision, recall and AUC performance over the different

data samples are given in Table 1 to Table 4. To further

improve the performance we performance, we applied Min-

Max normalization over the sampled data which mapped

each data element or metrics values in the range or [0-1].

Here, the key intend was to alleviate any probability of

premature convergence and over-fitting problem. Thus,

once performing data-normalization the OOP-CK metrics

(i.e., selected features of WMC, CBO, DIT, LCOM, NOC,

and RFC) were fed as input to the different neurocomputing

algorithms. Noticeably, being a homogenous ensemble

model, we designed ANN-GD, ANN-RBF, ANN-LM (with

one hidden layer), ANN-LM (with two hidden layers) and

PNN as base classifiers. Here, each base classifier

performed two-class classification and perform per-class or

each-class classification as REUSABLE or NON-

REUSABLE, and labeled each class as 1 and 0,

respectively. Thus, performing each-class classification by

all five base classifiers we applied MVE ensemble concept

to obtain consensus (for each class) were a class with three

“1’s” was predicted as REUSABLE, while a class with

three “0’s” was classified or predicted as NON-

REUSABLE. Thus, applying this method, we performed

eventual software reusability prediction. Being a consensus-

based approach, the accuracy and reliability of the proposed

model can be hypothesized to be higher.

Being a classification problem, to assess performance by the

proposed model, we obtained confusion matrix by each

classifier, over each sample data (up-sampled, down-

sampled, SMOTE and All Matrix sampled data). The

confusion matrix was obtained in the form of true positive

(TP), true negative (TN), false positive (FP) and false

negative (FN). Retrieving these matrix values for each base

learner as well as ensemble classifier, the performance has

been obtained in terms of accuracy, precision and recall,

also called sensitivity. The definitions of these performance

variables are given in Table 2.

Table 1. Performance Parameters

Parameter Mathematical

Expression

Definition

Accuracy (𝑇𝑁 + 𝑇𝑃)

(𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃)

Signifies the

proportion of

predicted fault prone

modules that are

inspected out of all

modules.

http://www.sourceforge.com/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1217–1231 | 1227

Precision 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)

States the degree to

which the repeated

measurements under

unchanged

conditions show the

same results.

Recall 𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)

It indicates how

many of the relevant

items are to be

identified.

Table 2 presents the accuracy performance by the different

base classifiers as well as proposed neurocomputing

assisted consensus ensemble learning model. Considering

the results obtained, it can easily be visualized that

amongst the different neuro-computing models and the

derived consensus-based ensemble learning concept, the

proposed maximum voting-based ensemble exhibits the

highest classification accuracy (93.57%). Noticeably, the

proposed MVE ensemble or consensus-based ensemble

achieves the highest accuracy of 96.57% with All-Matrix.

It justifies that the sub-sampling of the input features can

help not only to alleviate data imbalance, but can also

enable higher accuracy. The relative performance shows

that after the proposed MVE ensemble of consensus-based

ensemble model, ANN-LM (with two hidden layers)

performs better, and therefore as standalone solution it can

be considered as the potential (say, sub-optimal) classifier.

However, the superiority of the proposed MVE based

consensus ensemble classifier confirms its suitability

towards at hand software reusability prediction. The other

base-classifiers are found relatively low accurate. Thus, the

results obtained (Table 2) affirms that the use of data sub-

sampling and composite feature learning can be optimal

towards reusability prediction where MVE based

neurocomputing (homogenous) ensemble classifier can be

most effective approach to perform reusability prediction.

It affirms acceptance of RQ3. Additionally, the other

research questions such as RQ1 and RQ2 too can be

justified affirmatively as the proposed software metrics

have yield high accuracy with manual verification

similarity.

Table 2 Accuracy (%) Performance

Sampl

ed

Data

ANN-

GD

AN

N-

RBF

ANN

_ LM

(1-

Hidd

en

Laye

r)

ANN-

LM

(2

Hidd

en

layer)

PNN
MV

E

Origina

l Data
92.01

93.1

7
95.15 95.46

94.2

1

89.3

1

Up-

Sample

d Data

95.31
94.6

1
94.80 95.64 96.1

91.9

4

Down-

Sample

d Data

94.95
95.4

6
95.5 95.64 95.7

91.0

0

SMOT

E

Sample

d Data

89.17
89.1

0
92.3 91.21 91.4

91.0

4

ALL

Matrix
95.09

95.1

3
95.5 95.47 93.6

96.5

7

Table 3 Precision Performance

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1217–1231 | 1228

Samples
ANN-

GD

ANN-

RBF

ANN_

LM (1-

Hidden

Layer)

ANN-

LM (2

Hidden

layer)

PNN MVE

Original

Data
0.91 0.91 0.93 0.91 0.93 0.89

Up-

Sampled

Data

0.92 0.93 0.93 0.91 0.92 0.88

Down-

Sampled

Data

0.91 0.92 0.92 0.92 0.93 0.88

SMOTE

Sampled

Data

0.83 0.83 0.87 0.87 0.88 0.89

ALL

Matrix
0.91 0.92 0.92 0.92 0.91 0.94

Table 3 presents the precision performance by the proposed

model. Noticeably, the highest precision obtained by the

proposed model was 0.94, amongst all classifiers, especially

with the All-Matrix features. It indicates that similar to the

accuracy performance the proposed MVE ensemble

(neurocomputing assisted consensus (homogenous)

ensemble) model shows higher precision and unchanged

performance over changed samples or environment. It

confirms reliability and robustness of the proposed

consensus-based ensemble learning model towards software

reusability prediction. The results obtained (Table III) too

confirms acceptability of RQ2, RQ3, RQ4 and RQ5.

Table 4 Recall Performance

Samples
ANN-

GD

ANN-

RBF

ANN_LM

(1-

Hidden

Layer)

ANN-

LM (2

Hidden

layer)

PNN MVE

Original

Data
0.93 0.93 0.94 0.98 0.96 0.98

Up-

Sampled

Data

0.93 0.92 0.94 0.98 0.95 0.97

Down-

Sampled

Data

0.92 0.94 0.95 0.99 0/96 0.97

SMOTE

Sampled

Data

0.94 0.94 0.97 0.96 0.97 0.81

ALL

Matrix
0.96 0.97 0.97 0.99 0.98 0.99

In Table 4, the recall performance by the proposed model is

presented. Noticeably, recall is also called as sensitivity.

Observing the results (Table 4), it can be found that the

proposed neurocomputing assisted homogenous ensemble

model achieves the highest recall or sensitivity of 0.99. It

indicates higher sensitivity of the proposed model, which

could be contributed due to better feature learning ability.

Noticeably, the higher values of precision and recall

indicates higher F-score and thus, signifies robustness of the

proposed model to achieve higher superior performance

even over large non-linear features.Thus, observing overall

performance and allied inferences, it can be stated that the

proposed neuro-computing assisted consensus (or

ensemble) learning model achieves higher accuracy,

precision and recall (or sensitivity), signifying robustness of

the proposed model towards WoS software reusability

prediction. The research questions as defined in Section 3

are found to be affirmatively accepted, and hence affirms

suitability of the proposed (homogenous) ensemble learning

model towards software reusability prediction. Though, the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1217–1231 | 1229

role of the strategic model with WSDL-CKJM based OOP

metrics estimation, followed by ULR based feature

extraction and WRST based feature selection and sub-

sampling can’t be ignored. The improved data model can

have the decisive impact in achieving above discussed

superior performance. Additionally, the robustness of the

proposed neurocomputing assisted homogenous ensemble

model with MVE or consensus ensemble helped achieving

the most efficient performance towards software reusability

prediction. Thus, the research questions as defined in

Section 3 (RQ1-RQ5) are answered affirmatively.

7. Conclusion

Considering the fact that the reuse of a software component

can at one hand reduce development cost; however, the

excessive reusability of the same component or class can

force a software solution to undergo aging, smells and

sometime failure, in this paper a software metrics learning

based reusability prediction model was developed.

Contemporary, due to ease of implementation and agile in

nature OOP based software development is prevalent and

has been applied in major WoS software development that

often undergoes exceedingly high transaction and dynamic

computing. In such application environment excessive use

of software components or improper reusability might limit

the reliability of the software solution. Therefore, for an

optimal OOP WoS software design, assessing component

reusability can be of great significance to alleviate any

future faults or failure. With this motivation, in this

research paper at first OOP-CK metrics were obtained

which characterizes the structural features such as

cohesion, coupling and complexity of a software program

to assess reuse-proneness of a component. Unlike manual

testing methods, in this paper a state-of-art new

neurocomputing assisted consensus-based ensemble

learning model was developed which exploits OOP-CK

metrics, specially WMC, CBO, DIT, LCOM, NOC, and

RFC to perform each-class reusability prediction. To

achieve an accurate and reliable prediction solution, in this

paper the optimization efforts were made for both data

model as well as classifier model. Once obtaining aforesaid

OOP-CK metrics using WSDL-CKJM tool, the extracted

features were further processed using ULR algorithm

which retained a total of six OOP-CK metrics to be used

for further computation. Additionally, to alleviate the

problem of data-imbalance and skewness, the proposed

model applied data-subsampling concept using Up-

sampling, Down-sampling, SMOTE sampling techniques

that provided a composite feature set with sufficiently data-

features for further computation. However, realizing large

data size of the composite features, the proposed model

applied WRST algorithm, a well-known significant

predictor test, which retained only those feature elements

having significant impact (likelihood) on reusability

prediction. Thus, retaining the optimal feature set, to

further reduce the probability of pre-mature convergence

and over-fitting Min-Max normalization was applied.

Finally, the proposed model applied neurocomputing

algorithms assisted maximum voting ensemble learning

structure for two-class classification. Here, the proposed

homogenous ensemble model applied ANN-GD, ANN-

RBF, ANN-LM (with 1 and 2 hidden layers) and PNN

neural network algorithms as the base classifier to perform

two-class classification, where it employed MVE

(maximum voting or consensus) to classify each class as

REUSABLE or NON-REUSABLE. Unlike standalone

base classifiers, the proposed consensus or MVE ensemble

model exhibited higher accuracy (96.57%), precision

(0.94) and recall (0.99), signifying its robustness and

reliability towards WoS software component reusability

prediction system. Thus, the superior performance by the

proposed neuro-computing assisted homogenous

(consensus-based) ensemble model affirms its suitability

towards accurate reusability prediction, which can enable a

firm or developer to assess fault-resilience in terms of

optimal reusability of a software component before its

release. It can not only ensure fault-resilience of the

software solution but can also avoid the maintenance cost

and failure probability of WoS solutions.

References

[1] Caldiera G., and Basili V.R. (1991). Identifying and

qualifying reusable software components, IEEE

Software, vol. 24, pp. 61-70.

[2] Sommerville I. (2011) Software Engineering. 9th

Edition, Addison-Wesley, New York.

[3] Singh G. (2013). Metrics for measuring the quality of

object-oriented software, ACM SIGSOFT Software

Engineering Notes, vol. 38, pp. 1-5.

[4] Stapic M. M. (2015). Reusability metrics of software

components: Survey, conference paper September.

[5] Srivastava S. and Kumar R. (2013). Indirect method

to measure software quality using CK-OO

suite, Intelligent Systems and Signal Processing

(ISSP), International Conference on, Gujarat, pp. 47-

51.

[6] Goel B. M., Pradeep Kumar Bhatia (2012). Analysis

of reusability of object-oriented system using CK

metrics, International Journal of Computer

Applications, vol. 60, no.10.

[7] Bakar N.S. (2016). The analysis of object-oriented

metrics in C++ programs, Lecture Notes on Software

Engineering, vol. 4, no. 1.

[8] Mohammad A. T. (2014). Metric suite to evaluate

reusability of software product line, International

Journal of Electrical and Computer Engineering

(IJECE), vol. 4, no. 2, pp. 285-294.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1217–1231 | 1230

[9] Nanni L., Brahnam S., Ghidoni S., and Lumini A.

(2015). Toward a General-PurposeHeterogeneous

Ensemble for Pattern Classification, Computational

Intelligence and Neuroscience.

[10] Barghash M.(2015). An effective and novel neural

network ensemble for shift pattern detection in

control charts, Computational Intelligence and

Neuroscience, Article ID939248.

[11] Singhani H., Suri R. P. (2015). Testability assessment

model for object oriented software based on internal

and external quality factors, Global Journal of

Computer Science and Technology: C Software &

Data Engineering, vol. 15, no.5.

[12] Mijac M., Stapic Z. (2015). Reusability metrics of

software components: Survey, Central European

conference on Information and Intelligent system

conference paper.

[13] Srivastava S. and Kumar R. (2013). Indirect method

to measure software quality using CK-OO suite,

Intelligent Systems and Signal Processing (ISSP),

International Conference on, Gujarat, pp. 47-51.

[14] Goel B.M. and Bhatia P.K. (2012). Analysis of

reusability of object-oriented system using CK

metrics, International Journal of Computer

Applications, vol.60, no.10, pp.0975–8887.

[15] Rosenberg L.H. and Hyatt L.E. (1997). Software

quality metrics for object-oriented environments,

Crosstalk Journal, vol. 10, pp. 1-16.

[16] Chidamber S.R. and. Kemerer C. F. (1994). A metrics

suite for object oriented design, IEEE Transactions on

Software Engineering, vol. 20, pp. 476-493.IEEE

PressPiscataway, NJ, USA.

[17] Antony P.J. (2013). Predicting Reliability of Software

Using Thresholds of CK Metrics, International

Journal of Advanced Networking & Applications, vol.

4, p. 6.

[18] Hudiab A., Al-Zaghoul F., Saadeh M., and Saadeh H.

(2015). ADTEM—Architecture Design Testability

Evaluation Model to Assess Software Architecture

Based on Testability Metrics, Journal of Software

Engineering and Applications, vol. 8, pp. 201-210.

[19] Berander P., Damm L-O-, Eriksson J., Gorschek T.,

Henningsson K., Jönsson P., Kågström S., Milicic D.,

Mårtensson F., Rönkkö K. (2005). Software quality

attributes and trade-offs. Blekinge Institute of

Technology, Blekinge.

[20] Shatnawi R. (2010). A quantitative investigation of

the acceptable risk levels of object-oriented metrics in

open-source systems, IEEE Transactions on Software

Engineering, vol. 36, pp. 216-225.

[21] Shatnawi R., Li W., Swain J., and Newman T. (2010).

Finding software metrics threshold values using roc

curves, Journal of Software Maintenance and

Evolution: Research and Practice, vol. 22, pp. 1-

16.John Wiley & Sons, Inc.New York, NY, USA.

[22] Neelamdhab P., Satapathy S., Singh R. (2017). Utility

of an Object Oriented Reusability Metrics and

Estimation Complexity. Indian Journal Of Science

And Technology, 10(3).

[23] Normi Sham Awang Abu Bakar. (2016). The analysis

of object-oriented metrics in C++ programs, Lecture

Notes on Software Engineering, Springer, vol. 4, no.

1.

[24] Zahara S. I., Ilyas M., and Zia T. (2013). A study of

comparative analysis of regression algorithms for

reusability evaluation of object oriented based

software components, Open Source Systems and

Technologies (ICOSST), International Conference on,

Lahore, pp. 75-80.

[25] Torkamani M. A. (2014). Metric suite to evaluate

reusability of software product line, International

Journal of Electrical and Computer Engineering

(IJECE), vol. 4, no. 2, pp. 285-294.

[26] Aloysius A., and Maheswar K. (2015). A review on

component based software metrics, Intern. J. Fuzzy

Mathematical Archive, vol. 7, no. 2, pp. 185-194.

ISSN: 2320 –3242 (P), 2320 –3250 (online)

[27] Cho E.S., Kim M.S., and Kim S.D. (2001).

Component metrics to measure component quality,

Proceedings of the 8th Asia Pacific Software

Engineering Conference (APSEC), Macau, vol. 4-7,

pp. 419-426.

[28] Tsoumakas G., Angelis L., Vlahavas I. (2005).

Selective fusion of heterogeneous classifiers,

Intelligent Data Analysis vol. 9 (6), pp. 511–525.

[29] Benediktsson J. A., Chanussot J., and Fauvel M.

(2007). Multiple classifier systems in remote sensing:

from basics to recent developments. In: M. Haindl, J.

Heidelberg, Germany: Springer, 501–512.

[30] Roli F., Giacinto G., Vernazza G. (2001). Methods for

designing multiple classifier systems. Proceedings of

the second international workshop on multiple

classifier systems. Cambridge, UK, 78–87.

[31] Banfield R. (2007). A comparison of decision tree

ensemble creation techniques. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 29, 173–

180.

[32] Krogh A., Vedelsby J. (1995). Neural network

ensembles, cross validation, and active learning. In:

G. Tesauro, D. Touretzky and T. Leen, eds. Advances

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1217–1231 | 1231

in neural information processing systems, vol. 7,

Cambridge, UK: MIT Press, 231–238.

[33] Kittler J. (1998). Combining classifiers: a theoretical

framework. Pattern Analysis and Applications, 1, 18–

27.

[34] Hansen L., Salamon P. (1990). Neural network

ensembles. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 12, 993–1001.

[35] Opitz D., Shavlik J. (1996). Actively searching for an

effective neural-network ensemble. Connection

Science, 8 (3/4), 337–353.

[36] Kuncheva L.I. (2001). Combining classifiers: soft

computing solution, in: S.K.A. Pal (Ed.), Pattern

Recognition: From Classical to Modern Approaches,

World Scientific, Singapore, pp. 427–451.

[37] Canul-Reich J., Shoemaker L., Hall L.O. (2007).

Ensembles of fuzzy classifiers, in: IEEE International

Fuzzy Systems Conference, pp. 1–6.

[38] Rodriguez J.J., Kuncheva L.I. (2006). Rotation forest:

a new classifier ensemble method, IEEE Transactions

on Pattern Analysis and Machine Intelligence 28

(10)1619–1630.

[39] Zhang Chun-Xia, Zhang Jiang-She. (2008). RotBoost:

a technique for combining rotation forest and

AdaBoost, Pattern Recognition Letters 29, pp. 1524–

1536.

[40] Nanni L., Lumini A. (2009). Ensemble generation and

feature selection for the identification of students with

learning disabilities, Expert Systems with Applications

36, pp.3896–3900.[41] Zhang X., Wang S., Shan T.,

Jiao L.C. (2005). Selective SVMs ensemble driven by

immune clonal algorithm, in: Rothlauf, F. (Ed.)

Proceedings of the EvoWork- shops, Springer, Berlin,

pp. 325–333.

[41] Zhou Z.H., Wu J., Tang W. (2002). Ensembling

neural networks: many could be better than all,

Artificial Intelligence 137 (1–2), 239–263.

[42] Partalas I., Tsoumakas G., Vlahavas I. (2008).

Focused ensemble selection: a diversity-based method

for greedy ensemble selection, in: Proceedings of the

18th International Conference on Artificial

Intelligence, pp. 117–121.

[43] Dong YS., Han KS. (2004). A comparison of several

ensemble methods for text categorization," Services

Computing, (SCC 2004). Proceedings. 2004 IEEE

International Conference on, pp. 419-422.

[44] Bi Y., Bell D., Wang H., Guo G., Guan J. (2007).

Combining Multiple Classifiers Using Dempster's

Rule For Text Categorization. Appl. Artif. Intell. vol.

21, 211-239.

[45] P. N. Tan, M. Steinbach, and V. Kumar,

Introduction to Data Mining. New York: Addison-

Wesley, 2005.

[46] N. V. Chawla, K.W. Bowyer, L. O. Hall, andW. P.

Kegelmeyer, “SMOTE: Synthetic minority over-

sampling technique,” J. Artif. Intell.Res., vol. 16, pp.

321–357, 2002.

[47] B. J. Lee, B. Ku, J. Nam, D. D. Pham and J. Y. Kim,

"Prediction of Fasting Plasma Glucose Status Using

Anthropometric Measures for Diagnosing Type 2

Diabetes," in IEEE Journal of Biomedical and

Health Informatics, vol. 18, no. 2, pp. 555-561,

March 2014.

[48] Miller A.: ‘Subset selection in regression’ (Chapman

& Hall/CRC, New York, 2002, 2nd edn.)

[49] R. Radivojac, N. V. Chawla, A. K. Dunker, and Z.

Obradovic, “Classification and knowledge discovery

in protein databases,” J. Biomed.Informat., vol. 37,

pp. 224–239, 2004.

[50] R. Batuwita and V. Palade, “microPred: Effective

classification of premiRNAs for human miRNA

gene prediction,” Bioinformatics, vol. 25, no. 8, pp.

989–995, Apr. 2009.

[51] X. M. Zhao, X. Li, L. Chen, and K. Aihara, “Protein

classification with imbalanced data,” Proteins, vol.

70, no. 4, pp. 1125–1132, Mar. 2008.

[52] Y Saeys, I. Inza, and P Larra˜naga, “A review of

feature selection techniques in bioinformatics,”

Bioinformatics, vol. 23, no. 19, pp. 2507–2517,

2007.

[53] Adnan O. M. A., Dezheng Z., Xiong L., Ahmad S.

and Hazrat A., “Improving Classification

Performance through an Advanced Ensemble Based

Heterogeneous Extreme Learning Machines”,

Hindawi Computational Intelligence and

Neuroscience Volume 2017, pp. 1-11.

