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Abstract: In this paper, a state-of-art new neuro-computing assisted consensus-based ensemble model was developed for Web-of-

Service (WoS) software reusability prediction. In order to achieve higher accuracy with reliability of prediction, the proposed model 

made enhancement in both data-model as well as classifier-model. More specifically, it applied WSDL-CKJM tool to extract object-

oriented-programming (OOP) metrics, which were subsequently processed using univariate logistic regression-based feature extraction 

followed by sub-sampling method. In the proposed reusability prediction model, to alleviate data or class-imbalance and skewness 

problem, three different sub-sampling methods were applied including up-sampling, down-sampling and SMOTE sampling. Once 

obtaining the differently sampled data with the confidence interval of 95%, it was amalgamated together to give rise a composite feature 

vector pertaining to WMC, CBO, DIT, LCOM, NOC, and RFC OOP-CK metrics, characterizing structural features of the software 

program. Subsequently, to alleviate computational overhead Wilcoxon Rank Sum Test (WRST) was applied, which retained the most 

suitable feature set towards reusability prediction. To alleviate the problem of convergence and over-fitting, Min-Max normalization was 

performed over the selected feature set. Thus, the normalized input features were processed for two-class classification using the 

proposed neuro-computing assisted homogenous ensemble model. Noticeably, being homogenous ensemble structure, we used ANN 

variants with gradient descent (GD), radial basis function (RBF), Levenberg Marquardt (LM) and probabilistic neural network (PNN) as 

base classifiers. The aforesaid base-classifiers helped in estimating the consensus to make each-class classification, where the proposed 

consensus-based classification model achieved superior accuracy (96.57%), precision (0.94) and recall (0.99), signifying its robustness 

over the classical standalone classifiers.  

Keywords: Web-of-Service Software, Reusability Prediction, Fault-resilience, Ensemble learning, Machine learning, Neurocomputing. 

1. Introduction 

The high pace emergence in internet and allied software 

computing technologies have enabled human-life more 

effective, especially towards real-world decision making. 

To achieve it, software technology has been playing 

decisive role and is acknowledged as one of the most vital 

innovation made across human history to serve varied 

purposes including science and technology, business, 

healthcare sector, defense, industries, and varied civic 

personalized supports. Undeniably, software has become 

inevitable need of humanity. This at the one hand has 

broadened the horizon for business communities and 

engineers to achieve and introduce products or services 

with better efficacy; however, maintaining their reliability 

has remained a challenge for all. Moreover, maintaining 

low-cost solution too has become must for business 

communities, and therefore firms focus more on reducing 

costs such as development cost, maintenance cost etc. 

Considering industrial perspective, software development 

companies and allied developers often intend to reuse 

software components of even free-open-source software 

(FOSS) components  

[1]. As a matter of fact, the reuse of existing or pre-

employed functions enables a developer or firm to reduce 

hours of program or allied cost; however, there has been 

the evidences where the exceedingly reuse of software 

component caused system failure and loss(es) in terms of 

finance, time as well as human-life [2][3]. On the contrary, 

to cope up with competitive cost of the software solution, 

maintaining lower development is equally significant. It 

indicates the need of software design with optimal 

reusability as well as uncompromising reliability [2]. 

However, in practical world, due to ineffective and 

inappropriate software design with exceedingly high reuse 

of the software components, a software turns into faulty, 

smelling and eventually fails in delivering the expected 

performance [4]. To alleviate such problem, assessing 

“software reusability” is of great significance. Software 

reusability assessment or prediction can enable assessing 

whether a software program or allied class can be reused 

anymore or not. Moreover, identifying a class of highly 

reused it can be rectified to avoid any fault or smell [4]. 

This as a result can improve reliability of the system. 

However, manual reusability assessment can be a highly 

tedious task and even fault-prone, and therefore there is the 

inevitable need of automated machine learning based 

software reusability prediction system. Such reusability 
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assessment models can be vital for small as well as large 

software programs and allied developers, and would be 

catalytic for WoS applications. WoS applications often 

found in different scale with small size computation as well 

as large real-time computation to serve data mining or 

knowledge driven services or transactions. While, 

designing such programs, developer often use FOSS or 

small chunk of program iteratively to reduce cost. 

Therefore, the use of machine learning assisted automated 

reusability prediction model can be vital to ensure highly 

accurate each-class reusability assessment.  

In sync with above discussions, in this paper a state-of-art 

new and robust machine learning based software 

reusability prediction model. Realizing the fact that the 

majority of the software programmes these days are 

developed using objective oriented programming (OOP) 

concept, and therefore, the proposed model intends to 

exploit inter-element (architectural) association-features 

such as coupling, cohesion, length of program, etc., to 

perform reusability prediction [1-4]. With this motive, the 

proposed work intends to use the different OOP metrics 

including Line of Code (LOC), Depth of Inheritance Tree 

(DIT), Weighted Method per Class (WMC), Number of 

Children (NOC), Coupling between Object (CBO), and 

Lack of Cohesion in Methods (LCOM) [5-8] to perform 

software reusability prediction. Exploiting the aforesaid 

OOP features, the proposed machine learning model 

intends to perform each class classification as REUSABLE 

and NON-REUSABLE. The overall proposed model 

encompasses data collection, pre-processing, feature 

extraction, selection and two-class classification. Being an 

OOP based model at first, we perform at first Chidamber 

and Kamrer (CK) metrics estimation, followed by feature 

extraction and feature selection. As feature extraction 

model, Univariate Logistic Regression model (ULR) which 

obtained a total of 22 distinct features. Once obtaining 22 

different CK-Metrics, we applied multi-phased feature 

selection method applying Wilcoxon Rank Sum Test, 

Information Gain and Gini value, in sequence to perform 

feature selection. The proposed multi-phased feature 

selection model obtained a total of six OOP-metrics 

encompassing WMC, CBO, DIT, LCOM, NOC, and RFC 

for further processing. Noticeably, since the proposed 

model intended to perform each-class classification as 

REUSABLE or NON-REUSABLE, we obtained above 

stated six features for each class of the considered software 

program. Considering the probability of class-imbalance, 

which is highly probable in at-hand case where the 

presence on Non-Reusable classes can be significantly 

lower in comparison to the reusable classes, and therefore 

we performed min-max normalization followed by data 

sub-sampling. The proposed normalization model intended 

to alleviate the problem of under-fitting or over-fitting as 

well as convergence, while sub-sampling method helped 

alleviating the class-imbalance problem. Thus, performing 

above stated pre-processing and data sub sampling method 

(using up-sampling, down-sampling and SMOTE 

sampling), we obtained a composite feature-set, which was 

applied for further two-class classification. Unlike classical 

approaches where single machine learning algorithm is 

applied to perform classification, in this research paper to 

improve reliability and accuracy we designed a state-of-art 

new “Neuro-Computing assisted Consensus based 

classifier”. The proposed consensus classifier mimics 

maximum voting ensemble [9] with different neural 

networks such as ANN-GD, ANN-RBF, ANN-LM, and 

PNN as base classifiers. In the proposed work, the 

aforesaid base classifiers performed each-class 

classification as REUSBALE or NON-REUSABLE, which 

were labeled as 1 or 0. Thus, obtaining labels by each base 

classifier, we applied MVE concept to achieve consensus 

for each class, and with the higher label value (either 1 or 

0), each class of the program was classified as REUSABLE 

or NON-REUSABLE. Being a consensus-based approach, 

the reliability of the proposed reusability prediction model 

is higher in comparison to the existing state-of-art methods 

[9][10]. To assess performance, we obtained confusion 

metrics for each base classifier as well as the proposed 

Neuro-Computing assisted Consensus based classifier, 

where the relative analysis was done in terms of accuracy, 

precision, recall and F-score. The proposed neuro-

computing assisted consensus model exhibited better than 

other-state-of-art reusability prediction techniques. The 

proposed reusability prediction model can be vital for 

major WoS oriented software design optimization.  

Implementation, while the simulated results are allied 

inferences are given in Section V. Section VI presents the 

conclusion, and the references used in this research are 

given at the last of the manuscript.  

2. Related Work 

This research focuses on dual objectives; first to exploit 

state-of-art advanced data model concept to use OOP-CK 

metrics for class-level reusability prediction, while second it 

intends to design a state-of-art new ensemble learning 

concept for higher accuracy and reliability. With this 

motive, this section discusses some of the key literatures 

pertaining to reusability prediction and ensemble classifier 

design to achieve a novel and robust fault-resilient software 

reusability prediction system.  

 Authors [11] applied Analytical Hierarchical Process 

(AHP) to assess varied factors influencing testability of 

OOP software; however, failed to address the key concerns 

including class-imbalance, local minima and convergence, 

which can have decisive impact on the accuracy of the 

proposed model. Realizing the up-surge of OOP based 

software design and corresponding CK metrics 
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characterizing architectural artifacts of the program, authors 

[12-18] found that LOC, WMC, DIT, NLOC etc. are highly 

associated with design robustness and fault-probability [19]. 

Authors [19] too observed that OOP extracted CK metrics 

can provide better insight to characterize association in 

between class-reusability and its fault-resilience. In other 

words, authors [19] suggested that learning OOP-CK 

metrics can help identifying reusability of a specific class in 

a software module and its corresponding reliability over 

unknown-operating period. To ensure fault-resilient 

software design, authors in [20][21] focused on pre-defining 

a threshold level for each CK metrics. However, its 

accuracy and suitability with a large software program 

could not be examined. Additionally, this research failed 

addressing above stated class-imbalance problem, which is 

common in major at-hand scenario where a program can 

have the major classes as reusable or sometime non-

reusable. Thus, training a classical machine learning over 

such imbalanced data might force it to exhibit false-

positive, and hance can impact overall design. Though, the 

efforts made in [22][23] focused to use the different CK 

metrics per class to achieve its reusability likelihood for 

optimal OOP software design; however, could not address 

aforesaid class-imbalance and convergence problem. 

Authors [24] applied regression concept to assess 

reusability of each class in a software where CK metrics 

were considered as the independent variable while their 

corresponding reuse-proneness was considered as the 

dependent variable. Still, it failed to ensure generalization of 

its solution, as other approaches such as [25][26] performed 

better with the same OOP-CK metrics-based reusability 

prediction. Later, authors in [27] stated that the key OOP-

CK metrics characterizing complexity, customizability, and 

reusability can represent quality of software and its fault-

resilience. In this reference, they applied interface model 

with component reuse level (CRL) to measure the extent of 

reuse-proneness of a class in a software. Authors found that 

LOC metric can be vital as reuse proneness indicator.  

Undeniably, above stated approaches made significant 

effort to use machine learning methods for reusability 

prediction; however, failed in addressing accuracy problem, 

which is must to generalize robustness of a single solution. 

Considering this fact, enhancement is must not only in data 

model, but also for classifier design. Unlike standalone 

classifiers, the concept of consensus based learning, often 

called Ensemble Learning are found more reliable 

[9][10][28-45]. Being consensus-based approach (say, 

decision level fusion), the eventual prediction output is 

hypothesized to be more reliable than any comprising base 

classifier or standalone classifier [29]. Amongst the major 

decision level fusion concepts, maximum voting ensemble 

(say, consensus or weighed ensemble) yields more reliable 

classification outputs. Though, later authors [30] suggested 

performing sub-sampling [31] to achieve better accuracy 

using AdaBoost; however, its efficacy with highly 

correlated features and due to large tree construction, it 

undergoes convergence easily. Though, the concept of data 

sub-sampling opens up the horizon for data-model 

optimization to assist better training and class-imbalance 

alleviation. Neuro-computing ensemble learning was 

suggested in [32][34][35] as well, where the different 

neuro-computing algorithms were used as base classifier to 

perform multi-class classification. Decision level fusion was 

suggested in [31] as well; however, it was designed towards 

other classification problem, and had nothing to deal with 

OOP-CK metrics-based reusability assessment. Though, it 

indicated that the consensus or MVE can yield higher 

accuracy with unparallel reliability for any classification 

problem [36]. In [32][35][44], authors found that though an 

ideal ensemble learning can be constructed with highly 

correlated base-classifiers; however, the scope of 

heterogeneous ensemble can’t be ruled out [37]. Still, 

authors stated that an ensemble learning structure with 

similar (highly correlated) base classifiers can yield better 

accuracy. It can eb considered as one of the key driving 

forces behind this study. Authors [38], designed a support 

vector machine (SVM) ensemble [40] to perform 

classification, where a standard SVM algorithm with 

boosted decision tree were applied as the base classifiers. 

However, applying MVE ensemble concept, it could yield 

accuracy lower than 90%, signifying undeniable inferiority 

towards at hand reusability prediction problem. Though, 

authors suggested to enhance data model (with better 

feature sets) as well as classifier model (with better 

performing base classifiers with MVE) to achieve higher 

accuracy. In this sync, authors [38] applied principal 

component analysis (PCA) based feature selection and 

classified selected features using random forest classifier. 

To further enhance accuracy, approaches like rotation forest 

and AdaBoost were applied together to constitute 

consensus-based classification [39], still its suitability 

remained unexplored for reusability prediction. To explore 

efficacy of neural-network based ensemble, authors [42] 

applied different variants; however, failed to address local 

minima and convergence problem, which are the key 

limitations of the neurocomputing based classifiers. 

Though, authors in [32][34][45] found that the performance 

of a NN can be improved by using an ensemble of similarly 

configured NN. It can be considered as one of the key 

motivations behind this research. Unlike MVE based 

ensemble, authors [45] applied SVM, k-NN and Rocchio 

machine learning algorithms with Dempster’s rule of 

decision level fusion to perform classification. However, the 

maximum accuracy could be confined and hence seems 

limited towards class-level reusability prediction in large 

OOP based software solution.  

Inference-The above discussion indicates that the depth 

exploitation of the different OOP-CK metrics can help 
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assessing relationship in between the different classes, 

consequently can examine reuse proneness of a class in a 

software. However, identifying a set of optimal OOP-CK 

metrics is a problem, which can be solved by certain level-

of-significance centric feature extraction and selection. 

Additionally, the use of sub-sampling concepts and 

normalization can help alleviating over-fitting, under-

fitting, convergence and data imbalance problem. It can 

help to reduce false-positive and hence can improve the 

classification accuracy. Moreover, unlike classical 

standalone classifier-based prediction, the use of 

homogenous ensemble method or consensus-based 

prediction can give higher accuracy as well as reliability, 

which can be vital towards at-hand (class-level) reusability 

prediction task. These key inferences can be considered as 

the key driving force behind this study. 

3. Research Questions 

Considering overall research intends and allied scopes, in 

this research paper a few questions were identified before 

implementation. Noticeably, these research questions 

signify the methodological paradigm to be implemented 

and its respective possible outcomes. In other words, it 

states whether the proposed methodology can yield the 

eventual goal of “fault-resilient reusability estimation and 

per-class reusability prediction”. The key research 

questions identified are given as follows: 

RQ1: Can the use of CK metrics be effective towards 

reusability prediction in OOP based software systems? 

RQ2: Can the use of a multi-phased feature selection 

method by using Wilcoxon Rank Sum Test, Information 

Gain and Gini-Index be able to retain most effective and 

highly accurate OOP-CK metrics for reusability 

prediction? 

RQ3: Can the use of sub-sampling methods alleviate the 

problem of data imbalance or class imbalance to support 

highly accurate and low false positive rate performance? 

RQ4: Can the use of Min-Max Normalization help in 

alleviating the problem of over-fitting or under fitting 

along with convergence? 

RQ5: Can the use of a state-of-art new and robust 

homogenous neurocomputing ensemble method be effective 

to achieve highly accurate software reusability prediction? 

The overall research intends to achieve answers for the 

above stated research questions. The affirmative answers 

for these questions would lead achievement of an optimal 

model towards highly accurate software reusability 

prediction.  

4. System Model  

In this section, the overall proposed fault-resilient software 

reusability prediction model using neuro-computing assisted 

consensus model is discussed. The overall proposed 

reusability prediction model has been accomplished in six 

subsequent (say, phase-wise) processes. These are:  

4.1 Data Preparation  

As already stated in the previous section, this research 

primarily focuses on designing a state-of-art new and robust 

software reusability prediction model for OOP-based WoS 

software solution. Therefore, we selected an arbitrary 

software module from www.sourceforge,com , which is 

developed using OOP programming concept in Java 

Language. In order to convert an OOP based Java program 

and retrieve targeted Chidamber and Kamrer software 

metrics, we applied Web-of-Service Data language 

(WSDL) tool. Typically, WSDL represents the XML-based 

interface definition language characterizing the different 

functions or components of the web services. Here, each 

function or allied functionalities used to be the component 

considered as a port type i.e., 𝑃 =

{𝑀0(𝐼0, 𝑂0),𝑀1(𝐼1, 𝑂1), … . . , 𝑀𝑛(𝐼𝑛 , 𝑂𝑛)}. Practically, these 

functions or ports perform different tasks 𝑀𝑖 by transferring 

input Ii into output  𝑂𝑖 . In this mechanism, the functional 

component along with its port-type can be characterized in 

the form of a unique nomenclatures. These functional 

components often encompass instructions or the specific 

elements to perform data-exchange between the service 

provider and user or consumers. Moreover, individual data 

element states specific categorical definitions, which is 

defined in terms of XML, while XML is stated in the form 

of XML Schema Definition (XSD) language representing 

the data type definition. Thus, the associated activities 

including string, integer, restrictions, encapsulation and 

extension are employed to represent the complex software 

structure. Thus, the use of WSDL data enabled retrieval of 

the XSD code by using type’s element. Moreover, XSD 

code was stored into a separate file which was connected to 

the WSDL document so as to obtain the type reuse. In the 

proposed data collection method, at first the services were 

coded, which was followed by conversion of codes into the 

corresponding WSDL document. To obtain SDL document 

or values from OOP based java programs other tools such 

as Java2 WSDL, and SOAP can be applied. Moreover, 

Apache CXF, eclipse Spring-Tool-Suite, Soap UI, and 

WSImport too can be applied to convert WSDL document 

into Java file for further software metrics estimation. In this 

research, we applied “WSImport” tool to convert WSDL 

documents into OOP-java file, which was later processed 

using CKJM (Chidamber and Kamrer Java Machine) tool 

[16]. CKJM tool helped extracting the different software 

metrics characterizing software structure and corresponding 

information including coupling, cohesion, complexity etc. 

The overall implementation schematic for the proposed data 

collection and CK metrics extraction is given in Fig. 1.  
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Fig. 1 Data Preparation for the proposed use case-study 

Though, the use of CKJM tool enables extracting a total of 

22 software (OOP) metrics; however, in the proposed work 

we extracted a total of 17 software metrics given as follows:  

­ Weighted Methods per Class (WMC), 

­ Depth of Inheritance Tree (DIT), 

­ Number of Children (NOC), 

­ Coupling between Object Classes (CBO), 

­ Response for a Class (RFC), 

­ Lack of Cohesion in Methods (LCOM), 

­ Afferent Couplings (Ca), 

­ Efferent Couplings (Ce), 

­ Number of Public Methods (NPM), 

­ Data Access Metric (DAM), 

­ Measure of Aggregation (MOA), 

­ Measure of Functional Abstraction (MFA), 

­ Cohesion Among Methods of Class (CAM), 

­ Cyclomatic Complexity (CC), 

­ Lines of Code IC- Inheritance Coupling (LOC), 

­ Coupling Between Methods (CBM), and 

­ Average Method Complexity (AMC). 

 Thus, once obtaining the above stated software metrics, 

we further processed for feature extraction using Univariate 

Logistic Regression. Though, the CKJM metrics can 

directly be processed for further computation such as pre-

processing and classification; however, realizing the fact 

that in a software program not each class or component can 

have the equal significance towards reusability prediction, 

and therefore in the proposed work, we applied ULR based 

feature extraction followed by multi-phased feature 

selection. The details for the same is given in the sub 

sequential sections.  

4.2 ULR based Feature Extraction 

Logistic regression analysis typically performs statistical 

assessment by using dependent (here, per-class software 

reusability) as well as independent (software metrics) 

variables. Being a two-class problem; REUSABLE or 

NON-REUSABLE, the dependent variable serves two 

labels or values 1 or zero, signifies REUSABLE CLASS 

and NON-REUSABLE CLASS, respectively. In our 

proposed method, we obtained the level of significance of 

each metrics towards software reusability prediction. 

Mathematically, we use (1) to estimate logistic regression 

value.  

𝑙𝑜𝑔𝑖𝑡[𝜋(𝑥)] = 𝛼0 + 𝛼1𝑋 (1) 

In (1), the function logit[π(x)] states the dependent variable 

while X presents the independent variable. The parameter π 

signifies the likelihood factor signifying the importance of 

each metrics. Mathematically we estimate 𝜋(𝑥) as per (2).  

𝜋(𝑥) =
𝑒𝛼0+𝛼1𝑋

1 + 𝑒𝛼0+𝛼1𝑋
 

(2) 

In synch with our proposed software reusability prediction 

purpose, let the data be 𝑋 that possesses 𝑁 rows and 𝑀 + 1 

columns, where 𝑀  signifies the number of independent 

variables for each raw signifying software metrics. Let the 

parameter vector, 𝛽  be a column vector of length 𝐾 + 1. 

Additionally, there is single parameter pertaining to each 𝑀 

columns of the independent variable. Thus, applying 

logistic regression function also called 𝐿𝑜𝑔𝑖𝑡  function we 

obtained the log-odds of the likelihood of success to the 

linear component. Mathematically, 

𝐿𝑜𝑔𝑖𝑡 (
𝜃𝑖

1 − 𝜃𝑖

) = ∑ 𝑥𝑖𝑚𝛽𝑚         𝑖 = 1,2, … , 𝑁

𝑀

𝑚=0

 

(3) 

In (3), (
𝜃𝑖

1−𝜃𝑖
) states the component called odds-of-an-event. 

Now, let 𝑦 takes a value 1 for REUSABLE and 0 for NON-

REUSABLE, 𝑦  can be stated to have a Bernoulli 

distribution with a probability parameter 𝑝. Thus, obtaining 

the probability parameter, also called p-value for each 

instance, we select the one with 𝑝 ≥ 0.05 . Thus, 

implementing ULR, out of 17 software metrics, we obtained 

top-6 software metrics having higher significance towards 

reusability prediction. The selected finally software metrics 

were WMC, CBO, DIT, LCOM, NOC, and RFC, which 

were used for further processing.  

4.3 Data Sub-Sampling 

This is the matter of fact that in a software the probability of 

non-reusable or even reusable classes can be non-evenly 

distributed. In other words, a software can have very less 

non-reusable class as well or vice versa. Such probability 

can have the class-imbalance problem characterizing either 

majority of reusable class or non-reusable class. Thus, 

training a machine learning model with such class-

imbalanced dataset often leads false-positive (prediction) 

result. This as a result can affect the accuracy of the 

prediction system and its reliability. Considering such class-

imbalance or data-imbalance problem, in this paper we 

applied data-sub-sampling concept using UP-Sampling, 

Down-Sampling and Synthetic Minority Oversampling 

Technique (SMOTE) [47][48]. Noticeably, to alleviate the 
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key problem of data-skewness [46], in this paper three 

different sub-sampling methods have been applied whose 

respective outputs are concatenated together to generate a 

final feature vector for further computation.  

To perform up-sampling and down-sampling we considered 

the confidence level of 95%. In up-sampling we performed 

random duplication of the observations or patterns from the 

minority classes so as to reinforce its value. On the other 

hand, down-sampling was performed in such manner that it 

removes observations randomly from the majority class so 

as to avoid its presence from dominating the learning 

model. Undeniably, performing over-sampling of the 

minority class or under-sampling of the majority class can’t 

alleviate data-skewness or class-imbalance problem 

completely, as it eventually turns into bias of the model 

towards the majority class [49][50]. In such conditions, 

when new sample comes into the learning model, it is 

finally predicted as majority class due to bias towards the 

majority class [51][52]. Such limitations can force most of 

the machine learning to yield false prediction output(s) and 

can reduce accurate of the prediction model. Considering 

this fact, in addition to the up-sampling and down-sampling 

we applied SMOTE technique. In our proposed SMOTE 

model, we generated synthetic positive samples using K-

nearest neighbor (k-NN) algorithm. Here, we employed 5-

Nearest Neighborhood to the minority “NON-REUSABLE” 

class, which was followed by equalization of the samples in 

such manner that it yields the number of majority class 

same as the number of minority class. Thus, performing 

above stated three sampling techniques we obtained Up-

Sampled Data, Down-Sampled Data, SMOTE Data, which 

were combined or concatenated together to result a final 

feature set for further computation.  

4.4 Wilcoxon Rank Sum Test based Feature 

Selection  

This is the matter of fact that the use of data sub-sampling 

can alleviate the problem of data skewness or data-

imbalance; however, the use of Up-Sampling, Down-

Sampling and SMOTE altogether generates a significantly 

large dataset, which can force a machine learning model to 

undergo pre-mature convergence and hence can affect 

overall prediction or classification accuracy [53]. 

Considering this problem, in this paper Wilcoxon Rank 

Sum Test (WRST) based feature selection method, which is 

also called significant predictor test has been applied. 

WRST is a type of non-parametric test with independent 

samples. Functionally this method examines the correlation 

between the variables (software metrics or CK-metrics 

WMC, CBO, DIT, LCOM, NOC, and RFC) and their 

significance towards reusability prediction accuracy. Here. 

WRST algorithm estimates correlation between or amongst 

the software metrics per class and corresponding feature 

values towards reusability likelihood. Here, we considered 

different software metrics (i.e., WMC, CBO, DIT, LCOM, 

NOC, and RFC) as independent variable while the 

reusability likelihood was considered as dependent variable. 

This method obtained p-value for each feature variable in 

reference to its significance towards reusability prediction. 

Thus, based on the p-value each feature element was 

labeled as significant or insignificant. Since, we considered 

𝑝 = 0.05  as the level of significance, the data instance 

having p-value higher than the level of significance were 

retained, while rest were dropped for further computation.  

4.5 Min-Max Data Normalization  

 This is the matter of fact that in major classification or 

prediction systems, especially in large features-based 

models data imbalance and convergence are the key 

problems, which hinder the overall performance of the 

system. Post feature extraction and selection the retrieved 

data elements are of the different size and range and hence 

computing over such unstructured data can force learning 

model to undergo pre-mature convergence and even over-

fitting. It can affect overall computational efficiency (i.e., 

accuracy and reliability) and therefore to alleviate it, we 

performed Min-Max normalization over the retained 

significant features. The proposed Min-Max normalization 

algorithm, as indicated in (4) mapped or normalized feature 

values in the range of 0 to 1. This method linearly 

transformed and mapped the input features in the range of 

[0, 1]. Functionally, each data element xi  of the selected 

features X  was mapped to the corresponding normalized 

value xi
′  in the range of [0, 1]. We used (4) to estimate 

normalized value(s) of the input data𝑥𝑖 . 

𝑁𝑜𝑟𝑚(𝑥𝑖) = 𝑥𝑖
′ =

𝑥𝑖 − 𝑚𝑖𝑛 (𝑋)

𝑚𝑎𝑥(𝑋) −  𝑚𝑖𝑛 (𝑋)
 

(4) 

In (4), the data elements min(X)  and max(X)  state the 

minimum and maximum values of X, respectively. 

4.6 Neuro-Computing assisted Consensus based 

Reusability Prediction  

Amongst the major machine learning algorithms, neural 

network has been applied extensively towards data learning 

and classification purposes [32][34]. The robustness of 

ANN makes it efficient to be used in diverse classification 

problems, though based on computational complexities and 

adaptive computation ANN has evolved through different 

phases. Exploring in depth it can be found that the 

performance of ANN is directly related to the 

corresponding learning method. Thus, based on learning 

method, ANN has been evolved as ANN with steepest 

gradient (SD), ANN with gradient descent (GD), ANN with 

RBF (ANN-RBF), ANN with Levenberg Marquardt (ANN-

LM), Probabilistic Neural Network (PNN), etc. However, in 

sync with non-linear heterogeneous data classification 

ANN-GD, ANN-RBF, ANN-LM and PNN have performed 
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well. Unlike ANN-SD, ANN-GD avoids local minima and 

convergence issue, even with large non-linear feature set. 

Similarly, ANN-LM possesses higher robustness than 

ANN-SD and ANN-GD, individually. Moreover, ANN-LM 

can be configured to possess feature of ANN-SD as well as 

ANN-GD and therefore has better performance stability 

even with large, non-linear and heterogeneous data. 

However, in literatures ANN variants are found performing 

distinctly with the different accuracy towards any 

classification problem. Consequently, it makes ambiguity in 

selecting the best neurocomputing algorithm. On the other 

hand, the recent literatures [32][34] revealed that unlike 

standalone classifier, ANN based ensemble can give more 

accurate and reliable prediction result [54]. Considering this 

fact, in this paper we applied different ANN variants or 

algorithms as base-classifier to design an MVE ensemble 

learning model, also called consensus learning model to 

perform reusability prediction. More specifically, in the 

proposed ensemble learning model, we applied the 

following key classifiers as base classifiers. 

1. ANN-GD, 

2. ANN-RBF, 

3. ANN-LM (with One and Two Hidden Layers), and  

4. PNN.  

Thus, the use of above stated neurocomputing model with 

four ANN variants constitutes a homogenous ensemble 

structure to perform consensus-based prediction. 

Noticeably, being base classifiers, these ANN variants 

functions independently and classifies each class as 

REUSABLE or NON-REUSABLE, and subsequently 

labels each class as 1 and 0, respectively. The voting per 

class by each base classifier has been used to estimate 

consensus or the maximum voting score. Thus, the higher 

score label (0 or 1) has been applied to predict reusability 

probability of that specific class.  

The functional architecture of the applied ANN model with 

the input layer, the hidden layer and the output layer is 

given in Fig. 2. Functionally, it embodies multiple neurons 

representing the input data (or the CK metrics) that are 

processed at the distinct intermediate layers (say, hidden 

layers) for two-class classification (at the output layer). To 

learn over the input data, ANN applies error-reduction 

method, where during learning it estimates the difference 

between the expected output and the observed output 

(signifying error). The learning process continues till the 

error output becomes zero or near zero. Thus, achieving 

zero-error the outputs at the output layer is predicted as the 

final output. Considering the at-hand problem of link-

prediction, ANN is expected to perform two-class 

classification at the output layer. At the input layer of the 

ANN, it applied linear activation function, which generates 

output same as the input (i.e.,Oo =  Ii), while the output of 

the hidden layer is fed to the input of the output layer. 

Noticeably, output layer of the ANN applies Sigmoid 

function (5) to generate Oh. 

Input Layer

Hidden Layer

Output 
Layer

REUSABLE/
NON-

REUSABLE

WMC

NOC

DIT

CBO

RFC

LCOM

W

Wk

 

5. Neuro-computing Based Reusability 

prediction  

𝑂ℎ =
1

1 + 𝑒−𝐼ℎ
 

(5) 

In (5), 𝐼ℎ represents the input at the hidden layer. ANN is 

often defined as 𝑌′ = 𝑓(𝑊, 𝑋)  where Y′  states the output 

vector, while 𝑋  and W  presents the allied input and the 

weight values, respectively. Functionally, ANN applies 

certain error function such as mean square error (MSE) to 

achieve the higher accuracy, which is estimated using (6).  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖

′ − 𝑦𝑖)
2

𝑛

𝑖=1

 
(6) 

In (6), y  presents the observed output value, while the 

expected value is yi
′ . As stated above, the key difference 

between the different ANN variants is the way it schedules 

or updates its weight values over training. A snippet of the 

different ANN variants (i.e., ANN-GD and ANN-LM) is 

given as follows.  

a. ANN-GD 

Let the regression for the learning method, while reducing 

error value be (7).  

𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑤

𝐿(𝑤) (7) 

𝐿(𝑤) = ∑ 𝐿(𝑦𝑡 , 𝑓𝑤(𝑥𝑡))

𝑁

𝑡=1

+ 𝜆𝑅(𝑤) 

(8) 

In ANN-GD setup, 𝑓𝑤(𝑥) factor states the non-linear weight 

w, and thus it intends to achieve a local optimum for (8) 

using GD method, which updates w iteratively by updating 

wtbywt+1.  

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝛻𝐿 (9) 

𝑤𝑗,𝑡+1 = 𝑤𝑗,𝑡 − 𝜂𝑡

𝜕𝐿

𝜕𝑤𝑗

 
(10) 
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In (9), the parameter 𝛻𝐿signifies the error value, which is 

mathematically given as (11). 

=
1

𝑛
∑(𝑦𝑖

′ − 𝑦𝑖)
2

𝑛

𝑖=1

 
(11) 

In (10) 𝜂𝑡 states the learning rate, which reduces over time 

𝑡.  Thus, performing GD based weight estimation and 

learning it classifies each software component or class as 

REUSABLE or NON-REUSABLE, and labels each class as 

1 and 0, respectively.  

b. ANN-RBF 

Similar to the standard ANN algorithm, ANN-RBF too 

encompasses input layer, hidden layer and output layer; 

however, unlike classical methods the neurons in the hidden 

layer contains Gaussian transfer functions whose outputs 

are reverse proportional to the distance from the center of 

the neuron. Functionally, ANN-RBF is equivalent to K-

Means clustering concepts and Probabilistic Neural 

Network (PNN); however, the prime disparity is that the 

other methods such as PNN has single neuron for each data-

point (in training), while ANN-RBF comprises multiple 

neurons (but lower as compared to the number of training 

points). Though, for a low or medium size dataset, PNN can 

be appropriate; however, its efficiency remains confined 

over large, non-linear input pattern. Considering this 

motive, we applied ANN-RBF as one of the base classifiers 

to perform (each-class) software reusability prediction. In 

the proposed ANN-RBF model, the hidden units enable a 

set of functions comprising random basis for the input 

patterns. In this approach the hidden units are called as the 

radial centers which refer a vector c1, c2, … , ch. 

In ANN-RBF, the input features, often called input-space is 

transferred into hidden space by means of non-linear 

transformation method. The transformation from the hidden 

unit space to the output space remains the linear dimension 

of each centre for n − point input network (i.e., n × 1 

dimension). In the proposed ANN-RBF, the RBF in the 

hidden layer generates non-zero response and each hidden 

unit and contains its own receptive field in the input space. 

Here, 𝑥𝑖 be the input vector present in the receptive field for 

center 𝑐𝑗 , 𝑐𝑗 , is activated by selecting proper weights to 

achieve expected target output (12).  

𝑦′ = ∑∅𝑗𝑤𝑗

ℎ

𝑗=1

,    ∅𝑗 = ∅(‖𝑥 − 𝑐𝑗‖) 

(12) 

In (12), 𝑤𝑗  states the weight of the j − th center, while ∅ 

represents the radial function. We applied GD weight 

update method for ANN-RBF to learn over the input 

features or the OOP-CK metrics to classify each class as 

REUSABLE or NON-REUSABLE.  

c. ANN-LM 

ANN-LM is stated to be the most efficient neurocomputing 

algorithm because of its ability to exploit efficacy of both 

ANN-SD as well as ANN-GD. Additionally, better learning 

and allied weight update mechanism enables ANN-LM to 

exhibit higher accuracy amongst the other variants. 

Functionally, ANN-LM performs localization of the 

minimum value of the multivariate function, called Sum of 

Squares (SoS) of the non-linear real-valued functions. It 

strengthens ANN-LM algorithm to perform swift weight 

estimation (13) and tuning, and thus helps in achieving 

higher accuracy even without undergoing local-minima and 

convergence, easily. It makes ANN-LM robust to be used 

for large feature learning for classification. ANN-LM 

applies equation (13) to perform weight update for efficient 

learning.   

𝑊𝑗+1 = 𝑊𝑗 − (𝐽𝑗
𝑇𝐽𝑗 + 𝜇𝐼)

−1
𝐽𝑗𝑒𝑗 (13) 

In (13), Wj  states the present weight while Wj+1  signifies 

the updated weight.  𝐼presents the identity matrix, while the 

Jacobian matrix is calculated as per (14). In (13), the 

learning parameter µ signifies the combination coefficient. 

Typically, the low value of µ triggers ANN-LM to behave 

as ANN-GD, while higher value forces to act as ANN-SD. 

J

=

[
 
 
 
 
 
 
 

𝑑

𝑑𝑊1

(𝐸1,1)
𝑑

𝑑𝑊2

(𝐸1,1) ⋯
𝑑

𝑑𝑊𝑁

(𝐸1,1)

𝑑

𝑑𝑊1

(𝐸1,2)
𝑑

𝑑𝑊2

(𝐸1,2) ⋯
𝑑

𝑑𝑊𝑁

(𝐸1,2)

⋮ ⋮ ⋮ ⋮
𝑑

𝑑𝑊1

(𝐸𝑃,𝑀)
𝑑

𝑑𝑊2

(𝐸𝑃,𝑀) ⋯
𝑑

𝑑𝑊𝑁

(𝐸𝑃,𝑀)
]
 
 
 
 
 
 
 

 

(14) 

 In (14), 𝑁 states the total weight counts and P presents the 

input features. The output is given by M. In our proposed 

work, ANN-LM was designed with two distinct structures, 

one comparison single hidden layer, while another model 

was designed with two hidden layers. Thus, a total of two 

ANN-LM models with 1 and 2 hidden layers were used as 

the base classifiers. 

Undeniably, above discussed neurocomputing models or 

ANN variants (ANN-GD, ANN-RBF and ANN-LM) have 

played vital role towards data science purposes, such as 

classification or identification. However, iterative learning 

and weight calculation confine their robustness and imposes 

significantly large computation. To alleviate such problems, 

recently a new variant named Probabilistic Neural Network 

(PNN) has been proposed. In our proposed HEL model, we 

applied PNN as one of the base classifiers. The details of 

PNN are given as follow.    

d. Probabilistic Neural Network (PNN) 
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Probabilistic Neural Network (PNN) represents a variant of 

feed forward neural network, often used for classification 

problems. In our proposed PNN model, the parent 

probability distribution function (PDF) of each subject-class 

or patient is approximated by means of a Parzan window 

and a non-parametric function. Subsequently, employing 

PDF of each subject class label, the likelihood of a new 

input is obtained as per Bayes rule. Here, the use of Bayes 

rule helps in assigning class the highest posterior probability 

to the new input. This method reduces probability of mis-

detection or mis-classification significantly. Structurally, 

PNN model was derived from Bayesian network in 

conjunction with Kernel Fisher discriminant analysis. It was 

designed as a multi-layered feed forward network with four 

layers; input later, pattern layer, summation layer and output 

layer. Here, the first layer estimates the distance from the 

input vector to the training input vector. Consequently, it 

generates a vector where each element signifies how close 

the input is to the training input. Similarly, the second layer 

performs summation of the contribution of each class-label 

of the input and eventually generates its output as a 

probability vector. Eventually, a transfer function is applied 

on the output of the second layer and thus selects the 

maximum of the probability vector and generates 1 for 

positive class (i.e., REUSABLE) and 0 for negative (i.e., 

NON-REUSABLE). The detailed discussion of the PNN 

architecture and its function is given as follows. 

We designed three-layered PNN architecture with input 

layer, hidden layer and output layers. The overall model 

was designed to perform two-class classification (i.e., K=2). 

The input layer comprised six nodes each carrying WMC, 

CBO, DIT, LCOM, NOC, and RFC metrics, distinctly. 

These are the fan-out nodes that split or branch each 

subject-feature to nodes in all hidden layers, so as to ensure 

that each hidden layer received the complete subject-

features (say, feature vector 𝑥 ). Here, the hidden layer’s 

nodes are transformed into groups, one group for each class 

of target category. In the proposed design each hidden node 

in a group for class K belongs to a Gaussian function, 

centered on corresponding feature vector in the 𝑘th class. 

The comprising Gaussians in a class group feed their 

respective functional values to the same output layer node 

for that class. This as a result generates 𝐾 output nodes. At 

the output layer or output node for class K (say, 

REUSABLE “1” and NON-REUSABLE as “0”), all the 

Gaussian values for that class K are aggregated. 

Subsequently, the sum is further scaled in such manner that 

the probability value under the sum function remains unity 

(it constitutes PDF). Let 𝑃 be the feature vector such that 

{𝑥(𝑝): 𝑝 = 1,… , 𝑃} , which is labelled as Class 1 (i.e., 

REUSABLE). Similarly, let 𝑄 be the feature vector 

{𝑦(𝑟): 𝑟 = 1,… , 𝑅}  to be labeled as class 2 (i.e., NON-

REUSABLE). Thus, in the hidden layer of the PNN there 

would be 𝑃 nodes in the group for Class 1 and R-nodes in 

the group for class 2. The mathematical model for each 

Gaussian centered on the corresponding class 1 and class 2 

point be 𝑥(𝑝)  and 𝑦(𝑞)  (it signifies feature vector for N-

dimensional vector) for any input vector 𝑥 be (15) and (16).  

𝑔1(𝑥) = [
1

√2𝜋𝜎2𝑁
] 𝑒𝑥𝑝 {−

−‖𝑥 − 𝑥(𝑝)‖
2

(2𝜎2)
} 

(15) 

𝑔2(𝑦) = [
1

√2𝜋𝜎2𝑁
] 𝑒𝑥𝑝 {−

−‖𝑦 − 𝑦(𝑞)‖
2

(2𝜎2)
} 

(16) 

 The value of 𝜎 is taken to be 50% of the average distance 

between the feature vectors in the same group. The 𝑘 th 

output node summarizes the values received from the 

hidden nodes in the 𝑘-th group, which is also called Parzen 

Window or the mixed Gaussian. We defined sum as (17) 

and (18).  

𝑓1(𝑥)

= [
1

(2𝜋𝜎2)𝑁
] (

1

𝑃
) ∑ 𝑒𝑥𝑝 {−

−‖𝑥 − 𝑥(𝑝)‖
2

(2𝜎2)
}

(𝑝−1,𝑃)

 

(17) 

𝑓2(𝑦)

= [
1

(2𝜋𝜎2)𝑁
] (

1

𝑄
) ∑ 𝑒𝑥𝑝 {−

−‖𝑦 − 𝑦(𝑞)‖
2

(2𝜎2)
}

(𝑞−1,𝑄)

 

(18) 

In (17-18), 𝑥 represents an input feature vector, 𝜎 represents 

the standard deviation for Gaussians (in Class 1 and Class 

2), 𝑁 =6 presents the input vector dimension, P be the 

number of center vectors in Class 1, and R be the number of 

centers in Class 2. 𝑥(𝑝) and 𝑦(𝑟)  be the centers in the 

corresponding classes 1 and 2. The nominator component 

‖𝑥 − 𝑥(𝑝)‖
2
 presents the Euclidean distance between 𝑥and 

𝑥(𝑝) . Here, any input vector 𝑥  is put-through both sum 

functions 𝑓1(𝑥) and 𝑓2(𝑦) and therefore the highest value of 

𝑓1(𝑥) and 𝑓2(𝑦) decides the class. Thus, implementing PNN 

we performed two-class classification which labelled each 

subject as “REUSABLE” or “NON-REUSABLE”. 

• Consensus based Ensemble Learning  

The above discussed machine learning algorithms were 

applied as base classifier to perform two-class classification. 

Each of the classifier labeled each class as REUSABLE 

(“1”) or NON_REUSABLE (“0”). Thus, obtaining the 

classified label for each class by all five base classifiers, we 

applied MVE ensemble concept also called consensus-

based ensemble model. In this approach, the higher 

prediction output (1 or 0) by each of the base classifier was 

considered as the final prediction result. In other words, if 

for a specific class in the software, in case out of five base 

classifiers (i.e., ANN-GD, ANN-RBF, ANN-LM (with one 

hidden layer), ANN-LM (with two hidden layers) and 

PNN), if three classifiers predict a class as “1”, then the 
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proposed consensus-based ensemble model predicts that 

specific class as REUSABLE. On the contrary, in case three 

base classifiers predicts a class as “NON-REUSABLE”. 

Thus, unlike classical standalone classifier-based prediction, 

the proposed consensus-based approach employs maximum 

votes and hence has higher reliability towards software 

component reusability prediction.  

6. Results and Discussion  

In this paper, a novel and robust neurocomputing assisted 

homogenous ensemble learning model was developed for 

per-class software reusability prediction in OOP based WoS 

software solutions. Unlike classical approaches, in the 

proposed method, the key emphasis was made on 

improving both data model as well as classification model 

so as to achieve higher accuracy. Realizing the fact that the 

suitability and optimality of data often impacts eventual 

classification output, at first, we focused on improving 

dataset while alleviating classical problems of data 

imbalance, local minima and convergence etc. Considering 

OOP based software design demands, we considered open 

to access software available at www.sourceforge.com. 

Noticeably, the considered data was a WoS software 

developed using OOP concept. Thus, obtaining the raw 

software (for the present case study), at first, we applied 

WSDL tool in conjunction with CKJM that helped 

extracting a total of 17 OOP-CK metrics. However, 

realizing the fact that not all metrics can have the decisive 

significance towards reusability prediction, and therefore 

we applied ULR based feature extraction followed by 

WRST based significant predictor test. For WRST, we 

assigned level of significance P=0.05. Thus, performing 

feature selection a total of six OOP-CK metrics were 

obtained. These were WMC, CBO, DIT, LCOM, NOC, and 

RFC. Subsequently, realizing the likelihood of data-

imbalance, we performed data sub-sampling using up-

sampling, down-sampling and SMOTE sampling. 

Noticeably, we performed sub-sampling with the 

confidence interval of 95%. Once obtaining different data 

samples, we concatenated together to constitute All Matrix, 

though for comparison we considered up-sample data, 

down-sampled data, and SMOTE sampled data as well for 

which we performed each class classification. In other 

words, we performed two-class classification over each 

sample (i.e., up-sampled, down-sampled, SMOTE sampled 

and All Matrix sample). Here, our prime motive was to 

assess whether performing different sampling method can 

help achieving higher accuracy or not. The accuracy 

precision, recall and AUC performance over the different 

data samples are given in Table 1 to Table 4. To further 

improve the performance we performance, we applied Min-

Max normalization over the sampled data which mapped 

each data element or metrics values in the range or [0-1]. 

Here, the key intend was to alleviate any probability of 

premature convergence and over-fitting problem. Thus, 

once performing data-normalization the OOP-CK metrics 

(i.e., selected features of WMC, CBO, DIT, LCOM, NOC, 

and RFC) were fed as input to the different neurocomputing 

algorithms. Noticeably, being a homogenous ensemble 

model, we designed ANN-GD, ANN-RBF, ANN-LM (with 

one hidden layer), ANN-LM (with two hidden layers) and 

PNN as base classifiers. Here, each base classifier 

performed two-class classification and perform per-class or 

each-class classification as REUSABLE or NON-

REUSABLE, and labeled each class as 1 and 0, 

respectively. Thus, performing each-class classification by 

all five base classifiers we applied MVE ensemble concept 

to obtain consensus (for each class) were a class with three 

“1’s” was predicted as REUSABLE, while a class with 

three “0’s” was classified or predicted as NON-

REUSABLE. Thus, applying this method, we performed 

eventual software reusability prediction. Being a consensus-

based approach, the accuracy and reliability of the proposed 

model can be hypothesized to be higher.  

Being a classification problem, to assess performance by the 

proposed model, we obtained confusion matrix by each 

classifier, over each sample data (up-sampled, down-

sampled, SMOTE and All Matrix sampled data). The 

confusion matrix was obtained in the form of true positive 

(TP), true negative (TN), false positive (FP) and false 

negative (FN). Retrieving these matrix values for each base 

learner as well as ensemble classifier, the performance has 

been obtained in terms of accuracy, precision and recall, 

also called sensitivity. The definitions of these performance 

variables are given in Table 2.  

Table 1. Performance Parameters 

Parameter Mathematical 

Expression 

Definition 

Accuracy (𝑇𝑁 + 𝑇𝑃)

(𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃)
 

Signifies the 

proportion of 

predicted fault prone 

modules that are 

inspected out of all 

modules. 

http://www.sourceforge.com/
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Precision 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

States the degree to 

which the repeated 

measurements under 

unchanged 

conditions show the 

same results. 

Recall 𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

It indicates how 

many of the relevant 

items are to be 

identified. 

 

Table 2 presents the accuracy performance by the different 

base classifiers as well as proposed neurocomputing 

assisted consensus ensemble learning model. Considering 

the results obtained, it can easily be visualized that 

amongst the different neuro-computing models and the 

derived consensus-based ensemble learning concept, the 

proposed maximum voting-based ensemble exhibits the 

highest classification accuracy (93.57%). Noticeably, the 

proposed MVE ensemble or consensus-based ensemble 

achieves the highest accuracy of 96.57% with All-Matrix. 

It justifies that the sub-sampling of the input features can 

help not only to alleviate data imbalance, but can also 

enable higher accuracy. The relative performance shows 

that after the proposed MVE ensemble of consensus-based 

ensemble model, ANN-LM (with two hidden layers) 

performs better, and therefore as standalone solution it can 

be considered as the potential (say, sub-optimal) classifier. 

However, the superiority of the proposed MVE based 

consensus ensemble classifier confirms its suitability 

towards at hand software reusability prediction. The other 

base-classifiers are found relatively low accurate. Thus, the 

results obtained (Table 2) affirms that the use of data sub-

sampling and composite feature learning can be optimal 

towards reusability prediction where MVE based 

neurocomputing (homogenous) ensemble classifier can be 

most effective approach to perform reusability prediction. 

It affirms acceptance of RQ3. Additionally, the other 

research questions such as RQ1 and RQ2 too can be 

justified affirmatively as the proposed software metrics 

have yield high accuracy with manual verification 

similarity.  

 

Table 2 Accuracy (%) Performance 

Sampl

ed 

Data  

ANN-

GD 

AN

N-

RBF 

ANN

_ LM 

(1-

Hidd

en 

Laye

r) 

ANN- 

LM 

(2 

Hidd

en 

layer) 

PNN 
MV

E 

Origina

l Data  
92.01 

93.1

7 
95.15 95.46 

94.2

1 

89.3

1 

Up-

Sample

d Data  

95.31 
94.6

1 
94.80 95.64 96.1 

91.9

4 

Down-

Sample

d Data  

94.95 
95.4

6 
95.5 95.64 95.7 

91.0

0 

SMOT

E 

Sample

d Data  

89.17 
89.1

0 
92.3 91.21 91.4 

91.0

4 

ALL 

Matrix 
95.09 

95.1

3 
95.5 95.47 93.6 

96.5

7 

 

Table 3 Precision Performance 
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Samples 
ANN-

GD 

ANN-

RBF 

ANN_ 

LM (1-

Hidden 

Layer) 

ANN-

LM (2 

Hidden 

layer) 

PNN MVE 

Original 

Data  
0.91 0.91 0.93 0.91 0.93 0.89 

Up-

Sampled 

Data  

0.92 0.93 0.93 0.91 0.92 0.88 

Down-

Sampled 

Data  

0.91 0.92 0.92 0.92 0.93 0.88 

SMOTE 

Sampled 

Data  

0.83 0.83 0.87 0.87 0.88 0.89 

ALL 

Matrix 
0.91 0.92 0.92 0.92 0.91 0.94 

 

Table 3 presents the precision performance by the proposed 

model. Noticeably, the highest precision obtained by the 

proposed model was 0.94, amongst all classifiers, especially 

with the All-Matrix features. It indicates that similar to the 

accuracy performance the proposed MVE ensemble 

(neurocomputing assisted consensus (homogenous) 

ensemble) model shows higher precision and unchanged 

performance over changed samples or environment. It 

confirms reliability and robustness of the proposed 

consensus-based ensemble learning model towards software 

reusability prediction. The results obtained (Table III) too 

confirms acceptability of RQ2, RQ3, RQ4 and RQ5. 

Table 4 Recall Performance 

Samples 
ANN-

GD 

ANN-

RBF 

ANN_LM 

(1-

Hidden 

Layer) 

ANN-

LM (2 

Hidden 

layer) 

PNN MVE 

Original 

Data  
0.93 0.93 0.94 0.98 0.96 0.98 

Up-

Sampled 

Data  

0.93 0.92 0.94 0.98 0.95 0.97 

Down-

Sampled 

Data  

0.92 0.94 0.95 0.99 0/96 0.97 

SMOTE 

Sampled 

Data  

0.94 0.94 0.97 0.96 0.97 0.81 

ALL 

Matrix 
0.96 0.97 0.97 0.99 0.98 0.99 

 

In Table 4, the recall performance by the proposed model is 

presented. Noticeably, recall is also called as sensitivity. 

Observing the results (Table 4), it can be found that the 

proposed neurocomputing assisted homogenous ensemble 

model achieves the highest recall or sensitivity of 0.99. It 

indicates higher sensitivity of the proposed model, which 

could be contributed due to better feature learning ability. 

Noticeably, the higher values of precision and recall 

indicates higher F-score and thus, signifies robustness of the 

proposed model to achieve higher superior performance 

even over large non-linear features.Thus, observing overall 

performance and allied inferences, it can be stated that the 

proposed neuro-computing assisted consensus (or 

ensemble) learning model achieves higher accuracy, 

precision and recall (or sensitivity), signifying robustness of 

the proposed model towards WoS software reusability 

prediction. The research questions as defined in Section 3 

are found to be affirmatively accepted, and hence affirms 

suitability of the proposed (homogenous) ensemble learning 

model towards software reusability prediction. Though, the 
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role of the strategic model with WSDL-CKJM based OOP 

metrics estimation, followed by ULR based feature 

extraction and WRST based feature selection and sub-

sampling can’t be ignored. The improved data model can 

have the decisive impact in achieving above discussed 

superior performance. Additionally, the robustness of the 

proposed neurocomputing assisted homogenous ensemble 

model with MVE or consensus ensemble helped achieving 

the most efficient performance towards software reusability 

prediction. Thus, the research questions as defined in 

Section 3 (RQ1-RQ5) are answered affirmatively.  

7. Conclusion  

Considering the fact that the reuse of a software component 

can at one hand reduce development cost; however, the 

excessive reusability of the same component or class can 

force a software solution to undergo aging, smells and 

sometime failure, in this paper a software metrics learning 

based reusability prediction model was developed. 

Contemporary, due to ease of implementation and agile in 

nature OOP based software development is prevalent and 

has been applied in major WoS software development that 

often undergoes exceedingly high transaction and dynamic 

computing. In such application environment excessive use 

of software components or improper reusability might limit 

the reliability of the software solution. Therefore, for an 

optimal OOP WoS software design, assessing component 

reusability can be of great significance to alleviate any 

future faults or failure. With this motivation, in this 

research paper at first OOP-CK metrics were obtained 

which characterizes the structural features such as 

cohesion, coupling and complexity of a software program 

to assess reuse-proneness of a component. Unlike manual 

testing methods, in this paper a state-of-art new 

neurocomputing assisted consensus-based ensemble 

learning model was developed which exploits OOP-CK 

metrics, specially WMC, CBO, DIT, LCOM, NOC, and 

RFC to perform each-class reusability prediction. To 

achieve an accurate and reliable prediction solution, in this 

paper the optimization efforts were made for both data 

model as well as classifier model. Once obtaining aforesaid 

OOP-CK metrics using WSDL-CKJM tool, the extracted 

features were further processed using ULR algorithm 

which retained a total of six OOP-CK metrics to be used 

for further computation. Additionally, to alleviate the 

problem of data-imbalance and skewness, the proposed 

model applied data-subsampling concept using Up-

sampling, Down-sampling, SMOTE sampling techniques 

that provided a composite feature set with sufficiently data-

features for further computation. However, realizing large 

data size of the composite features, the proposed model 

applied WRST algorithm, a well-known significant 

predictor test, which retained only those feature elements 

having significant impact (likelihood) on reusability 

prediction. Thus, retaining the optimal feature set, to 

further reduce the probability of pre-mature convergence 

and over-fitting Min-Max normalization was applied. 

Finally, the proposed model applied neurocomputing 

algorithms assisted maximum voting ensemble learning 

structure for two-class classification. Here, the proposed 

homogenous ensemble model applied ANN-GD, ANN-

RBF, ANN-LM (with 1 and 2 hidden layers) and PNN 

neural network algorithms as the base classifier to perform 

two-class classification, where it employed MVE 

(maximum voting or consensus) to classify each class as 

REUSABLE or NON-REUSABLE. Unlike standalone 

base classifiers, the proposed consensus or MVE ensemble 

model exhibited higher accuracy (96.57%), precision 

(0.94) and recall (0.99), signifying its robustness and 

reliability towards WoS software component reusability 

prediction system. Thus, the superior performance by the 

proposed neuro-computing assisted homogenous 

(consensus-based) ensemble model affirms its suitability 

towards accurate reusability prediction, which can enable a 

firm or developer to assess fault-resilience in terms of 

optimal reusability of a software component before its 

release. It can not only ensure fault-resilience of the 

software solution but can also avoid the maintenance cost 

and failure probability of WoS solutions. 
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