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Abstract: The verification of handwritten signatures is integral to numerous applications such as authentication and document verification. 

The efficacy of an offline signature verification system relies heavily on the feature extraction stage, because it significantly affects the 

performance of the system. Both the quality and quantity of extracted features play pivotal roles in enabling the system to distinguish 

between genuine and forged signatures. In this study, we introduce a novel approach aimed at optimizing the hyperparameters of a 

Convolutional Neural Network (CNN) model for handwritten signature verification by leveraging a Particle Swarm Optimization (PSO) 

algorithm. The PSO algorithm, inspired by the flocking behavior of birds, is a population-based optimization method. We delineated a 

search space encompassing various hyperparameter ranges, including the number of convolutional filters, dense layers, dropout rate, and 

learning rate. Through iterative updates to the positions and velocities of the particles, the PSO algorithm navigates this search space to 

identify the optimal set of hyperparameters that maximizes the accuracy of the CNN model. Our approach was evaluated across diverse 

datasets including BHSig260-Bengali, BHSig260-Hindi, GPDS, and CEDAR, each containing a varied assortment of handwritten signature 

images. The experimental results demonstrate the effectiveness of our proposed method, achieving a remarkable accuracy of 98.3% on the 

testing dataset. 

Keywords: Offline Signature Verification, Deep Learning, Particle Swarm Optimization Algorithm and Convolutional Neural 

Network. 

1. Introduction 

Handwritten signatures, as a type of behavioural biometric, serve 

as crucial authentication mechanisms across various industries, 

including banking, law enforcement, and the workplace[1]. 

Consequently, the distinction between genuine and forged 

signatures has become a focal point in biometric systems research. 

Signature verification systems fall into two primary categories: 

offline and online systems. Online systems digitally capture 

signatures in real time, whereas offline systems rely on previously 

captured signature images. The feature extraction stage in offline 

systems is particularly vital and significantly affects the system 

performance. Convolutional Neural Networks (CNNs), a popular 

deep-learning technique, have achieved notable success in tasks 

such as handwritten signature recognition [2][3]. However, 

achieving optimal performance with CNNs often necessitates 

meticulous tuning of hyperparameters such as filter size, number 

of filters, dropout rates, and learning rates. Hyperparameter 

optimization presents a challenge because of variations in the 

optimal settings depending on the dataset and task. Automated 

methods for hyperparameter optimization have attracted increasing 

interest [4]. The Particle Swarm Optimization (PSO) algorithm, 

inspired by bird swarming behavior, has emerged as a promising 

strategy [5]. PSO has been demonstrated to be effective in 

optimizing neural networks, including CNNs (Zhang et 

al.2022)[7][8][9][10][11][12]. In this study, we propose a novel 

approach for optimizing CNN hyperparameters for handwritten 

signature recognition using the PSO algorithm. Our objective is to 

automatically determine the optimal hyperparameter set that 

maximizes CNN model accuracy. We defined a search space 

comprising hyperparameter ranges, including the number of 

convolutional filters, dense layer count, dropout rates, and learning 

rates. The PSO algorithm navigates this space iteratively and 

gradually converges towards the optimal hyperparameter set. The 

remainder of this paper is organized as follows. Section 2 provides 

a concise review of previous studies on handwritten signature 

recognition and hyperparameter optimization. Section 3 outlines 

the methodology, including the CNN model architecture, PSO 

algorithm, and the experimental setup. Section 4 presents the 

experimental findings and performance evaluation. Finally, 

Section 5 summarizes the findings of the study and discusses 

potential future research directions. 

2. Literature Review 

Research on offline signature verification (OSV) has yielded 

various techniques to address its inherent challenges. In this 

section, we provide an overview of several OSV methods, along 

with the utilization of CNN architectures and PSO algorithms in 

related domains. Traditional approaches to OSV often rely on 

handcrafted features, such as histograms of oriented gradients 

(HOG), scale-invariant feature transforms (SIFT), and local binary 

patterns (LBP), coupled with classifiers, such as support vector 

machines (SVM) and k-nearest neighbors (KNN) [13]. However, 

these methods may struggle to accurately capture complex spatial 

patterns and variations in signature images. Researchers have 

explored innovative approaches to addressing these issues. For 

instance, in [14], the authors utilized max pooling within a CNN 

architecture to extract micro-deformations and effectively 

distinguish between authentic signatures and skilled forgeries. 
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Similarly, in [15]. In [16], structural and directional features 

extracted from signatures were used for classification tasks using 

LSTM and Bidirectional LSTM (BiLSTM) models. Writer-

dependent signature verification schemes have also been explored, 

in which a CNN pretrained for writer identification was employed 

for the OSV. 

CNN Architectures: CNNs have demonstrated exceptional 

performance in various image classification tasks. Models such as 

ResNet, VGGNet, and AlexNet have achieved state-of-the-art 

results on large-scale image datasets such as ImageNet [17]. The 

application of CNN architectures in OSV is an area of active 

research, aiming to leverage their capabilities in learning 

discriminative features from signature images [18].  One such 

study was conducted in [19]. Focused on a combination of 

convolutional neural network (CNN) algorithms, including 

VGG16 and ResNet50, for image embedding. The researchers 

incorporated triplet loss optimization to further improve the 

performance of the models. Additionally, they employed machine 

learning classifiers such as support vector machines, artificial 

neural networks, random forests, and XGBoost in their evaluation. 

The experiments were conducted on two datasets: the ICDAR-

2011 dataset, which consists of signatures written in Latin (Dutch 

alphabet) script, and BHSig260-Bengali dataset. In [6], the authors 

presented a novel online handwritten signature verification 

algorithm that leveraged a feature dimensionality reduction 

method known as CAE-MV. The proposed algorithm compresses 

and selects features from original signature data to construct a set 

of signature features. To classify and verify the signature feature 

set, we employed a depth-wise separable Convolutional Neural 

Network (DWSCNN) based on depth-wise separable convolution. 

Unlike traditional CNN architectures, DWSCNN effectively 

reduces the number of neural network parameters, resulting in a 

significant reduction in running time and resource usage. 

Remarkably, despite the reduction in parameters, the classification 

performance of DWSCNN remains comparable to that of CNN. 

Consequently, our algorithm offers improved efficiency without 

compromising the accuracy of the online handwritten signature 

verification tasks. 

PSO Algorithm: The PSO algorithm, inspired by collective 

behaviors observed in nature, has been widely utilized in 

optimization problems. In image processing, PSO has been 

employed for tasks such as image segmentation, feature selection, 

and image reconstruction [20]. 

Hybrid PSO Approaches: Several hybrid or adaptive solutions that 

combine PSO with other techniques have been proposed. For 

example, ALPSO, introduced in [21], optimizes a radial basis 

function neural network (RBFNN) by incorporating a linearly 

decreasing inertia weight. Other approaches combine PSO with 

slide-mode control [22] or adaptive strategies [23][24]to enhance 

optimization performance. 

In conclusion, while traditional methods have been explored for 

OSV, there is growing interest in leveraging DL techniques, 

particularly CNN architectures, to capture discriminative features 

from signature images. Additionally, the potential of optimization 

algorithms, such as PSO, to enhance the OSV system performance 

remains largely untapped. This study aimed to bridge this gap by 

developing a model that combines CNN architectures with the PSO 

algorithm for OSV. 

3. Methodology 

In this study, we introduce a model for offline signature 

verification (OSV) that integrates Convolutional Neural Network 

(CNN) architectures with a Particle Swarm Optimization (PSO) 

algorithm. The framework of our proposed model encompasses 

several essential steps, including dataset preparation, 

preprocessing, feature extraction using CNN architectures, 

optimization through PSO, and model training and evaluation. Our 

approach introduces a novel method for optimizing the 

hyperparameters of a CNN model specifically tailored for 

handwritten signature recognition by leveraging the PSO 

algorithm. Inspired by the collective behavior observed in bird 

flocks, the PSO algorithm operates as a population-based 

optimization technique. 

1.1 Datasets  

The datasets utilized in this study played a pivotal role in shaping 

the experimental framework and facilitating the evaluation of the 

proposed methodologies. Table 1 provides an overview of the 

datasets employed, delineating the key attributes essential for 

understanding their composition and significance.  

Table 1. Dataset used by the proposed system. 

Dataset Signers Genuine Forged Training Testing 

GPDS-300 300 24 30 10,200 6,000 

CEDAR 100 24 24 1,540 1,100 

Bengali 100 24 30 3,400 2,000 

Hindi 160 24 30 5,440 3,200 

Signers: This column denotes the number of unique individuals 

whose signatures contribute to the respective datasets. For 

instance, the GPDS-300 dataset comprises signatures from 300 

unique signers, whereas CEDAR[25] features signatures from 100 

individuals. Genuine: Reflecting on the number of genuine 

signatures per signer, this field underscores the availability of 

authentic signature samples for analysis. Each signer in the GPDS-

300 [26]dataset contributed 24 genuine signatures. Forged: 

Enumerating the number of forged signatures generated for each 

genuine signature, this column highlights the synthetic data 

augmentation process employed to enrich the dataset. For example, 

in the Bengali dataset, 30 forged signatures were generated per 

signature. Training: This section quantifies the total number of 

signature samples allocated for training the models. It 

encompasses both genuine and forged signatures and provides 

insights into the scale and complexity of the dataset. For example, 

the GPDS-300 dataset offers 10,200 signature samples for training 

purposes. Testing: This field complements the training dataset by 

representing the aggregate number of signature samples reserved 

exclusively for evaluating the model performance. In the CEDAR 

dataset, 1,100 signature samples were earmarked to test the 

efficacy of the model.  Figures 1,2 and 3 show some of the samples 

used for the datasets. 

The comprehensive depiction of dataset attributes facilitates a 

nuanced understanding of the experimental setup, ensuring the 

transparency and reproducibility of the research methodology. 

 

 

  

 
 

Fig. 1.   Sample signatures in the BHSig260-Bengali dataset. 
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Fig. 2.   Sample of GPDS-300 dataset. 

  
 

Fig. 3.   Sample of the signature CEDAR dataset. 

1.2 Preprocessing Techniques 

Preprocessing techniques play a crucial role in enhancing the 

quality and consistency of signature images before feature 

extraction. These techniques encompass a range of operations 

aimed at standardizing and refining images for subsequent 

analysis. 

Resizing: A commonly employed preprocessing step involves 

resizing images to a standard size. This ensured uniformity across 

the dataset and facilitated the comparison and analysis, such as 

(100 × 100) pixels. 

Grayscale Conversion: Converting images to grayscale is another 

fundamental pre-processing technique. This simplifies the image 

representation by removing color information, allowing for more 

efficient processing and analysis. 

By incorporating these preprocessing techniques into the 

workflow, the quality and consistency of the signature images can 

be significantly improved, ultimately enhancing the effectiveness 

of the subsequent feature extraction and analysis processes. Figure 

4 illustrates the steps of the proposed model. 

1.3 Feature Extraction Using CNN Architectures 

CNN model architectures have garnered considerable attention 

owing to their efficacy in learning discriminative features from 

image data. In this phase, a pre-trained CNN model such as 

VGGNet [17] or ResNet [27] serves as the foundation for feature 

extraction from preprocessed signature images. Typically, a CNN 

model is modified by discarding the fully connected layers and 

utilizing the output of the final convolutional layer as the feature 

representation. These features encapsulate both the global and 

local patterns inherent in the signatures. The proposed CNN model 

adopts a sequential approach with incrementally added layers, each 

designed to contribute to the extraction and representation of the 

key features. Here, it represents the breakdown of architecture. 

(1) 2D Convolutional Layer (Conv2D): The model begins with 

a Conv2D layer that applies A specified number of filters, 

each 3 × 3, to the input data. Employing a Rectified Linear 

Unit (ReLU) activation function introduces nonlinearity, 

allowing the model to effectively discern intricate patterns 

and features. 

(2) Max Pooling Layers (MaxPooling2D): Following each 

convolutional layer, MaxPooling2D layers are introduced to 

reduce the spatial dimensions of the feature maps. These 

layers achieve this reduction by selecting the maximum 

value within each pooling region, typically of size 2x2. 

(3) Flattening: The output of the final convolutional layer is 

flattened using the flattening function, which transforms the 

2D feature maps into a 1D vector. 

(4) Dense (Fully Connected) Layers: Two dense layers were 

added post-flattening by employing ReLU activation 

functions. The number of neurons in these layers can be 

customized according to the requirements of the model. 

(5) Final Dense Layer: The number of neurons in the final 

dense layer was aligned with the total number of classes in 

the dataset. Utilizing the "softmax" activation function 

transforms the output of the model into a probability 

distribution across classes. This facilitates multiclass 

classification by predicting class probabilities for each input 

signature image. The equations provided in subsequent 

sections comprehensively outline the CNN model 

architecture and elucidate the structural components and 

their respective functionalities within the model. 

𝐶𝑜 𝑙𝑎𝑦𝑒𝑟 𝑨𝑖 = 𝑅𝑒𝐿𝑈 (𝑾𝑖 ∗ 𝑿𝑖 − 1 + 𝒃𝑖) (1) 

𝑀𝑎𝑥 − 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟 𝑌𝑖 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔 (𝑨𝑖) (2) 

Flatten  𝐹𝑖 =  Flatten (𝒀𝑖)                        (3) 

Dropout   𝐷𝑖 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝑭𝑖)                       (4) 

Dense  𝐻𝑖 = 𝑅𝑒𝐿𝑈 (𝑾𝑖 ⋅ 𝑫𝑖 − 1 + 𝒃𝑖)         (5) 

Output layer  𝑂 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊 ⋅ 𝑯𝑛 + 𝒃)      (6) 

where: 

𝐗𝑖 represents the input to the layer i. 

𝐀𝑖 where represents the activation of layer i. 

Y𝑖 where represents the output of the max-pooling layer. 

F𝑖 where denotes the flattened output. 

D𝑖 represents the output after dropout is applied. 

H𝑖  represents the activation of the dense layer. 

O represents the output prediction. 
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Fig. 4. Proposed model architectures. 

1.4 Optimization Using PSO Algorithm 

The PSO algorithm is integrated into the proposed model to 

enhance its efficiency. Our primary aim was to identify the optimal 

set of parameters to maximize the accuracy of an offline signature 

verification (OSV) system. The PSO algorithm facilitates this 

optimization process by systematically exploring the parameter 

space. At its core, the PSO algorithm iteratively updates a swarm 

of particles, with each particle representing a potential solution 

within the parameter space. These updates are guided by the 

particle’s experience and the best global solution found thus far. 

By continuously adapting and refining their positions, the particles 

collectively converged toward the optimal solution. 

The fitness function employed in the PSO algorithm is crucial for 

guiding the optimization process. In our case, the fitness function 

was directly related to the accuracy of the CNN model in the 

validation set. This ensures that the optimization process 

prioritizes solutions that result in higher model accuracy. 

The particle positions within the parameter space correspond to the 

specific values of the various model parameters. These parameters 

may include the number of filters, learning rate, regularization 

parameters, and even the number of elements in flattened layers in 

the CNN architecture. By exploring different combinations of 

these parameters, the PSO algorithm effectively searches for the 

configuration that yields the highest accuracy for OSV. 

The proposed method implements a Particle Swarm Optimization 

(PSO) algorithm to optimize the parameters of a Convolutional 

Neural Network (CNN) model for offline signature verification. 

The PSO algorithm aims to maximize the accuracy of the CNN 

model on a validation dataset by exploring a predefined range of 

hyperparameters  

Table 2. Hyperparameters used in the proposed system. 

Hyperparameter Range 

Filters Number Choice (16, 128) 

Unit Choice (128, 1024) 

Dropout Choice (0.25, 0.50) 

Learning Rate Choice (0.00001, 0.001) 

Table 2 represents the range of values for each parameter the 

spectrum of options considered during the optimization process. 

For instance, the "Filter Size" parameter ranges from 16 to 128, 

indicating that the PSO algorithm will explore values within this 

range to determine the optimal filter size for the CNN model. 

The fitness function utilized in the PSO algorithm incorporated the 

accuracy of the CNN model in the validation set. It is defined as: 

Fitness = −Accuracy 

where represents the classification accuracy of the CNN model on 

the validation set. The PSO algorithm iteratively updates the 

positions and velocities of particles according to the following 

equation: The PSO algorithm ensures that the particle positions 

remain within the specified search space by enforcing bounds on 

parameter values. Upon completion of the PSO iterations, the 

algorithm outputs the best discovered parameters, along with the 

corresponding accuracy achieved by the CNN model. The updated 

positions were bounded within the search space. Equation (8,9) 

show the update method for updating the equation for both the 

velocity of particle i and location of particle i. 

𝐿𝑖(𝑡 + 1) = 𝑳𝑖(𝑡) + 𝑽𝑖(𝑡 + 1)                             (7) 

𝑽𝒊(𝒕 + 𝟏) = 𝝎 ⋅ 𝑽𝒊(𝒕) + 𝒄𝟏 ⋅ 𝑹𝟏 ⋅ (𝑷𝒊(𝒕) − 𝑳𝒊(𝒕)) + 𝒄𝟐 ⋅ 𝑹𝟐 ⋅

(𝑷𝒈(𝒕) − 𝑳𝒊(𝒕))                                                                      (8) 

where: 

𝐋𝑖  where denotes the location of particle i at time t. 

V𝑖  where denotes the velocity of particle i at time t. 

𝜔 is the inertia weight. 

(c_2) and (c_1) are social and cognitive weights, respectively. 

𝐑1 and 𝐑2 are random vectors. 

𝐏𝑖  denotes  the best personal location of particle i at time t. 

𝐏𝑔 denotes the global best location among all the particles at 

time t. 

4. Experiments Results  

At this stage of our research methodology, the array of parameter 

outputs generated by the Particle Swarm Optimization (PSO) 

algorithm is passed onto the Convolutional Neural Network (CNN) 

Define The Search Space For POS 

Evaluate Fitness Function for Each Particle 

Initialize Particle Positions And Velocities 

Initialize The POS Algorithm 

 

Create CNN Model with POS Output 

Update each particle's 

position and velocity. 

Accuracy Best  

Accuracy < 99% 
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model. Each array encapsulates a set of values that represent the 

crucial parameters essential for configuring the CNN architecture. 

These parameters included the number of filters for the four layers 

in the CNN model, size of the kernel for each layer, number of 

neurons in the fully connected layers, and learning rate. Upon 

receiving these parameters, the CNN model processed them along 

with the training image array. Subsequently, the efficiency of the 

model was evaluated using a separate test dataset to ascertain its 

accuracy, which served as a metric for quantifying the 

effectiveness of the specific parameter configuration generated by 

the PSO algorithm. This accuracy value is then relayed to the PSO 

algorithm to serve as its fitness value, thereby guiding further 

iterations. Because the PSO algorithm completes the designated 

number of generations, the best accuracy is selected, preserving the 

corresponding parameter weights within the CNN. Through these 

iterative steps, our proposed model achieved a remarkable 

accuracy of 98%, indicating its robust performance in offline 

signature-verification tasks. The CNN model architecture 

comprises four layers: the input layer, Conv1, Conv2, Conv3, and 

Conv4. These layers, combined with the optimized parameters, 

form the backbone of our system for signature image processing 

and the verification of genuine handwritten signatures. Table 3 

presents a comprehensive list of the parameters utilized in our 

CNN model tailored to the specific requirements of each dataset 

employed in our study. These parameters serve as critical 

components for configuring the CNN architecture to achieve 

optimal performance. To provide a comprehensive analysis, we 

compare the results obtained using our proposed model with those 

reported in previous studies. Figures 5, 6, 7, and 8 depict graphical 

representations of the performance curves, showing the variations 

in loss, validation loss, validation accuracy, and overall accuracy 

across different datasets. Furthermore, Tables 4, 5, 6, and 7 present 

a comparative analysis of the results obtained from our proposed 

model with those reported in other studies, providing insights into 

the efficacy and competitiveness of our approach in offline 

signature verification tasks. 

Table 3. Parameter configuration of the proposed system. 

Parameter 
GPDS-

300 
CEDAR BHSig260-B 

BHSig26

0-H 

Learning 0.00001 0.0001 0.0001 14 

Parameters 
4,24,56,24

3 

24,24,8

40 
1,60,84,440 12,91,458 

Layer 1 
Conv2D(8

5, 3x3) 

(16, 

3x3) 
(16, 3x3) (64, 3x3) 

Layer 2 

&MaxPool(

2, 2) 

Conv2D(8

5, 3x3) 

Conv2D 

(16,3x3) 

Conv2D(16, 

3x3) 

Conv2D 

(64,3x3) 

Layer 3 

&MaxPool(

2, 2) 

Conv2D(8
0, 3x3) 

Conv2D 
(16,3x3) 

Conv2D(128,3
x3) 

Conv2D 
(64,3x3) 

Layer 4 

&MaxPool(

2, 2) 

Conv2D(8
0, 3x3) 

Conv2D 
(16,3x3) 

Conv2D(128,3
x) 

Conv2D 
(46,3x3) 

Dropout 0.5 0.5 0.25 0.5 

Flatten 1024 1024 1024 512 

Accuracy 93.01 98.3 97.22 98 

 

 
.          Fig. 5. The CEDAR Dataset. 

z  

Fig. 6. The GPDS-300 datasetx 

.           

Fig. 7. The BHSig260-H Dataset. 

 

Fig. 8. The BHSig260-B Dataset. 

In the table 4 provides a comparison of different methods used on 

the BHSig260-Hindi datasets, along with their corresponding 

accuracy, false acceptance rate (FAR), false rejection rate (FRR), 

and equal error rate (EER). 
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LBP & ULBP[28]: This method achieved an accuracy of 75.53% 

with a FAR and FRR of 24.47%. The EER, which represents the 

point where the FAR and FRR are equal, is also 24.47%. 

SigNet[29]: SigNet achieved an accuracy of 84.64% with a FAR 

and FRR of 15.36%. The EER is also 15.36%. 

CNN & BiLSTM [16]: This method achieved a significantly higher 

accuracy of 97.80%. The FAR is 2.0% and the FRR is 2.44%. The 

EER is 2.23%. 

Proposed model: The proposed model outperformed the other 

methods with an accuracy of 98.00%. It achieved a FAR and FRR 

of 1.91% and 1.89%, respectively. The EER is 1.88%. 

Table 4. Comparison results for BHSig260-Hindi datasets. 

Methods Accuracy FAR FRR EER 

[28] 75.53 24.47 24.47 24.47 

[29] 84.64 15.36 15.36 15.36 

[16] 97.80 2.0 2.44 2.23 

Proposed model 98.00 1.91 1.89 1.88 

 

In the table 5 presents a comparison of different methods applied 

to the BHSig260-Bengali dataset, along with their respective 

accuracy, false acceptance rate (FAR), false rejection rate (FRR), 

and equal error rate (EER). 

LBP & ULBP[28]: This method achieved an accuracy of 66.18% 

with a FAR and FRR of 33.82%. The EER, which represents the 

point where the FAR and FRR are equal, is also 33.82%. 

SigNet[29] achieved an accuracy of 86.11% with a FAR and FRR 

of 13.89%. The EER is also 13.89%. 

CNN & BiLSTM [16]  This method achieved an accuracy of 91%. 

The FAR is 1.36% and the FRR is 2.13%. The EER is 1.76%. 

Proposed model: The proposed model outperformed the other 

methods with an accuracy of 97.22%. It achieved a FAR and FRR 

of 1.2% and 1.8%, respectively. The EER is 1.75%. 

In summary, the proposed model demonstrated the highest 

accuracy and the lowest FAR, FRR, and EER values among the 

compared methods, indicating its superior performance on the 

BHSig260-Bengali dataset. 

Table 5. Comparison results for the BHSig260-Bengali dataset. 

Methods Accuracy FAR FRR EER 

[28] 66.18 33.82 33.82 33.82 

[29] 86.11 13.89 13.89 13.89 

[16] 91 1.36 2.13 1.76 

Proposed model 97.22 1.2 1.8 1.75 

 

Based on the data presented in Table 6. presents a comparison of 

the performance of different methods with our method on the 

CEDAR dataset in terms of FAR, FRR, EER, and accuracy. "Our 

method" outperforms the other methods in terms of FAR, FRR, 

EER, and accuracy, indicating its superior performance on the 

CEDAR dataset. LBP and ULBP[28] achieved a False Acceptance 

Rate (FAR) of 8.33%, False Rejection Rate (FRR) of 8.33%, Equal 

Error Rate (EER) of 8.33%, and accuracy of 91.67%. On the other 

hand, the "Multi-Path Siamese (MA-SCN)" method [6] yields an 

FRR of 18.35%, FAR of 19.21%, EER of 18.92%, and accuracy of 

80.75%. Additionally, the "Siamese CNN" method [30]  achieves 

a FAR of 6.78%, FRR of 4.20%, and accuracy of 95.66%. In 

comparison, our proposed method outperformed these approaches 

with an FAR of 1.34%, FRR of 1.78%, EER of 1.94%, and 

accuracy of 98.3%.  

Table 6. Comparison results for the CEDAR datasets. 

Method FAR FRR EER Accuracy 

[31] 8.33 8.33 8.33 91.67 

[6] 19.21 18.35 18.92 80.75 

[30]  6.78 4.20 – 95.66 

Our method 1.34 1.78 1.94 98.3 

 

Table 7 compares the performance of different methods on the 

GPDS300 datasets. The methods evaluated are Compact correlated 

features, SigNet[29], CNN & BiLSTM[16], and the Proposed 

model. 

 The table provides the accuracy, false acceptance rate (FAR), false 

rejection rate (FRR), and equal error rate (EER) for each method. 

Compact correlated features[32]: This method achieved an 

accuracy of 88.79%. The FAR, FRR, and EER were all 11.21%. 

SigNet[29]: SigNet achieved an accuracy of 76.83%. The FAR, 

FRR, and EER were all 23.17%. 

CNN & BiLSTM[16]: This method achieved an accuracy of 

89.88%. The FAR was 9.37%, the FRR was 11.05%, and the EER 

was 10.16%. 

Proposed model: The proposed model achieved the highest 

accuracy of 93.01%. It had a FAR of 8.14%, an FRR of 9.43%, and 

an EER of 7.67%. 

In summary, the Proposed model demonstrated the highest 

accuracy and the lowest FAR, FRR, and EER values among the 

compared methods, indicating its superior performance on the 

GPDS300 datasets. 

Table 7. Comparison results for the GPDS300 datasets. 

Methods Accuracy FAR FRR EER 

[32] 88.79 11.21 11.21 11.21 

[29] 76.83 23.17 23.17 23.17 

[16] 89.88 9.37 11.05 10.16 

Proposed model 93.01 8.14 9.43 7.67 

5. Conclusion 

This study introduces a novel method that utilizes the Particle 

Swarm Optimization (PSO) algorithm to optimize the 

hyperparameters of Convolutional Neural Network (CNN) models 

for handwritten signature recognition. The primary aim is to 

identify the most effective combination of hyperparameters that 

maximizes the accuracy of the CNN model in recognizing 

handwritten signatures. Inspired by the social behavior observed in 

flocking birds, the PSO algorithm was employed to explore a 

predefined search space comprising hyperparameter ranges. The 

hyperparameters under consideration included the number of 

convolutional filters, dense layers, dropout rate, and learning rate. 

Through iterative updates to the velocities and particle positions, 

the PSO algorithm identified the optimal hyperparameter 
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combination that yielded the highest accuracy. To evaluate the 

proposed approach, multiple datasets containing diverse sets of 

handwritten signature images were utilized, including the 

BHSig260-Bengali, BHSig260-Hindiin, GPDS, and CEDAR 

datasets. The experimental results demonstrated the efficacy of the 

PSO algorithm in optimizing the hyperparameters of the CNN 

model. Notably, the proposed method achieved an impressive 

accuracy of 98% on the testing dataset, surpassing the performance 

of the existing approaches. These findings underscore the potential 

of leveraging metaheuristic algorithms, such as PSO, to enhance 

the performance of Deep Learning (DL) models in signature 

recognition tasks. By optimizing the hyperparameters, the 

proposed approach can significantly improve the accuracy of 

handwritten signature recognition systems, thereby offering 

considerable benefits for various applications including 

authentication and document verification. 

Future research avenues could explore the application of 

alternative metaheuristic algorithms or combination strategies to 

further enhance the CNN model performance in signature 

recognition tasks. In addition, investigating the scalability and 

generalizability of the proposed approach across larger and more 

diverse datasets would provide valuable insight into its practical 

applicability and robustness. 
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