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Abstract: This paper delves into Federated Learning's advantages, an innovative approach to distributed machine learning that enables 

model training using decentralized data, eliminating the necessity for centralized aggregation. The primary objective involves conducting 

extensive experiments with image datasets to discern the superior model training methodology between federated and non-federated 

approaches. Flower Federated Learning, an open-source framework integrated seamlessly with the TensorFlow machine learning platform, 

is utilized in the investigation. The pivotal point of this investigation revolves around a comparative analysis of federated and non-federated 

configurations, utilizing the renowned MNIST and CIFAR-10 datasets. Focus canters on key performance metrics such as precision, recall, 

and F1 score. In this paper, the experiment is conducted with a federated setup having two clients, each containing only 50\% of random 

data from each dataset class. These clients are connected to a server where the global model is stored and updated as part of the experiment. 

The non-federated setup involves a single client for model training and testing. The federated setup achieves 92%-96% for MNIST and 

around 45%-50% for CIFAR-10 datasets over various rounds and 25 to 50 epochs. In contrast, the non-federated setup achieves around 

96% for MNIST and 85% for CIFAR-10 datasets. These results represent a brief experimentation phase on a smaller client setup, with the 

potential for similar updates for a higher number of clients. However, it's crucial to note that the field of federated learning is evolving 

rapidly, promising advancements that may narrow, if not bridge, the existing performance gap. The empirical analysis concludes that, as 

of now, traditional setups exhibit superior performance in comparison to federated configurations. Nevertheless, the evolving nature of 

federated learning warrants continued investigation and experimentation, as it holds significant potential to transform the landscape of 

distributed machine learning soon. 

Keywords: Federated Learning, Flower Federated Framework, Machine Learning, TensorFlow, MNIST, CIFAR-10. 

1. Introduction 

Federated Learning has gained considerable attention as a 

distributed machine learning approach that enables training models 

with decentralized data, eliminating the need for centralized 

aggregation.[9] This study addresses the gap in comprehensive 

comparisons between Federated Learning and traditional methods, 

particularly in the context of image datasets where the data 

between the clients is limited and yet to learn from the existing 

parameters. By conducting a comprehensive comparison between 

Flower Federated Learning, integrated with TensorFlow, and 

traditional non-federated approaches. The focus is on image 

datasets, specifically MNIST and CIFAR-10 where in each 

experiment the specific dataset is split among the two clients in 

50% split and other variations of 75:25 or 25:75 split among the 

clients. Flower is an open-source framework that facilitates 

decentralized model training across multiple nodes. Standard 

metrics (precision, recall, F1 score) are used to evaluate 

performance. By emphasizing highly distributed datasets, the goal 

is to pinpoint scenarios where federated learning excels, 

contributing valuable insights to the understanding of its strengths 

in comparison to conventional methodologies. This research 

bridges a crucial gap in the understanding of federated learning's 

efficacy by showcasing its ability to traditional machine learning. 

The findings serve as a valuable guide for researchers and 

practitioners, aiding in the judicious selection of learning methods 

for image datasets. Considerations such as privacy, data 

distribution, and model performance are emphasized, offering 

insights that contribute to informed decision-making in the ever 

evolving landscape of machine learning methodologies [18]. In 

this paper, the same developed model is used in both the 

experiment setups with just changes in the input layers as per the 

dataset dimensions. A comparison between this non-federated 

setup and federated learning is conducted, focusing on parameters 

such as accuracy and loss. The key emphasis lies in understanding 

the correlation between the number of epochs and accuracy in 

model training evaluation. Evaluations on diverse datasets, 

including MNIST and CIFAR-10, reveal insights into the 

performance of the traditional setup with specifying epoch values. 

 

2. Literature Survey 

Considering the existing work for our research purposes has helped 

in identifying the research gaps and development areas of the 

current research work. The details of the literature survey are given 

in the below table: 
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S. No 

 

Paper Title 

 

Year of 

Publication 

 

          Objective 

 

             Limitations 

1 A machine sound 

monitoring for predictive 

maintenance focusing on 

very low frequency band 

[14] 

 

 

   2021 

Introduces a machine sound 

monitoring system tailored for 

predictive maintenance, with a 

specific focus on the very low 

frequency (VLF) band. 

The accuracy and reliability of 

sensors capturing very low-

frequency sounds might vary, 

potentially impacting the quality 

and consistency of the collected 

data 

 

2 

Data Poisoning Attacks on 

Federated Machine 

Learning [12] 

 

   2022 

Unleash the Effects of Data 

Poisoning on a IOT Based 

Federated ML Model. 

Untargeted attacks reduce the 

overall performance of the main 

task, they are easier to be detected. 

 

3 

Secure Aggregation with 

Failover and Encryption [8] 

 

  2021 

Secure Aggregation algorithm 

targeted at cross-organizational 

federated learning applications 

with a fixed set of participating 

learners. 

A failure is detected by setting a 

timeout on getting the result. 

Clearly, the best timeout to set 

depends on the number of nodes 

and features in the aggregation. 

 

4 

Data privacy preservation 

algorithm with k-

anonymity [10] 

 

  2021 

Experiment results are presented 

that the proposed algorithm could 

effectively preserve data privacy 

and also reduce the number of 

visited nodes for ensuring privacy 

protection. 

Algorithm applies the global 

recording generalization which 

causes more information loss due 

to all values in the same quasi-

identifier need to be generalized to 

the same level in the 

generalization hierarchy. 

 

5 

Secure Aggregation for 

Federated Learning in 

Flower [8] 

 

  2022 

The proposed secure aggregation 

method, employing secure multi-

party computation (MPC) 

techniques, aims to ensure the 

privacy of data in federated 

learning. 

Improving the efficiency of the 

secret-sharing functions, 

extending Salvia for clients 

running in other programming 

languages 

 

6 

Federated Machine 

Learning: Survey, Multi-

level, Classification, 

Desirable Criteria and 

Future Directions in 

Communications and 

Networking Systems [16] 

 

  2021 

A three-level categorization 

system that classifies federated 

learning approaches into 

categories based on the high-level 

concerns they each address, the 

sub-challenges inside each high-

level challenge category, and the 

strategy used to tackle each 

related sub-challenge. 

Limitation in sharing data with the 

central cloud model that consumes 

huge bandwidth as it must share 

with various federated models that 

performs the required multi-level 

classifications and criteria based. 

 

7 

Privacy preservation 

techniques in big data 

analytics: a survey [11] 

 

   2018 

Authors conduct a thorough 

survey encompassing diverse 

privacy preservation techniques 

within the domain of big data 

analytics. 

The utilization of big data raises 

pertinent privacy concerns, 

potentially exposing sensitive 

information about individuals or 

organization. 
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3. Methodology 

In traditional machine learning, data gathered from various sources 

such as laptops and cellphones are typically centralized on a single 

server for training. Machine learning algorithms utilize this data to 

self-train before making predictions based on new data. However, 

with federated learning, a distributed approach to machine 

learning, multiple users can collaboratively train a machine 

learning model without the need to exchange raw data [9]. This 

method allows for model updates from different clients to be sent 

to a central server, which oversees the training process without 

accessing the raw data itself.  

 

The experimental setup for federated machine learning involves 

two clients where the data is partitioned into different splits like 

50:50, 25:75, and 75:25. The training updates from these 

experiments are transmitted to the server at the conclusion of each 

round of training, which is executed for a specific number of 

epochs—either 25 epochs or 50 epochs in the study. 

 

The project's workflow is illustrated in Fig. 1, with detailed 

explanations provided beneath the diagram, outlining the sequence 

of steps and interactions within the federated learning framework. 

 

 

Fig. 1. Flowchart of Experimentation 

 

In the data preprocessing phase for the MNIST dataset, comprising 

28x28 grayscale handwritten digit images, standard preprocessing 

steps are applied. This includes normalizing pixel values to the 

range [0, 1], flattening images to 784-dimensional vectors, 

reshaping input dimensions, and converting categorical labels into 

one-hot encoded vectors. Similarly, for the CIFAR-10 dataset, 

which contains 32x32 color images across ten classes, 

preprocessing involves normalizing pixel values, applying data 

augmentation techniques for improved generalization, resizing 

images, reshaping input dimensions, and encoding class labels into 

numerical representations. In the subsequent sections, the 

description of the dataset and model architecture will be provided 

in detail. 

 

In this paper, a performance analysis of Federated Machine 

Learning and Traditional Machine Learning using MNIST and 

CIFAR-10 datasets is being conducted. The data is split into 

specific percentages for training the entire dataset. In the later 

stages of this paper, the computation results section will showcase 

the performance analysis. 

3.1. Dataset Description 

3.1.1. MNIST Handwritten Digits 

The MNIST database consists of handwritten digits with 60,000 

training images and 10,000 testing images which are 28x28 pixel 

and grey scale with 10 classes from digits 0 to 9.  

The MNIST database has become a widely adopted standard for 

rapidly testing theories and algorithms in the fields of pattern 

recognition and machine learning. It was derived from the original 

MNIST database and specifically modified for this purpose, hence 

the name MNIST. The database offers a relatively simple yet 

effective dataset for quick evaluation of theories and algorithms.  

In the study, the objective is to compare the performance of a 

specific model in both Federated and Non-federated setups 

utilizing the MNIST dataset. An advantageous aspect of using 

MNIST is that the dataset's handwritten digits have already 

undergone preprocessing steps like segmentation and 

normalization. This pre-processed nature of the data saves valuable 

time and effort that would otherwise be necessary for 

preprocessing and formatting the data [1]. 

3.1.2. CIFAR-10 

The CIFAR-10 dataset is another widely utilized benchmark in the 

field of computer vision for evaluating pattern recognition and 

machine learning algorithms. It consists of 60,000 images divided 

into 10 distinct classes, with each class containing 6,000 images.  

The dataset is split into two main subsets: a training set and a 

testing set. The training set comprises 50,000 images, evenly 

distributed across the 10 classes, providing ample data for training 

and model development. The remaining 10,000 images form the 

testing set, which is used for evaluating the performance and 

generalization of the trained models.  

Each image in the CIFAR-10 dataset is of size 32x32 pixels and 

contains various types of objects and scenes. The dataset covers a 

diverse range of image categories, including but not limited to 

animals (e.g., birds, cats, dogs), vehicles (e.g., automobiles, 

trucks), and everyday objects (e.g., planes, ships, chairs). This 

diversity makes the CIFAR-10 dataset well-suited for assessing the 

robustness and accuracy of algorithms across different visual 

domains.  

Researchers often rely on the CIFAR-10 dataset due to its 

established status as a standard benchmark, allowing for 

meaningful comparisons and reproducibility of results.[2] 

 

3.2. Model Description 

The same model is used for training in both cases to maintain the 

same architecture for comparison purposes, just with a change in 

the input shape based on the dataset trained and tested upon. The 

results shown in this experimentation are performed on the same 

model as in Fig. 2. 

 

Fig. 2. Model used for Training 
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Fig. 2 provides an overview of the model's structure, illustrating 

the various layers employed in our Federated Setup to train the 

CNN Model on both the MNIST Dataset and CIFAR-10 dataset. 

The optimizer utilized in this setup is Adam, an extension of 

stochastic gradient descent that dynamically adjusts neural 

network parameters, thereby enhancing both speed and accuracy 

in real-time [3]. Employing Sparse Categorical Cross entropy as 

the loss function is advantageous given the class-based nature of 

the target values within the data. Notably, the model comprises 

484,714 parameters. 

4. Computational Experiments 

4.1. Implementation of Traditional Machine Learning 

The Traditional Model Approach refers to a conventional 

Centralized Model building Architecture where numerous data 

sources for machine learning models are centralized within a 

repository. This prevalent system is widely adopted by 

practitioners and has been extensively researched. For our 

experiment, we intend to employ this approach and contrast it with 

the federated setup. In this non-federated setup, parameters such as 

accuracy, loss, evaluation accuracy, and evaluation loss will be 

utilized for comparative analysis. The program is executed for 25 

epochs and 50 epochs, allowing for comparison under varied 

conditions [2] 

 

So, primarily, the primary focus is on the number of epochs versus 

accuracy for the model training evaluation. In the traditional 

machine learning setup, a single file houses the dataset loading, 

training, and testing procedures within itself. Fig. 3. shows how the 

model works in general for traditional training method. 

 

 

Fig. 3. Centralized Machine Learning Working 

 

To obtain the results for the datasets, evaluations were initially 

conducted on various datasets, including MNIST and CIFAR-10. 

When the model was trained using the MNIST Hand-Written 

Images Dataset, testing was performed across different epochs, 

specifically 25 epochs and 50 epochs. Throughout these training 

sessions, evaluations were carried out on the models' accuracy. The 

recorded accuracy stood at 0.85173 after training the model for 25 

epochs and increased to 0.96827 after training the same model for 

50 epochs. Notably, the model underwent training using the 

traditional machine learning setup. 

 

Moreover, the CIFAR-10 Image Dataset was utilized to both train 

and evaluate our model. To delve deeper into comprehending the 

impact of different training patterns on accuracy variations, the 

model underwent training using 25 and 50 epochs. After training 

the model for 50 epochs, the achieved accuracy stood at 0.85751, 

showcasing improvement over the accuracy of 0.62821 obtained 

when the model was trained for 25 epochs.  

As this method of training has been followed for a long time it is 

obvious that the results are better in this type of training. There are 

a lot of proven results to this type of training on image datasets. 

[17] 

 

Implementation of Federated Machine Learning using Flower 

Framework 

In the Federated Learning Approach, the architecture of model 

building is decentralized, aiming for an efficient model that can 

adapt across various devices as needed. In this approach, separate 

models exist on both Client and Server Machines for training 

purposes. Initially, the model undergoes training on the Client 

Machine, and then the insights derived are transmitted to the Server 

model for aggregated training of the Server Model. Subsequently, 

the modifications are sent back to the Clients, enabling them to 

train their models based on the results obtained from the Server 

Model [5]. This approach is iterative, emphasizing continuous 

training for future developments to meet evolving requirements, 

rather than entirely replacing the model. The same approach is 

shown below in Fig. 4 where the averaging of updates is shown. 

 

 

Fig. 4. De-Centralized Machine Learning Architecture 

 

A complete FL framework that separates itself from other 

platforms by providing additional tools for executing large-scale 

FL experiments and analyzing richly diverse FL device 

situations.[4] Flower provides several features to support this 

process, including:  

 

• Data Sharding: Flower can divide the data among the clients in a 

way that ensures that each client receives a representative sample 

of the overall data set.  

• Model aggregation: Flower provides algorithms for aggregating 

the updates from the clients in a way that ensures the resulting 

model is accurate and unbiased.  

• Communication protocols: Flower includes support for various 

communication protocols, such as HTTP and gRPC, to enable 

communication between the clients and the server.  

 

The experimentation setup is shown in the below Fig. 5 
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Fig. 5. Federated Learning Setup 

 

As per the above Fig.4 there are 3 steps majorly at a high level. 

First the model is trained locally on the client and the model 

updates (learnings) are sent from the client to the server where the 

global model exists. Similar is the case with client 2, then in step 2 

the learning is then updated to the global model on the server. In 

step 3 the updated learnings are sent to all the clients connected to 

the server. All this process is coordinated through the gRPC 

connection between them. 

In this experimentation, the dataset has been divided into two equal 

halves, where each client possesses only 50% of the dataset. The 

distribution of the MNIST dataset among the clients is outlined 

below in Fig. 6. 

 

 

Fig. 6. Distribution of MNIST datasets among two clients 

 

The experimentation results are shown below for the respective 

datasets – 

 

Fig. 7. Federated Setup for 25 epochs and 2 rounds on MNIST 

(Client 1) 

 

Fig. 8. Federated Setup for 25 epochs and 2 rounds on MNIST 

(Client 2) 

Fig. 7 and Fig. 8 represent the training progress across 25 epochs 

through two rounds where val_accuracy1 represents the values 

accuracy during the first round of training and val_accuraccy2 

represents the accuracy during the second round of training. We 

can clearly observe that the initial starting point of accuracy 

drastically increases from the second round. 

 

Fig. 9. Federated Setup for 50 epochs and 2 rounds on MNIST 

(Client 1) 
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Fig. 10. Federated Setup for 50 epochs and 2 rounds on MNIST 

(Client 2) 

Fig. 9 and Fig. 10 describe the improvement of accuracy from the 

start of training to 50 epochs for 2 rounds of training. Their values 

are like those of 25 epochs and show similar improvement. The 

values at the server side where the aggregation of model is 

performed with the help of FedAvg algorithm are 86.84% for 25 

epochs training and 95.12% for 50 epochs of training which shows 

there is a gradual increase of performance with increment in 

rounds. This is the reason the experiment has not been conducted 

for a greater number of rounds as there is no major improvement 

in accuracy. 

 

Fig. 11. Federated Setup for 25 epochs and 2 rounds on CIFAR-

10 (Client 1) 

 

Fig. 12. Federated Setup for 25 epochs and 2 rounds on CIFAR-

10 (Client 2) 

Fig.11 and Fig.12 represent the federated setup results for CIFAR-

10 dataset for 25 epochs and 2 rounds for Client 1 and Client 2 

respectively. As we can see that there is not actually so much 

improvement happening in the case of this dataset, we can see that 

there is a small learning curve. 

 

Fig. 13. Federated Setup for 50 epochs and 2 rounds on CIFAR-

10 (Client 1) 

 

Fig. 14. Federated Setup for 50 epochs and 2 rounds on CIFAR-

10 (Client 2) 

Fig. 13 and Fig.14 represent the federated setup for 50 epochs and 

2 rounds of training on CIFAR-10 dataset. These results are same 

as seen for 25 epochs and not much improvement as compared to 

MNIST dataset. The server-side values where model aggregation 

using the FedAvg algorithm is performed are 47.82% for 25 

training epochs and 50.75% for 50 training epochs, which shows a 

gradual increase in performance as the number of training epochs 

increases. 

In the implementation of the Federated Machine Learning Setup, 

various Aggregation Algorithms are employed to combine the 

values from the clients and train the server model. Specifically, the 

FedAvg Algorithm is utilized to aggregate the insights gathered 

from all client models and facilitate the training of the main model 

on the server. The FedAvg Algorithm plays a crucial role in 

efficiently managing client connections to the server for effective 

data sharing and communication with the clients, ensuring an 

optimized learning process.  

FedAvg algorithm functions on the idea of iteratively averaging 

the model parameters from each client where data from each client 

is always kept private.[7]  

Federated Learning is preferred where the data is to be distributed 

across clients and should have a secure communication for data 

transfer among the distributed nodes rather than centralizing the 

data with a single node. 
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4.2. Comparison of Traditional Machine Learning and 

Federated Machine Learning 

The same model is used for training in both cases to maintain the 

same architecture for comparison purposes, just with a change in 

the input shape based on the dataset trained and tested upon.  

The parameters considered for the comparison purposes are 

Precision, Recall, F1 Score. 

Precision is considered as the model’s efficiency to predict the 

positive instances, whereas Recall is used to measure how many 

positive instances that model can correctly identify among the 

available ones and finally F1-Score, it is generally stated as 

combination of precision and recall.  

From Fig. 3 and Fig. 5 it can observed the difference between the 

working model of traditional machine learning training to 

Federated machine learning, the process for traditional machine 

learning is a straightforward whereas in federated machine 

learning the clients are connected to the server for global model 

updates. 

The results obtained for Traditional Machine Learning Setup are 

as follows- 

Class Precision Recall F1-score 

0 0.80 0.77 0.74 

1 1.00 0.80 0.90 

2 1.00 0.82 0.83 

3 0.78 0.79 0.81 

4 0.79 0.82 0.92 

5 0.77 0.78 0.88 

6 0.80 0.70 0.80 

7 0.82 0.73 1.00 

8 0.81 0.80 0.81 

9 0.77 0.86 0.75 

 

Table 1. Parameter Values for MNIST Non-Federated Setup 

 
Recorded values for parameters such as Precision, Recall, and F1-

Score are available. The values depicted in Table 1 aid in 

comprehending the model's accuracy in identifying images without 

errors effectively. These values were recorded after training the 

model for 25 epochs using the Traditional approach on MNIST 

Hand-Written Digits Image Dataset. 

 

Class Precision Recall F1-score 

0 1.00 0.80 0.81 

1 0.83 1.00 0.92 

2 0.80 0.83 0.87 

3 0.76 0.80 0.82 

4 0.87 0.76 0.85 

5 0.90 0.82 0.77 

6 0.78 0.80 0.72 

7 0.80 0.77 0.83 

8 0.76 0.84 0.80 

9 0.83 0.79 0.71 

 

Table 2. Parameter Values for CIFAR-10 Non-Federated Setup 

 
The values in Table 2 show us how accurate the model is and how 

efficient it is in detecting the positives. We have trained the model 

for better accuracy where the initial training was for only 25 epochs 

and later, we improved our model, and we later trained the models 

for 50 epochs, and we observed a decent growth in its accuracy and 

efficiency. These are the observations that we have obtained from 

training our models on MNIST and CIFAR-10 datasets using the 

Traditional Machine Learning Setup.  

These values help us understand the way the model’s efficiency is 

being increased and how to fine tune our model to accommodate 

the upcoming changes in the datasets.  

Similarly, we have trained models of Federated Setup on both the 

datasets i.e., MNIST and CIFAR-10. Where we have two clients 

and a server model, we can configure the number of clients that 

can be attached to a server while configuring our server.  

While experimenting, we configured our server to have two clients 

and we recorded the aggregated values from the server and 

analysed them. We tried out different variations in training the 

model i.e., 25 epochs for a single round and 50 epochs with 2 

rounds and we have aggregated the values for each round and had 

a detailed analysis on how server is responding when we train for 

various patterns.  

The comparison for 25 epochs of training for both MNIST and 

CIFAR-10 is mentioned below in details in tabular form. The 

training is for 25 epochs 2 rounds, 50 epochs 1 round and 50 epochs 

2 rounds are discussed. 

 

Class Precision Recall F1-score 

0 0.53 0.42 0.37 

1 0.45 0.51 0.49 

2 0.48 0.43 0.45 

3 0.58 0.50 0.37 

4 0.32 0.44 0.48 

5 0.41 0.56 0.49 

6 0.44 0.41 0.51 

7 0.36 0.47 0.32 

8 0.42 0.35 0.46 

9 0.49 0.38 0.44 

 

Table 3. Parameter Values for CIFAR-10 Federated Setup (25 

epochs, 2 rounds) 

 
Table 3 helps us understand the trends of efficiency and accuracy 

of the model. We have trained the model for 25 epochs and 2 

rounds. All the values in the Image are from both clients after 
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training both the clients and the server contain the aggregated 

values. The accuracy of the above experiment comes to 47%. 

 

Class Precision Recall F1-score 

0 0.31 0.48 0.48 

1 0.49 0.34 0.45 

2 0.54 0.38 0.52 

3 0.48 0.41 0.46 

4 0.41 0.45 0.39 

5 0.39 0.38 0.47 

6 0.46 0.41 0.50 

7 0.50 0.57 0.48 

8 0.48 0.38 0.45 

9 0.35 0.44 0.38 

 

Table 4. Parameter Values for CIFAR-10 Federated Setup (50 

epochs, 1 round) 

 
Table 4 helps us to understand the variations in various parameters 

of model when the model is trained for 50 epochs and a single 

round which is one of the variations of testing for improvement. 

The accuracy for the above task of training is 48%. Then to check 

the progress Table 5 helps to understand whether the model can 

save the results of end of round 1 and replicate to round 2 the start 

of training. 

 

Table 5 describes when CIFAR-10 dataset is trained for 50 epochs 

and 2 rounds where the server aggregates both the client values 3 

times, which is the result shown in the image.  

 

Table 3, Table 4, Table 5 help us to analyse how model is 

performing when it is trained in different patterns. There is a decent 

difference of model’s performance when we trained it for more 

epochs than the model that is trained for lesser epochs and when 

we increase the number of rounds there is a slight increase in 

performance of the model. 

 

Class Precision Recall F1-score 

0 0.46 0.44 0.50 

1 0.53 0.48 0.39 

2 0.41 0.32 0.46 

3 0.44 0.55 0.38 

4 0.39 0.48 0.41 

5 0.48 0.41 0.47 

6 0.46 0.37 0.35 

7 0.41 0.39 0.34 

8 0.45 0.42 0.47 

9 0.47 0.45 0.48 

 

Table 5. Parameter Values for CIFAR-10 Federated Setup (50 

epochs, 2 rounds) 

 
In Comparison with Traditional Machine Learning Setup and the 

Federated Setup we can observe a difference in accuracy as the 

data is being distributed across clients and the aggregated values 

are used to train the central server, yet federated is preferred over 

Traditional Method as we can flexibly use data across various 

clients than centralizing the whole data with a single client which 

leads lo usage of heavy compute and storage resources. But the 

results show that there can be significant improvement and is not 

at par with the results to Traditional training. 

 

Class Precision Recall F1-score 

0 0.70 0.67 0.85 

1 0.77 0.80 0.81 

2 0.80 0.77 0.78 

3 0.81 0.89 0.80 

4 0.82 0.78 0.88 

5 0.62 0.87 0.83 

6 0.79 0.69 0.81 

7 0.72 0.75 0.77 

8 0.78 0.74 0.78 

9 0.71 0.82 0.82 

 

Table 6. Parameter Values for MNIST Federated Setup (25 

epochs, 2 rounds) 

 
Table 6 helps us understand various values of model such as 

Precision, Recall, F1-Score and Accuracy. The Values are 

calculated for a model trained on MNIST Datasets for 25 epochs 

and 2 rounds. The accuracy obtained is 85.1%. 

 

Class Precision Recall F1-score 

0 0.78 0.74 0.82 

1 0.82 0.87 0.81 

2 0.71 0.84 0.74 

3 0.82 0.77 0.86 

4 0.65 0.80 0.78 
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5 0.70 0.79 0.84 

6 0.72 0.82 0.84 

7 0.75 0.81 0.78 

8 0.77 0.74 0.77 

9 0.69 0.76 0.65 

 

Table 7. Parameters MNIST Federated Setup (50 epochs,1 round) 

We observed the difference in Various Parameters when we 

compared the model with the model that is trained for 50 epochs 

in Table 7 and there is a slight increase in model’s efficiency. The 

accuracy obtained is 95.3% which is a drastic improvement when 

compared to 25 epochs of training. 

 

Class Precision Recall F1-score 

0 0.78 0.83 0.74 

1 0.81 0.75 0.77 

2 0.74 0.68 0.93 

3 0.80 0.85 0.80 

4 0.69 0.79 0.69 

5 0.73 0.80 0.86 

6 0.82 0.78 0.68 

7 0.77 0.75 0.75 

8 0.82 0.82 0.87 

9 0.81 0.76 0.85 

 

Table 8. Parameter Values for MNIST Federated Setup (50 

epochs, 2 rounds) 

 

Table 8 is intended to show that there is a significant increase in 

the aggregated values when the time is increased for training as 

there are a greater number of epochs and since the aggregation at 

server is happening multiple times. The accuracy obtained is 

96.8% on the server side. 

For training our models we tried out 3 variations where one is 25 

epochs with 2 rounds and the second is 50 epochs and single round 

and final variation is 50 epochs with 2 rounds. This 

experimentation is restricted to 2 rounds as with respect to CIFAR-

10 data set there is no improvement or in some cases negligent 

improvement being shown to the training and with respect to 

MNIST data set it is at its best accuracy and reaches at par with the 

traditional training setup. When Compared to Traditional Machine 

Learning, Federated Machine Learning is a bit complex in 

implementation, but it has a great impact where data must be 

shared with various clients, whereas Traditional Machine Learning 

has fixed data in terms of input and cannot be changed as required.  

On Comparing various parameters, we could say that Federated 

Machine Learning was far more effective and efficient when the 

data nodes are more, whereas Traditional Machine Learning can 

be used where the data is fixed to be trained upon. When data is 

missing for a particular class, it is observed that federated machine 

learning can average the learning and provide better results 

compared to non-federated machine learning. By observing the 

records of variations in training, there is a gradual increase when 

we repeatedly train our model, and once we cross the bearing out, 

the model starts to overfit when it remembers the data and will not 

be able to predict the data. On analyzing the parameters, we can 

observe Traditional Setup gives us a more efficient model than 

compared to Federated Setup. It helps us to have more accurate 

outcomes as compared to Federated Setup. It also requires less 

compute power [12] as the data is not trained multiple times as in 

the case of federated Setup. When comes to comparison of the 

accuracy of predictions of models trained in various patterns, In 

Federated Learning the number of epochs and number of rounds 

increases, the accuracy of client’s model increases, which helps us 

to gather precise learning and feed it back to the server to train the 

Server model than sharing its whole data and training our server’s 

model on whole data set.[15]  

In a comprehensive comparison of the performance between 

Federated and Traditional Setups of Machine Learning, the 

Traditional Setup demonstrates superior accuracy in predictions 

across all facets. The centralized nature of the Traditional Setup 

allows for enhanced precision and reliability in modeling 

outcomes. While the Federated Setup proves advantageous in 

scenarios where data is dispersed among numerous nodes, it is 

evident that the Traditional Setup outperforms the Federated 

counterpart even when data decentralization is not a factor. 

 

5. Conclusion and Future Work 

In our comprehensive experimentation, it became evident that the 

Traditional Machine Learning setup outperforms Federated 

Machine Learning, particularly in scenarios involving limited data 

and centralized data repositories. Even with a mere 50% data 

partition, the Traditional Machine Learning approach showcased 

initial superiority. Despite the competitive performance of the 

Federated Setup—achieving 92%-96% accuracy for MNIST and 

approximately 45%-50% for CIFAR-10 datasets across various 

rounds and 25 to 50 epochs—the non-federated setup exhibited 

higher accuracy, reaching around 96% for MNIST and 85% for 

CIFAR-10 datasets. These findings underscore the potential of 

Federated Machine Learning while acknowledging the necessity 

for ongoing refinement to enhance its effectiveness in 

decentralized machine learning environments. 

However, the scope of this investigation extends beyond the 

confines of this paper. Future explorations aim to delve into Secure 

Aggregation and Data Privacy principles, emphasizing security 

measures to safeguard client data from unauthorized access. 

The integration of IoT devices into Federated Machine Learning 

(FML), particularly for predictive maintenance, presents 

promising opportunities for device management improvement. 

Nevertheless, challenges such as handling diverse device types, 

ensuring security, and managing limited resources need to be 

addressed. Subsequent research endeavors should concentrate on 

developing robust methodologies that strike a balance between 

efficiency, security, and customization for the distinctive 

characteristics of IoT environments. 
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