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Abstract: The purpose of this paper is to explore the effectiveness of automated detection methods in diagnosing diabetic 

retinopathy (DR), a leading cause of vision loss among individuals with diabetes. By leveraging advancements in artificial 

intelligence and image processing techniques, the study aims to assess the accuracy and efficiency of automated systems in 

identifying retinopathy, thus enabling early intervention and improved patient outcomes. A comprehensive review of existing 

literature on automated detection systems for DR was conducted. Various image analysis algorithms, including deep learning 

approaches and feature extraction techniques, were explored and evaluated based on their performance in detecting retinal 

abnormalities associated with DR. In this research, we present an Inception-v3 and DenseNet-based automated detection 

technique for DR using retinal fundus pictures. This work involves the training, evaluation, and comparison of the performance 

of DenseNet and Inception-v3 convolutional neural networks (CNN) on a publicly available dataset of retinal fundus images. 

Inception-v3-based classifiers have performed better than DenseNet-based classifiers with the same dataset. While DenseNet 

achieved classifier accuracy and precision of 89.2% and 89.6%, respectively, Inception-v3 has been able to achieve classifier 

accuracy of 95.8% and precision of 95.9%. Inception-v3 has also exceeded area under ROC in comparison to DenseNet by 0.3% 

in two categories. The findings of this study highlight the promising potential of automated detection methods for DR. The 

integration of automated systems in clinical settings has the potential to enhance early diagnosis, facilitate timely treatment 

interventions, and improve patient outcomes. 
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1Introduction 

Diabetic retinopathy (DR) is a degenerative 

complication of diabetes that impairs the retina's 

microvasculature in long-term. The prevalence 

of diabetes has reached alarming levels, 

affecting millions of individuals worldwide. 

Various studies conducted by [1][23-28] 

estimated that the prevalence of diabetes at the 

global level among adults and elderly persons 

was approximately 8.8% in 2017, equating to 

around 425 million cases. This incidence is 

anticipated to increase up to 9.9% by 2045, with 

an estimated 629 million individuals affected. 

As reported by the International Diabetes 

Federation (IDF), India has experienced a rapid 

increase in the occurrence of diabetes, making it 

one of the countries with the highest number of 

diabetes cases globally. Another study estimated 

that the presence of diabetes in India among 

adults aged 20–79 years was approximately 8.9% 

in 2019, accounting for around 77 million 

individuals [2][29-37]. This prevalence is 

expected to rise to 9.9% by 2030, with an 
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estimated 101 million individuals affected. The 

progression of diabetic retinopathy increases 

with diabetes duration, with approximately 25% 

of diabetic patients developing some degree of 

retinopathy within 5 years of diagnosis. It is also 

reported that almost all patients with type-1 

diabetes and more than 60% with type-2 

diabetes develop retinopathy after 20 years of 

diabetes. DR is the leading cause of vision loss 

in working-age adults worldwide, and its 

prevalence is expected to increase with the rising 

incidence of diabetes. Early detection and timely 

treatment of DR are crucial to preventing vision 

loss. However, manual detection of DR by 

ophthalmologists is time-consuming and 

requires expertise. As a result, there is an urgent 

requirement for automated systems to detect DR 

reliably and efficiently[38-49]. 

Diabetes retinopathy has a complicated and 

multifaceted pathophysiology that involves 

inflammatory, vascular, & metabolic 

mechanisms. The main cause of diabetic 

retinopathy is hyperglycemia, which increases 

oxidative stress, produces complex glycation 

byproducts, and stimulates the polyol pathway. 

These processes cause cellular malfunction and 

death, especially in the retinal capillary 

endothelium and pericytes, leading to increased 

vascular permeability and capillary dropout. 

Increased levels of cytokines, chemokines, and 

adhesion molecules encourage leukocyte 

infiltration and vascular dysfunction, 

contributing to the pathophysiology of diabetic 

retinopathy[50-57].  

DR is diagnosed on the basis of fundoscopic 

examination and imaging studies. Fundoscopic 

examination can identify characteristic retinal 

changes such as presence of microaneurysms, 

hemorrhages, hard and soft exudates, and cotton 

wool spots. Imaging modalities, such as fundus 

photographs, optical coherence tomography 

(OCT) and fluorescein angiography (FA), 

provide additional information on retinal 

thickness, edema, and perfusion [3]. OCT is a 

light-based noninvasive imaging technique that 

is used to measure the thickness of retinal layers 

and detect macular edema [4]. FA involves the 

intravenous injection of a fluorescent dye that 

highlights retinal blood vessels and can identify 

areas of non-perfusion, neovascularization, and 

leakage[58][59].  

The primary objectives of this research include: 

• A qualitative analysis of the automated DR 

detection techniques studied in literature. 

• A new, efficient pre-processing strategy is 

used in order to prepare the fundus images 

dataset for better and accurate classification. 

• The work implemented and compared the 

performances of two pre-trained CNNs for 

automated detection of DR in four grading 

systems. 

• The performance comparison of Inception-

v3 and DenseNet revealed that Inception-v3 

performed better in terms of all the 

parameters which are classifier accuracy, 

precision, recall and area under the receiver 

operating characteristics curve. 

This paper presents a comprehensive review of 

convolutional neural network (CNN) supported 

automated detection of diabetic retinopathy, 

including various CNN architectures and their 

performance. We also discuss the challenges and 

limitations of CNN-based DR detection and 

future research directions. The paper is 

organized in following manner: Section 1 

contains the introduction part. Section 2 contains 

the literature study and summary of related 

research; Section 3 consists of material and 

methodology of the research. Section 4 discusses 

and analyses the results obtained, and Section 5 

represents the conclusion and future scope. 

 

2 Literature Review 

CNNs have shown excellent performance in 

several medical imaging tasks, including DR 

detection. A deep learning algorithm referred to 

as CNNs can automatically identify features in 
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medical images and classify them based on the 

learned features. Several research on the use of 

CNNs for automated detection of DR have been 

done, including work by [5], which obtained 

good accuracy with a huge dataset of fundus 

images. Additionally, other studies have 

supported the use of deep learning methods for 

different aspects of DR detection, including 

segmentation and grading[60-66]. 

A study completed one of the initial 

investigations on CNN-based DR detection by 

developing a deep learning-based algorithm for 

detecting DR with the help of fundus 

photographs [5]. The proposed algorithm 

achieved high sensitivity as well as high 

specificity, demonstrating the potential of CNNs 

for automated DR detection. Since then, several 

studies have explored different CNN 

architectures and techniques for enhancing the 

accuracy of CNN-based detection of DR. For 

instance, this work engaged in  developing a 

deep learning system for the detection of DR 

and other related eye illnesses from retinal 

images collected from a multiethnic group 

diagnosed with diabetes [6]. They used a 

combination of CNNs and transfer learning to 

achieve high accuracy in detecting DR and other 

eye diseases. In addition to developing new 

CNN architectures, researchers have also 

explored techniques for improving the 

interpretability and explainability of CNN-based 

DR detection systems. Another work proposed 

an interpretable CNN-based framework for DR 

diagnosis, which not only achieved high 

accuracy but also provided a visual explanation 

of the decision process, improving the 

trustworthiness of the system [7]. A dual-

attention CNN-based system for automated 

grading of DR is developed by [8]. The 

proposed model achieved high accuracy and 

outperformed previous methods, demonstrating 

its potential for clinical use. A hybrid model for 

automated DR detection using deep learning and 

visual attention mechanisms is proposed by [9]. 

The proposed model resulted in high accuracy 

and sensitivity, which could be used for early 

screening of DR. A multi-scale CNN-based 

system with transfer learning for diabetic 

retinopathy detection is developed by [10]. The 

proposed model achieved high accuracy and 

outperformed previous methods, indicating its 

potential for clinical use. A dual-task deep CNN 

for automated diagnosis of DR is developed by 

[11]. The results showed that the proposed 

model achieved high accuracy, demonstrating its 

potential for clinical use. Table 1 shows the 

comparison analysis of previous literature 

relevant to the study. 

 

Table 1 Summary of related literature in CNN-based automated detection system for DR 

Author(s)  

 

 Year Methodology Dataset Performance  

Gulshan et al. 

[5] 

2016 Trained a CNN with 

128,175 retinal images 

from 4,045 patients and 

tested on a private dataset 

of 10,000 images 

EyePACs dataset AUC of 0.99 for referable 

diabetic retinopathy (RDR) 

and 0.94 for vision-

threatening diabetic 

retinopathy (VTDR). 

Abràmoff et 

al. [14] 

2018 Trained a CNN with 

128,175 retinal images 

from 4,045 patients and 

tested on a private dataset 

of 10,000 images 

EyePACs dataset AUC of 0.99 for detecting 

RDR and 0.96 for detecting 

VTDR 

Rajalakshmi 2018 Trained a CNN with 40,000 Retinopathy Accuracy of 95% and an 
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et al. [15] retinal images and tested on 

a private dataset of 1,000 

images 

Online Challenge 

(ROC) dataset 

AUC of 0.99 for detecting 

RDR 

Ting et al. [6] 2019 Trained a CNN with 

466,486 retinal images 

from 35,126 patients and 

tested on a private dataset 

of 4,610 images 

EyePACs dataset AUC of 0.99 for detecting 

RDR and 0.95 for detecting 

VTDR 

Pao et al. [16] 2020 Trained a CNN with 25,966 

retinal images from 10,056 

patients and tested on a 

private dataset of 1,859 

images 

Kaggle Diabetic 

Retinopathy 

Detection 

Challenge dataset 

Accuracy of 85.5% and an 

AUC of 0.93 for detecting 

RDR 

Kermany et al. 

[17] 

2020 Trained a CNN with 

118,000 retinal images 

from 45,000 patients and 

tested on a private dataset 

of 2,000 images 

EyePACs dataset AUC of 0.99 for detecting 

RDR and 0.96 for detecting 

VTDR 

Liu et al. [18] 2022 Two pre-trained CNNs with 

1200  retinal images from 

600 patients from a 

community hospital 

Primary data AUC of 0.981 for detecting 

RDR and 0.944 for 

detecting VTDR 

Chetoui et al. 

[19] 

2023 Federated learning to 

maintain privacy-

preservation. Deep CNN 

from 4 institutions shared 

their CNN parameter 

corrections to make a 

robust model without 

sharing their dataset 

APTOS, 

MESSIDOR-I, 

MESSIDOR-II, 

IDRiD, EyePACs 

AUC of 0.95 for APTOS, 

0.83 for MESSIDOR, 0.74 

for IDRiD and 0.77 for 

EyePACs 

Lo et al. [20] 2021 Federated learning with 2 

internal models with 600 

images 

Primary data AUC of 0.954 for detecting 

RDR and 0.96 for detecting 

VTDR 

 

Despite the promising findings of CNN-based 

DR detection, a number of challenges and 

limitations persist that need to be resolved[67-

74]. For instance, the lack of large and diverse 

datasets is a major challenge in developing 

robust and accurate CNN-based DR detection 

systems. Moreover, the generalizability of CNN-

based DR detection systems to different 

populations and imaging conditions needs to be 

investigated. In conclusion, CNN-based 

automated detection systems have shown 

promising results in detecting DR and have the 

potential to become an efficient and accurate 

screening system for DR. However, more 

research is needed to address the challenges and 

limitations of CNN-based DR detection and to 

further improve the performance and clinical 

utility of these systems [75]. 

In the recent decade, machine learning-based 

algorithms such as support vector machines 
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(SVM), random forest classifiers, and artificial 

neural networks (ANN) have been deployed to 

develop automated detection systems for 

diabetic retinopathy, as suggested by [12]. The 

automatic identification of DR for feature 

extraction and classification tasks using CNNs 

and deep learning-based systems has 

demonstrated promising results. The literature 

review shows that CNN-based automated 

detection of diabetic retinopathy has achieved 

high accuracy and AUC in various datasets, 

including EyePACs [5], [6], [14], [17], ROC 

[15], and the Kaggle Diabetic Retinopathy 

Detection Challenge dataset [12], [16]. A recent 

study comparing artificial intelligence (AI)-

based automated identification with 

ophthalmologist opinion for referral DR found 

that the AI-based detection method performed 

better [18]. These findings show that CNNs have 

the potential to improve the efficiency and 

accuracy of diabetic retinopathy screening. 

Federated learning (FL) technique to build a 

resilient deep learning model in which four 

institutions run their models locally and 

communicate model corrections to produce a 

shared model [19]. When compared to earlier 

deep learning models, this strategy enhanced 

detection accuracy by 3%. FL also aids with 

privacy preservation when sharing model results, 

regardless of the datasets used by individual 

models [20]. An assessment of AI-based 

techniques suggests that automated detection 

systems play a substantial role for DR [21]. 

Though deep CNN with various methodologies 

is being tried and used in this field, other 

approaches like as generative adversarial 

networks are also being favored to produce 

better outcomes [22]. However, more study is 

needed to confirm the performance evaluation of 

these machine learning models on external 

datasets, as well as to address ethical concerns 

about data privacy and bias[76]. 

 

3 Materials and Methodology 

The CNN-based automated detection system for 

diabetic retinopathy is a multi-step process that 

involves efficient data pre-processing, data 

augmentation, and dataset splitting before the 

training of CNN. This process is shown in 

Figure 1. 

 
Fig 1: Workflow for CNN-based automated detection of DR 

3.1 Data Collection 

A dataset of retinal images with ground truth 

labels for diabetic retinopathy is collected from 

publicly available repositories such as the 

Kaggle APTOS2019 dataset. The dataset 

consists of color fundus photographs captured 

with different cameras, resolutions, and imaging 

conditions. Figure 2 shows the dataset 

distribution with four classes. Class 0 shows the 

normal fundus images; class 1 represents mild 

DR; class 2 shows proliferative cases; and class 

4 denotes severe DR cases. The dataset is 

preprocessed to remove artifacts, enhance 

contrast, and normalize the intensity range using 

standard techniques. 

Data 
collection

Pre-
processing

Dataset 
splitting

CNN 
training

CNN 
testing & 
validation
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Fig 2: Class-wise dataset configuration 

3.2 Pre-processing  

Pre-processing methods are essential for 

boosting the qualities and characteristics of 

fundus images for automated detection of DR as 

concluded by [13]. A two-stage pre-processing 

method is used in this work, combining 

Gaussian filtering and circular cropping.  

3.2.1 Gaussian filtering  

Gaussian filtering is a widely used technique for 

reducing noise and enhancing the clarity of 

retinal fundus images. It involves convolving the 

image with a Gaussian filter kernel, which blurs 

the image while preserving important image 

structures. The steps involved in applying 

Gaussian filtering to retinal fundus images are as 

follows: 

   a. Convert the retinal fundus image to grayscale if 

it is in color. 

   b. Apply Gaussian filtering to the grayscale image 

using an appropriate filter kernel size and     

standard deviation. 

c. Adjust the filter parameters to balance noise 

reduction and the preservation of important 

details in the image. 

   d. Normalize the filtered image to enhance its 

contrast and improve its visual appearance. 

 

3.2.2 Circular Cropping: 

Circular cropping is a technique that 

focuses on the analysis on the central region of 

the retinal fundus scans, which contains the 

macular region and the optic disc, where signs of 

diabetic retinopathy are commonly found. By 

cropping out the peripheral areas, circular 

cropping reduces computational complexity and 

eliminates potential artifacts and irrelevant 

information. The steps involved in circular 

cropping are as follows: 

 

a. Detect the central coordinates of the macular 

region and the optic disc using image processing 

techniques such as image segmentation or 

feature extraction. 

b. Calculate the radius of the circular area of 

interest for analysis. 

   c. Crop the retinal fundus image using the centre 

coordinates and radius to obtain a circular region 

of interest. 

  d. Resize the cropped circular region to a 

standardized size if necessary, ensuring 

consistency across different images in the 

dataset. 

By applying Gaussian filtering to reduce 

noise and circular cropping to focus on relevant 

structures, the pre-processed retinal fundus 

images are better suited for subsequent feature 

extraction and classification tasks for the 

automated detection of DR. Table 2 shows the 

pseudo code for the proposed pre-processing 

techniques. These pre-processing techniques 

contribute to the improved accuracy and 

robustness of the detection system. Figure 3 and 

class
0

class
1

class
2

class
3

Number of images 1092 1099 997 1063

0
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4 show the original and pre-processed fundus images. 

 

                  
                Fig 3: Original fundus image     Fig 4: Pre-processed fundus image after Gaussian 

filtering and circular cropping 

 

Table 2 Pseudo code for pre-processing techniques 

Pre-processing techniques – Gaussian filtering and circular cropping 

import numpy as np 

import cv2 

 

# Load the retinal fundus image 

image = cv2.imread('fundus_image.jpg') 

 

# Convert the image to grayscale 

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

 

# Apply Gaussian filtering to reduce noise 

filtered = cv2.GaussianBlur(gray, (5, 5), 0) 

 

# Detect the center coordinates of the macula and optic disc 

macula_center = (250, 250)  # Example coordinates (x, y) 

optic_disc_center = (400, 400)  # Example coordinates (x, y) 

 

# Determine the radius for circular cropping 

radius = 200  # Example radius 

 

# Create a mask for circular cropping 

mask = np.zeros_like(gray) 

cv2.circle(mask, macula_center, radius, (255, 255, 255), -1) 

cv2.circle(mask, optic_disc_center, radius, (0, 0, 0), -1) 

 

# Apply the circular cropping mask to the filtered image 

cropped = cv2.bitwise_and(filtered, filtered, mask=mask) 

 

# Resize the cropped circular region to a standardized size 
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resized = cv2.resize(cropped, (256, 256)) 

 

# Display the pre-processed image 

cv2.imshow('Pre-processed Image', resized) 

 

 

 

3.3 Model Architecture 

A CNN is designed for the classification of 

retinal images into different grades of diabetic 

retinopathy. The architecture of CNN comprises 

of multiple convolutional layers followed by 

pooling layers, batch normalization, and 

activation functions. The final most layer is 

generally a softmax layer that outputs the 

probability of each class. Transfer learning is 

employed to fine-tune the CNN with pre-trained 

weights on Inception-v3 and Densenet. The 

architecture of proposed CNNs is discussed as 

follows:  

3.3.1 Inception-v3: Inception-v3 is a popular 

CNN architecture that has gained significant 

attention in the field of medical image analysis. 

It was created by Google and is well known for 

delivering outstanding results in image 

classification and object identification 

applications. One of Inception-v3's important 

features is its deep architecture, which consists 

of 48 layers and facilitates the extraction of key 

characteristics from input images. It employs 

several novel techniques, such as the inception 

module, which integrates multiple filter sizes 

inside the same layer, allowing the network to 

keep track of features at different scales. 

Another notable feature is the extensive use of 

factorized convolutions, which reduce 

computational complexity while maintaining 

representation power. Inception-v3 also utilizes 

batch normalization and aggressive data 

augmentation techniques, contributing to 

improved generalization and robustness. 

Additionally, it includes auxiliary classifiers that 

help alleviate the vanishing gradient problem 

during training, leading to more effective 

learning. Overall, the features of Inception-v3 

make it a powerful and versatile CNN 

architecture for various image recognition tasks. 

The Inception-v3 architecture consists of 

multiple layers, starting with the input layer that 

takes the image as input. Here is a description of 

the key components of the architecture: 

1. Input Layer: Accepts the image as input. 

2. Convolutional Layers: Multiple convolutional 

layers are stacked together, responsible for 

extracting different features at various scales and 

orientations. 

3. Inception Modules: The core building blocks 

of Inception-v3, these modules incorporate 

parallel convolutional operations of different 

filter sizes (1x1, 3x3, 5x5) within the same layer. 

These parallel operations allow the network to 

capture features at different levels of abstraction. 

4. Max Pooling Layers: These layers perform 

down-sampling of feature maps by reducing the 

spatial dimensions while preserving the 

important information. 

5. Auxiliary Classifiers: Additional branches are 

included in the architecture where classifiers are 

applied to intermediate feature maps. These 

auxiliary classifiers help with gradient flow 

during training and prevent the vanishing 

gradient problem. 

6. Fully Connected Layers: The feature maps are 

flattened and carried further via layers that are 

fully connected, which perform the task of 

classification based on the learned features. 

7. Softmax Layer: The final layer applies the 

softmax activation function to generate the 

predictions over different classes. 

8. Output Layer: The output layer provides the 

predicted probabilities for each class. 
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3.3.2 DenseNet: DenseNet is a deep CNN 

architecture known for its unique and innovative 

design that addresses the vanishing gradient 

problem and promotes feature reuse. One of the 

key features of DenseNet is its dense 

connectivity pattern, where each and every layer 

is connected in a feed-forward manner. Such 

dense-form connectivity allows for efficient 

information flow throughout the network, 

enabling gradients to propagate more easily and 

enhancing gradient-based optimization. 

DenseNet also incorporates bottleneck layers, 

which reduce the number of input feature maps 

before each convolution operation, reducing 

computational complexity while preserving 

expressive power. Moreover, DenseNet 

introduces skip connections, known as shortcut 

connections that concatenate feature maps from 

previous layers, allowing subsequent layers to 

access and reuse the rich information from 

earlier stages. This dense connectivity and 

feature reuse contribute to improved accuracy, 

parameter efficiency, and training stability. The 

usefulness of DenseNet designs in capturing and 

utilizing rich hierarchical representations is 

demonstrated by the state-of-the-art outcomes 

they have attained in a variety of computer 

vision applications. The DenseNet architecture 

consists of multiple layers and blocks. Here is a 

description of the key components of the 

architecture: 

1. Input Layer: Accepts the input image. 

2. Convolutional Layer: Employs an ensemble 

of convolutional filters to extract the initial 

features of input image. 

3. Dense Blocks: The core building blocks of 

DenseNet, these blocks consist of multiple 

densely connected layers. Each layer is feed-

forward coupled to every other layer. All 

previous layers' feature maps are concatenated 

and utilized as inputs for these layers. 

4. Transition Layers: Placed as sandwich layers 

between dense blocks. These are responsible for 

reduction in the dimensions of the feature maps. 

These layers typically consist of a combination 

of convolutional, pooling, and down-sampling 

operations. 

5. Pooling Layer: Performs spatial pooling to 

limit the dimensions of the feature maps to a 

fixed size. These layers are also known as global 

average pooling layers. 

6. Fully Connected Layers: The feature maps are 

flattened and carried further via layers that are 

fully connected, which perform the task of 

classification based on the learned features. 

7. Softmax Layer: The final layer applies the 

softmax activation function to generate the 

predictions over different classes. 

8. Output Layer: The output layer provides the 

predicted probabilities for each class. 

3.4 CNN model training and testing 

The proposed pre-trained CNN models are fine-

tuned with the pre-processed image dataset 

using a train-test split ratio of approximately 

90:10. The training is done using ADAMAX 

optimizer keeping the learning rate of 0.0001 

and regularization techniques such as dropout to 

prevent over-fitting. The models are assessed 

using standard performance metrics, such as 

classifier accuracy, precision, recall, and F1-

score. 

3.5 Performance metrics 

The standard metrics used for the performance 

analysis of CNNs are explained as follows: 

 

3.5.1 Precision: Precision denotes the ratio of 

true positive cases to the predicted positive cases. 

In the context of diabetic retinopathy detection, 

precision indicates the accuracy of correctly 

identifying patients with diabetic retinopathy 

among those predicted to have the condition. 

Higher the precision score lower the rate of false 

positives, which is desirable as it minimizes the 

chances of misdiagnosis. 

 

3.5.2 Recall: It is also known as sensitivity. It 

denotes the proportion of correctly predicted 

positive cases out of the true positive cases. In 
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DR detection, recall indicates the capability of 

the classifier system to correctly identify 

patients with the condition among all the 

individuals who actually have it. Higher the 

recall score lower is the predictions of false 

negatives, which is important to avoiding 

missing cases of diabetic retinopathy. 

 

3.5.3 F1-score: It is the harmonic mean of 

precision and recall. It provides an accurate 

measure of a model's performance by taking 

precision and recall into account. It is useful 

when there is an uneven distribution between 

positive and negative cases. The F1-score is 

commonly used in diabetic retinopathy detection 

to assess the overall effectiveness of the model 

in correctly identifying and excluding cases. 

 

3.5.4 Accuracy: Accuracy denotes the ratio of 

correctly classified cases (both true positives and 

true negatives) to the total samples. In the 

reference of DR detection, accuracy indicates 

the overall correctness of the predictions made 

by the system.  

 

3.5.5 ROC curve: The ROC curve is an 

illustration of a classification model's 

performance as the discrimination threshold 

varies. At various threshold values, it compares 

the sensitivity (recall) with the specificity. The 

ROC curve displays the conflict between 

sensitivity and specificity graphically. The area 

under the ROC curve (AUC) is a popular model 

performance assessment statistic, with a greater 

AUC indicating a better ability to distinguish 

between positive and negative situations. 

 

The above mentioned metrics help assess the 

system's ability to correctly identify positive 

cases, minimize false positives and false 

negatives, and provide an overall measure of 

accuracy and discrimination capability. 

3.6 Ethical Considerations 

The research followed ethical guidelines and 

obtained necessary approvals from institutional 

review boards. The privacy and confidentiality 

of the patients are maintained by anonymizing 

the images. The proposed model is validated on 

external datasets to ensure its generalizability 

and avoid bias. In conclusion, the proposed 

methodology involves collecting and 

preprocessing retinal images, fine-tuning pre-

trained CNNs, evaluating the models, and 

addressing ethical considerations. The proposed 

CNN-based automated detection system for DR 

has the capability to efficiently and accurately 

screen the DR cases and reduce the workload of 

clinicians. 

 

4 Results and Evaluation 

The work consists of comparing the 

performances of two pre-trained CNNs for 

automated detection of diabetic retinopathy. 

Inception-v3 and DenseNet are fine-tuned on 

pre-processed fundus images for the detection of 

DR in four categories. The pre-processed dataset 

is divided into training and validation parts. Out 

of a total of 4251 fundus images, 3826 are kept 

for training the CNN, and 425 are used for 

validation purposes. The training of Inception-

v3 and DenseNet resulted in a ROC curve 

showing the training performance. Both the 

CNNs have achieved 100% area under Roc for 

class 0 as well as 1, which shows 100% correct 

predictions for these two classes. Further, 

DenseNet has achieved 96% ROC for classes 2 

and 3, whereas Inception-v3 has obtained a 

better 99% ROC for these two categories. The 

class-wise ROC for DenseNet is presented in 

figure 5, and the ROC for Inception-v3 is shown 

in figure 6. Comparison between the 

performances of these two CNNs is shown in 

Table 3. 
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 Fig 5: ROC for DenseNet    Fig 6: ROC for Inception-v3 

 

Table 3: Comparison of ROC for DenseNet and Inception-v3 

Sr. No. Class  ROC for DenseNet ROC for Inception-v3 

1 0- normal 1.00 1.00 

2 1- mild 1.00 1.00 

3 2- proliferative 0.96 0.99 

4 3- severe 0.96 0.99 

 

The statistical performance of classifiers is 

shown by their respective confusion metrics, 

shown in figure 7 and 8. The other performance 

parameters like precision, recall, f1-score, and 

accuracy of both CNNs and their comparison are 

given in Table 4. 

                                 
Fig 7: Confusion matrix for DenseNet   Fig 8: Confusion matrix for Inception-v3 

 

Table 4: Comparison of performance parameters of DenseNet and Inception-v3 

Sr. No. Performance parameter DenseNet Inception-v3 

1 Precision 89.6% 95.9% 

2 Recall 89.3% 95.7% 
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3 F1-score 89.3% 95.8% 

4 Accuracy 89.2% 95.8% 

 

It is clear from the result analysis in tables 3 and 4 

that Inception-v3 has achieved better results in terms 

of all the performance parameters as compared to 

DenseNet. This study comparing the performance of 

Inception-V3 and DenseNet for automated detection 

of DR revealed that Inception-V3 demonstrated 

superior performance in several key aspects. Firstly, 

Inception-V3 exhibited higher accuracy in identifying 

retinal abnormalities associated with diabetic 

retinopathy, such as microaneurysms, hemorrhages, 

and exudates. The deeper network architecture and 

the incorporation of auxiliary classifiers in Inception-

V3 allowed for better feature extraction and 

classification, resulting in improved detection 

capabilities. Secondly, Inception-V3 showed better 

precision, recall and F1-score in distinguishing 

between different stages of retinopathy, enabling 

more accurate prediction of disease progression and 

appropriate stratification of patients based on disease 

severity. Lastly, the computational efficiency of 

Inception-V3 was superior to DenseNet, enabling 

faster processing times and making it more suitable 

for real-time clinical applications. Overall, the 

combination of improved accuracy, better 

stratification capabilities, and computational 

efficiency makes Inception-V3 a more favorable 

choice for automated detection of diabetic 

retinopathy. 

 

5 Conclusion and Futuristic Improvements 

The Inception v3 model exhibits superior 

performance in terms of accuracy, precision, recall, 

and ROC curves, according to the comparative 

analysis of the Inception v3 and DenseNet models for 

automated identification of diabetic retinopathy. 

Several studies have reported the effectiveness of the 

Inception-v3 architecture in accurately classifying 

retinal images and detecting diabetic retinopathy. Its 

ability to capture intricate features and hierarchies 

through the use of inception modules enables more 

precise discrimination between healthy and diseased 

retinas. On the other hand, while DenseNet also 

performs well, the Inception v3 model consistently 

outperforms it, providing higher accuracy rates, 

better precision and recall scores, and achieving 

superior AUC values. Therefore, based on the 

available evidence, the Inception v3 model emerges 

as a more suitable choice for automated detection of 

diabetic retinopathy due to its superior performance 

and diagnostic capabilities. Additional investigation 

and validation on larger and more diverse datasets are 

needed to corroborate these findings and explore 

other potential CNN architectures for improved 

diabetic retinopathy identification and management. 
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