

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3244–3258 | 3244

Software Fault Prediction Using Canonical Discriminant Quadratic

Regressive Milboost Ensemble classifier

1Mr. T. Shathish Kumar, 2Dr. B. Booba

Submitted: 07/02/2024 Revised: 15/03/2024 Accepted: 21/03/2024

Abstract: The aim of software fault prediction is to sense fault-prone software modules and enhances software quality as well as testing

effectiveness through early recognition of faults. It aids to achieve desired software quality through lower cost. Earlier fault prediction

classification algorithms to forecast fault-prone software modules. The prediction accuracy of conventional techniques was established to

be significantly minimized with better misclassification. The selection of significant metrics from the source code is the fundamental step

in the software prediction process. Therefore a novel technique called CAnonical Discriminant Quadratic Regressive Milboost Ensemble

(CADME) technique is introduced for improving the software prediction accuracy as well as minimizing misclassification rate. Proposed

CADME technique comprised metric selection , classification. Initially, number of JAVA packages given as input from the dataset. Then

the metric dispersal class extractions are carried by using Jarque–Bera stochastic test. After the class extraction, the important software

metrics are chosen for software prediction using generalized canonical correlative normal discriminant analysis. Following the metric

selection, the software fault prediction is through by means of Iterative Dichotomize Linear Regressive Quadratic MilBoost. As a result of

JAVA classes known with defects or not are predicted in an accurate manner by reducing the loss. This assists to develop the precision and

F-score in fault prediction. Simulation results are performed on factors namely accuracy, precision, recall, F-score, and time complexity.

The results as well as discussion of various metrics specified that proposed CADME technique improves the accuracy and minimum time

complexity of software prediction than the conventional methods.

Keywords: Software fault prediction, Jarque–Bera stochastic test-based metric dispersal class extractions, generalized canonical

correlative normal discriminant analysis based software metrics selection, Iterative Dichotomize Linear Regressive Quadratic MilBoost.

1. INTRODUCTION

Software fault forecast is employed to enhance software

quality, as well as improve the maintenance in the testing.

Software fault is a defect that takes occurs when the

expected result doesn't equivalent to the actual results.

Testing is important part of software improvement

process however is usually manual, error-prone, as well as

luxurious. Software testing is process of producing

reliable, robust, as well as trustworthy software code

through detecting faults. But, it still time-utilizing process.

In a few testing circumstances, numerous faults are

identified over long time. Therefore the detection of faults

with minimum time consumption is a demanding issue to

improve software quality. Numerous works have designed

for software fault prediction.

For identifying the process of detecting software defects ,

Hybrid Approach to detect Large Class Bad Smell (HA-

LCBS) was developed in [1]. But refactoring procedure of

huge class imperfection prediction was not performed.

For predicting software module as defective or not

defective, Defect Prediction based on Convolutional

Graph Neural Network (DP-GCNN) was designed in [2] .

However time utilization of defect forecast was

challenging issue.

The different ensemble ML techniques were presented in

[3] for predicting defects of software systems. But it failed

to carry out defects prediction with more accuracy and

minimum errors. For code smell recognition based on

feature selection, A new four-way approach was

introduced in [4] .But correlation between the learners

was not analyzed to improve the code smell detection

accuracy.

A Diverse Ensemble Learning Technique (DELT) was

introduced in [5] for software fault classification. But it

failed to estimate quality of software scheme . An

extended Random Forest (extRF) technique was designed

in [6] for software defect forecast and analysis. However

it failed to give analytical assessment of ML methods for

forecast uses.

For cross-project defect forecast , Kernel Spectral

Embedding Transfer Ensemble (KSETE) technique was

designed in [7]. But feature learning capability was not

improved. Hybrid Swarm Intelligence and DL model was

developed [8] for enhancing software quality and

efficiency by predicting the defects. However, it failed to

1Research Scholar, Dept.of CSE, VISTAS, VEL’s University, Chennai,

Tamil Nadu, India. Country

shathish098@gmail.com
2Professor, Dept.of CSE, VISTAS, VEL’s University, Chennai, Tamil Nadu,

India. Country

boobarajashekar@gmail.com

mailto:shathish098@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3244–3258 | 3245

extract features as well as build software defect forecast

models as well as compare efficiency of dissimilar

learning algorithms. For detecting code smells, Three-

hybrid feature selection by ensemble ML algorithms was

developed in [9]. But structural metrics were not

adequate for detecting code smell to achieve better

performance.

A stacking heterogeneous ensemble approach was

introduced in [10] for predicting the code smell. But the

model complexity in ensemble learning was not

minimized to observe trade-offs among building

multifaceted method and attaining superior recognition

performance.

1.1 contributions of manuscript

To overcome conventional problems, new CADME

technique is designed by new contributions,

➢ CADME technique is developed depend on class

extraction, metric selection, as well as classification. This

technique enhances software fault prediction accuracy.

➢ CADME technique uses the Jarque–Bera

stochastic test to extract the Java classes from the software

packages. A generalized canonical correlative normal

discriminant analysis is applied in the CADME technique

to identify the relevant and irrelevant software metrics.

This process minimizes the software fault prediction.

➢ Iterative Dichotomize Linear Regressive

Quadratic MilBoost is applied for predicting the defective

or non-defective java extracted classes by means of

constructing the weak learners as Gibbs-Poston indexive

ID3 (Iterative Dichotomiser 3) decision tree. The outputs

of weak learner results are combined and compute the

quadratic loss. The proposed ensemble classifier uses

segmented linear regression to select the weak learner to

further reduce time complexity. Downhill simplex

technique is utilized to find strong classification outcomes

by minimum loss. This process improves the accuracy and

F-score.

➢ Lastly, comprehensive experimental evaluation

is performed through assortment of performance metrics

to demonstrate enhancement of CADME method over

existing techniques.

1.2 Outline of manuscript

Outline of manuscript is structured as below. In Section 2,

presents literature review of software fault prediction.

Section 3 is gives a concise clarification of CADME

technique through architecture diagram and various

processes. In Section 4, provides experimental settings by

dataset explanation. In section 5, performance outcomes

of CADME method as well as conventional techniques are

discussed through dissimilar parameters. Finally, Section

6 summarizes manuscript.

2. Literature Review

Deep learning models were performed in [11] to classify

the smells for detecting code smells. However, it failed to

minimize the code smell detection. In [12], five ensemble

ML and two DL algorithms were developed to distinguish

code smells from the source code. But learning algorithms

were not explored to discover greatest methods for code

smell recognition.

Gated Recurrent Unit (GRU) through LSTM was

developed [13] for software defect prediction. But, it

failed to extract significant features for software defect

forecast. Temporal Convolutional Network (TCN) was

developed in [14] to forecast presence of design code

smells. But approach was not effective to improve

prediction performance results.

For predicting software defect patterns, Graph neural

network was developed in [15] . However, it failed to

discover improved technique of faulty code smell. A

Gated hierarchical LSTM network (GH-LSTM) was

designed [16] to extract both semantic features for

defecting the prediction of code smell. But it failed to

investigate performance of designed method in cross-

project defect forecast.

 For enhancing ranking-oriented defect forecast ,

cost-sensitive rankingSVM (CSRankSVM) method was

introduced in [17]. However, data imbalance learning was

not performed. Multiple machines learning approach-

based code smell detection was developed in [18] for

recognition of code smells. But it failed to develop a

systematic scheme for code smell recognition. Multi-label

classification method was introduced in [19] for

predicting the test smells by using a deep representation

of the source code. However, it was not efficient to

perform other types of test smells. A decision tree

algorithm was designed in [20] for identifying software

defects. However, it did not focus on eliminating the

defects and correction approaches.

3. Proposal Methodology

In software scheme, test code is dependable for testing

source code. These source codes are vulnerable to

dissimilar problems such as potential defective modules

in software products during development. Software fault

is contaminated portion of program, that sometime

expires program unforeseenly, or may assist hackers to

read the program, that have disturbing effect on quality as

well as security of software products. Therefore, Accurate

and timely fault prediction has become a fundamental

aspect to improve software quality and reliability. Based

on this motivation, an accurate and timely software fault

forecast CADME method is introduced. motivation for

CADME technique is to select the software metrics

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3244–3258 | 3246

through ML methods for the classification process with no

degrading model's effectiveness.

Figure 1 architecture of the proposed CADME technique

Figure 1 given above illustrates architecture of proposed

technique to predict software faults through enhanced

accuracy as well as minimum time utilization. Initially,

JAVA packages Dataset ‘𝐷𝑆 is considered as input. The

number of JAVA packages ‘𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}’ are

collected from dataset. First, proposed CADME method

carry out the normal metric and abnormal metric dispersal

class extraction by applying the Jarque–Bera stochastic

test. Jarque–Bera stochastic test is statistical test

employed to identify whether sample data (i.e. class)

matches a normal distribution. After the class extraction,

generalized canonical correlative normal discriminant

analysis is applied to select the significant software

metrics. Normal discriminant analysis is ML technique to

recognize pertinent and irrelevant metrics through assist

of generalized canonical correlation. Generalized

canonical correlation analysis is a statistical method used

for finding the cross-correlation among the sets of

variables (i.e. metrics).

After extracting the classes and metrics, the CADME

technique performs the software fault prediction using

Iterative Dichotomize Linear Regressive Quadratic

MilBoost. The Quadratic MilBoost is an ensemble

technique used for predicting the defective or non-

defective java extracted java classes by constructing the

set of weak learners as a Gibbs-Poston indexive ID3

(Iterative Dichotomiser 3) (GIID3) decision tree. Output

of weak learner outcomes is merged and measures

quadratic loss. Segmented linear regression is ML to

select weak learner results through minimum loss by

setting the threshold for reducing time complexity of the

fault forecast. The downhill simplex method is a

numerical method to find strong classification results with

minimum loss.

3.1 Jarque–Bera stochastic generalized canonical

normal discriminant analysis

CADME method is to perform class extraction and metric

selection. While constructing a ML model for software

fault forecast, not all metrics are important every time.

Adding unnecessary software metrics directs to decrease

in general accuracy of method as well as increases its

complexity. Hence, class extraction and metric selection

process are the important fundamental steps as building

ML model to enhance overall accuracy of software fault

forecast and minimize the complexity.

 Therefore, the proposed CADME technique first

performs the metric dispersal class extractions and

significant metric selection. The metric dispersal class

extractions process is done by applying a Jarque–Bera

stochastic test. The proposed stochastic test is a statistical

measure of the probability distribution of a random

variable such as the measured empirical JAVA package

function ‘and the cumulative JAVA package function.

The stochastic test refers to the random probability

distribution or patterns that are analyzed statistically.

https://en.wikipedia.org/wiki/Empirical_distribution_function
https://en.wikipedia.org/wiki/Empirical_distribution_function

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3244–3258 | 3247

After that, generalized canonical correlative normal

discriminant analysis is used to select significant metrics

for software fault forecast. It is ML method used for

determining a linear combination of metrics that separates

into two or more sets namely relevant as well as irrelevant

metrics. Resulting relevant features used for

dimensionality reduction before later classification.

Dimensionality reduction is procedure of minimizing

number of irrelevant metrics through attaining set of

relevant metrics.

Figure 2 flow process of Jarque–Bera stochastic generalized canonical normal discriminant analysis

Figure 2 shows the flow process of class extraction and

software metric selection by using Jarque–Bera stochastic

generalized canonical normal discriminant analysis. First,

the JAVA packages were collected from the dataset and

provided as input. By applying the Jarque–Bera stochastic

test, normal metric dispersal classes and abnormal metric

dispersal classes are estimated. The Jarque–Bera

stochastic test analysis process is given below,

𝑆𝑡 =
𝑚

6
 [𝜑𝑠

2 + 0.25(𝜑𝑘 − 3)2] (1)

Where, 𝑚 denotes the number of Java Packages, 𝜑𝑠

denotes a sample skewness, 𝜑𝑘 is the sample kurtosis.

The skewness and kurtosis describe a particular aspect of

a probability distribution. The sample skewness is

measure of asymmetry of probability distribution of

random variables namely measured empirical JAVA

package function ‘and cumulative JAVA package

function.

𝜑𝑠 =
1

𝑚
∑(𝐸𝐹𝑛(𝑝)−𝐶𝐹𝑛(𝑝))

3

1

𝑚
∑((𝐸𝐹𝑛(𝑝)−𝐶𝐹𝑛(𝑝))

2
)

3/2 (2)

Where, 𝜑𝑠 denotes a skewness, empirical JAVA package

function ‘𝐸𝐹𝑛(𝑝)’ and cumulative JAVA package

function ‘𝐶𝐹𝑛(𝑝)’ , 𝑚 denotes a number of Java Packages.

𝜑𝑘 =
1

𝑚
∑(𝐸𝐹𝑛(𝑝)−𝐶𝐹𝑛(𝑝))

4

1

𝑚
∑((𝐸𝐹𝑛(𝑝)−𝐶𝐹𝑛(𝑝))

2
)

2 (3)

Where, 𝜑𝑘 denotes a kurtosis, 𝐸𝐹𝑛(𝑝) denotes an

empirical JAVA package function and ‘𝐶𝐹𝑛(𝑝)’ denotes a

cumulative JAVA package function, 𝑚 denotes a number

of Java Packages. The output of the Jarque–Bera

stochastic test ‘𝑆𝑡’ is always nonnegative. If it is distant

from zero, the metric dispersal classes is identified the

abnormal metric dispersal classes. The output of ‘𝑆𝑡 is

closer to the zero is said to be a normal metric dispersal

classes. In this way, metric dispersal classes are extracted.

 With the extracted classes, significant software metrics

are selected for accurate software fault prediction to

minimize the complexity. The proposed technique uses

the generalized canonical correlative normal discriminant

analysis. It is ML method for identifying relevant and

irrelevant metrics through generalized canonical

correlation. It is method of creating sense of cross-

correlation among sets of variables (i.e. metrics).

Let us consider the number of metrics

𝑀𝑖 = {𝑚1, 𝑚2, 𝑚3, … 𝑚𝑛} ∈ 𝐷𝑆 (4)

Where, 𝐷𝑆 denotes a dataset, 𝑚1, 𝑚2, 𝑚3, … 𝑚𝑛 denotes

the number of software metrics. Here two sets such as

relevant and irrelevant sets are initialized. Mean value of

set is computed as below,

𝜇𝑠 =
1

𝑛
 ∑ 𝑚𝑖

𝑛
𝑖=1 (5)

https://en.wikipedia.org/wiki/Empirical_distribution_function
https://en.wikipedia.org/wiki/Empirical_distribution_function
https://en.wikipedia.org/wiki/Empirical_distribution_function
https://en.wikipedia.org/wiki/Empirical_distribution_function
https://en.wikipedia.org/wiki/Empirical_distribution_function

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3244–3258 | 3248

 Where, 𝜇𝑠 denotes a mean of sets and 𝑛

indicates a number of software metrics. Therefore, the

correlation between the mean and software metrics is

estimated as given below,

𝐶𝐶 = 𝑐𝑣𝑎𝑟 [𝜇𝑠, 𝑚𝑖] (6)

Where 𝐶𝐶 correlation, 𝑐𝑣𝑎𝑟 denotes a covariance

measured between the mean value ‘𝜇𝑠’ and the metrics

‘𝑚𝑖’.

Figure 3 correlations between mean and software

metrics

Figure 3 depicts the correlation between the mean and

software metrics for finding the significant metrics. The

correlation is mathematically computed as given below,

𝑐𝑣𝑎𝑟 [𝜇𝑠, 𝑚𝑖] =
∑(𝑚𝑖− 𝜇𝑠𝑖)(𝑚𝑗−𝜇𝑠𝑗)

𝑛

(7)

Where, ‘𝜇𝑠𝑖’ indicates mean of set ‘𝑖’ and ‘𝜇𝑠𝑗’ denotes

mean of set ‘𝑗’. Therefore, the minimum covariance

provides higher correlation results. Based on correlation

measures, the metrics are identified as relevant as well as

irrelevant. Only significant relevant software metrics are

chosen for fault prediction. Algorithm of Jarque–Bera

stochastic generalized canonical normal discriminant

analysis is given below,

// Algorithm 1: Jarque–Bera stochastic generalized canonical normal discriminant analysis

Input: Dataset ‘𝐷𝑆’, Java Packages ‘𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}’

Output: Significant software metric selection

Begin

Step 1: For each Java Package ‘𝑃’ in the Dataset ‘𝐷𝑆’

Step 2: Measure Jarque–Bera stochastic test ‘𝑆𝑡’

Step 3: Estimate the difference between the empirical JAVA package function and the cumulative JAVA package

function using (2) (3)

Step 4: If ‘𝑆𝑡 𝑐𝑙𝑜𝑠𝑒𝑟 𝑡𝑜 0’

Step 5: Strong correlation established between ‘𝐸𝐹𝑛(𝑝)’ and ‘𝐶𝐹𝑛(𝑝)’

Step 6: Extract normal metric dispersal java class

Step 7: else

Step 8: Extract abnormal metric dispersal java class

Step 9: end if

Step 10: end for

Step 11: For extracted java class ‘𝐶’

Step 12: Apply generalized canonical correlative normal discriminant analysis

Step 13: Define number of sets 𝑠𝑖 and 𝑠𝑗

Step 14: Define mean value ‘𝜇𝑠𝑖’ and 𝜇𝑠𝑗

Step 15: Measure the generalized canonical correlation between the mean and software metrics ‘𝑐𝑣𝑎𝑟 [𝜇𝑠, 𝑚𝑖]’

Step 16: Categorizes the software metrics into a particular set

Step 17: Return significant software metrics for different java classes

End

Algorithm 1 shows a process of the java class extraction

and significant metric selection. First, Jarque–Bera

stochastic test is applied for identifying the normal and

abnormal dispersal java class. After the class extraction,

significant software metrics are selected by applying a

generalized canonical correlative normal discriminant

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3244–3258 | 3249

analysis. As a result, significant software metrics are

identified and therefore it minimizing time utilization of

the software faults forecast.

3.2 Iterative Dichotomize Linear Regressive

Quadratic MilBoost-based software fault forecast

Subsequent to software metric chosen process, the

software fault prediction is performed through Iterative

Dichotomize Linear Regressive Quadratic MilBoost

(Multiple Instance Learning) Ensemble learning. The

proposed technique is an ensemble meta-algorithm which

converts performance of weak classifier results to strong

ones. Weak classifier is base classifier which not efficient

to give precise software prediction results. On the

converse, the proposed ensemble meta-algorithm is a

strong classifier which gives accurately higher

classification outcomes through integrating set of weak

classification results. Main advantage of MilBoost boost

technique is to learn the multiple instances (i.e. input

samples) as well as gives precise classification outcomes

and minimizes the error rate.

figure 4 block diagram of Iterative Dichotomize Linear Regressive Quadratic MilBoost

Figure 4 depicts the structure of the MIL Boosting

technique for fault prediction. The ensemble boosting

technique includes a training set {𝑐𝑖 , 𝑦} where 𝑐𝑖

represents an input (i.e. number of classes), ‘𝑦’ denotes

strong classification results. The proposed MIL Boosting

technique uses a ‘𝑘’ number of weak learners as Gibbs-

Poston indexive ID3 (Iterative Dichotomiser 3) (GIID3)

decision tree algorithm for classifying the java package

class with defects and on defects based on the selected

software metrics. The advantage of the ID3 (Iterative

Dichotomiser 3) decision tree is to handle both numerical

and categorical data. It also handles multi-output

problems and the output classification outcomes are

integrated to attain strong results.

Let us consider the extracted software metrics

‘𝑚1, 𝑚2, 𝑚3, … 𝑚𝑛 ’ and java package classes 𝑐1, 𝑐2, … 𝑐𝑚

. The ID3 (Iterative Dichotomiser 3) decision tree is

applied to identify the software faults in the java package

classes. The decision tree is build by root node, internal

node, as well as leaf nodes. In tree, each root node carry

outs "test" on input every branch indicates result of test,

as well as every leaf node provides class label .

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3244–3258 | 3250

Figure 5 structure of ID3 decision tree

Figure 5 illustrates the structure of the ID3 decision tree

with root, internal, as well as leaf nodes. For every

iteration of algorithm, root node calculates similarity

between the java package classes 𝑐1, 𝑐2, … 𝑐𝑚 and man of

the particular class by using the Gibbs-Poston index. The

Gibbs-Poston index is a statistical method for measuring

the similarity between two variables. The index estimation

is given below,

𝑊 → 𝐼 = 𝑄 [1 −
∑ |𝑐𝑖−𝑚𝑐𝑗|𝑛

𝑖=1

2𝑛
] (8)

Where, 𝑄 denotes the number of categories, 𝑐𝑖 denotes an

input java package class, 𝑚𝑐𝑗 denotes a mean of the

particular categories. Here, two categories are initialized

as defective and non-defective, ‘𝑛’ indicates a number of

java package class data samples, 𝑊 indicates an output of

weak learner results. The higher similarity value indicates

that the java package classes are categorized into either

defective or non-defective categories. Finally, the results

are obtained at the leaf node of the decision tree.

The weak learner did not efficiently provide accurate

classification outcomes. So, proposed boosting method

combines weak learner results to enhance precision of

software fault prediction. To attain strong classification

outcomes, output of weak learners is summed as follows,

𝑦 = ∑ 𝑊𝑖
𝑘
𝑖=1 (9)

Where ‘𝑦’ indicates the ensemble classification output, 𝑊𝑖

indicates weak classification results. For each weak

classification result, the weight is initialized randomly.

𝑦 = ∑ 𝑊𝑖 ∗ 𝛿𝑘
𝑖=1 (10)

Where ‘𝛿’ indicates weight of weak learner results. After

weight assignment, the error is measured among actual

and predicted outcomes. Quadratic loss is used to validate

the accuracy of the predictive model. It works by taking

the difference among actual and forecasted outcomes as

given below,

𝑄𝐿 =
1

2
∗ [𝑊𝑎𝑐𝑡 − 𝑊𝑝𝑟𝑒]2 (11)

Where 𝑄𝐿 denotes a quadratic loss calculated as variation

among actual outcomes ‘𝑊𝑎𝑐𝑡’ and predicted outcomes

‘𝑊𝑝𝑟𝑒’. Depend on quadratic loss value, initial weight gets

updated. Segmented linear regression is applied to select

weak learner results through lesser error by setting

threshold for minimizing the complexity of the fault

prediction.

𝑍 = {
𝑄𝐿 < 𝑇 ; 𝑠𝑒𝑙𝑒𝑐𝑡 𝑤𝑒𝑎𝑘 𝑙𝑒𝑎𝑟𝑛𝑒𝑟

𝑄𝐿 > 𝑇 ; 𝑟𝑒𝑚𝑜𝑣𝑒 𝑤𝑒𝑎𝑘 𝑙𝑒𝑎𝑟𝑛𝑒𝑟
 (12)

 Where 𝑍 denotes an output of segmented linear

regression, 𝑄𝐿 denotes a quadratic loss, 𝑇 indicates a

threshold. As outcome , weak learner through lesser

quadratic loss is selected for next process and removes the

others.

After that, weight of weak learner updated. If weak learner

performs accurate classification, after that initial weight

minimized. Otherwise, weight enhanced. Depend on

updated outcomes, ensemble technique gives final

classification results with minimum loss with aid of

downhill simplex technique. Downhill simplex technique

is a numerical method that helps to discover lesser of

objective function (i.e. quadratic loss). This aids to reduce

wrong fault perdition resulting in it enhancing the

precision and F-score in the classification process.

𝐹 = arg min 𝑄𝐿 (𝑊) (13)

 From (13), 𝐹 denotes an output of downhill simplex,

arg 𝑚𝑖𝑛 indicates argument of minimum function, 𝑄𝐿

represents Downhill simplex method, 𝑊 and denotes a

weak learner. Like this, every java package classes are

properly classified through enhanced accuracy, precision,

and lesser loss. Algorithmic process of classification is

given below,

Root node

Internal node

Leaf node

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3244–3258 | 3251

// Algorithm 2: Iterative Dichotomize Linear Regressive Quadratic MilBoost based software fault prediction

Input: extracted software metrics ‘𝑚1, 𝑚2, 𝑚3, … 𝑚𝑛 ’ , java package classes 𝑐1, 𝑐2, … 𝑐𝑚

Output: Increase the software fault prediction accuracy

Begin

Step 1: For each extracted metrics ‘𝑚𝑖’ and Java package classes 𝑐1, 𝑐2, … 𝑐𝑚

Step 2: Construct a ‘𝑘’ weak learners

Step 3: Initialize the two output categories’ defective and non defective (𝑅1, 𝑅2)

Step 4: for each category

Step 5: Initialize the mean ‘ 𝑚𝑐𝑗’

Step 6: End for

Step 7: Measure similarity coefficient ‘𝐼’

Step 8: Classify the data into a particular category

Step 9: End for

Step 10: Combine a set of weak learners' results ‘𝑦 = ∑ 𝑊𝑖
𝑘
𝑖=1 ’

Step 11: For each 𝑊𝑖

Step 12: Initialize the weight ‘𝛿’

Step 13: Calculate quadratic loss ‘𝑄𝐿 ‘

Step 14: Apply segmented regression

Step 15: if (𝑄𝐿 < 𝑇) then

Step 16: Select weak learner results

Step 17: else

Step 18: Remove the weak learners

Step 19: end if

Step 20: Apply downhill simplex method

Step 21: Find weak learner with minimum error

Step 22: Obtain strong classification results

End

Algorithm 2 provides process of Iterative dichotomized

linear regressive Quadratic MilBoost to enhance software

fault prediction accuracy as well as precision. Initial,

ensemble technique constructs ‘𝑘’ set of Gibbs-Poston

indexive ID3 (Iterative Dichotomiser 3) decision tree

classifier. Initialize number of classes with mean value.

After that Gibbs-Poston index similarity is measured

among Java package classes and the mean. Depend on

similarity value, Java package classes are categorized into

a specific class. Then weak classification results are

integrated and assigned weights. After that, quadratic loss

is calculated for every weak learner's outcomes.

Segmented regression selects the results with a minimum

loss than the threshold and it is used for further process.

Then the downhill simplex method is applied for finding

weak learner results by lesser loss. This aids to enhance

software fault prediction accuracy , precision.

4. Experimental Evaluation

Experimental setup of CADME and conventional

methods HA-LCBS [1] DP-GCNN [2] are implemented

in Java language and the dataset extracted from

https://drive.google.com/drive/folders/101QbQ-

TtQpyZa-APCFo4hCGAc_c-g6-Y . Different numbers of

class data samples are collected ranging between 1000 and

10000 for software fault prediction. First, the number of

classes is extracted from the java packages using Jarque–

Bera stochastic test. After that, the significant software

metrics are selected for minimizing the complexity of

software prediction by using generalized canonical

correlative normal discriminant analysis. Finally, the

software fault prediction is performed by means of

Iterative Dichotomize Linear Regressive Quadratic

MilBoost for identifying defects or non-defects

4.1 Performance Results

Performance analysis of CADME and conventional

methods HA-LCBS [1] DP-GCNN [2] are explained

based on software fault prediction accuracy, precision,

recall, F-measure, time complexity with respect to class

data samples..

Software fault prediction accuracy: It calculated as

ratio of a number of (i.e., class data samples) predicted

positively or accurately divided by total number of class

data samples. It is formulated as below.

 𝑆𝐹𝑃𝐴 = ∑
𝐶𝑃𝑎𝑐𝑐

𝐶𝑖
∗ 100𝑛

𝑖=1

 (14)

https://drive.google.com/drive/folders/101QbQ-TtQpyZa-APCFo4hCGAc_c-g6-Y
https://drive.google.com/drive/folders/101QbQ-TtQpyZa-APCFo4hCGAc_c-g6-Y

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3244–3258 | 3252

 Where, 𝑆𝐹𝑃𝐴’ denotes a software fault

prediction accuracy, 𝐶𝑖 denotes a class samples . ‘𝐶𝑃𝑎𝑐𝑐’

denotes a class data samples predicted positively or

accurately. It is measured in percentage (%).

Precision: Estimates the number of properly positive

class data samples against total number of positive

instances. It is mathematically stated as given below.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑝

𝑡𝑟𝑝+ 𝑓𝑙𝑝

 (15)

Where, t𝑟𝑝 denotes a true positive,𝑓𝑙𝑝 indicates false

positive rate. It is measured in percentage (%).

Recall: Evaluates the number of correctly positive class

data samples as well as negative class data samples.

Precision is mathematically stated as given below.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑝

𝑡𝑟𝑝+ 𝑓𝑙𝑛

 (16)

 Where, t𝑟𝑝 denotes a true positive , 𝑓𝑙𝑛 indicates

false negative. It is measured in percentage (%).

F-score: it is calculated as average of precisions and

recall. It is estimated as below,

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = [2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙
] ∗ 100 (17)

F-score is measured in percentage (%).

Software fault prediction time: It is referred as amount

of time utilized through algorithm for software fault

prediction. It is calculated as given below,

𝑆𝐹𝑃𝑇 = ∑ 𝐶𝑖
𝑛
𝑖=1 ∗ [𝑇𝑖𝑚𝑒 (𝑆𝑀)] (18)

Where, 𝑆𝐹𝑃𝑇 denotes a Software fault prediction time ,

𝐶𝑖 indicates number of class data samples, 𝑇𝑖𝑚𝑒 (𝑆𝑀)

represent time for detecting software fault prediction. It

is measured milliseconds (ms).

Table 1 Software fault prediction accuracy

Number of

class data

samples

Software fault prediction accuracy (%)

CADME HA-LCBS DP-GCNN

1000 99.2 97 98.2

2000 98.25 96 97.25

3000 97 92.05 95

4000 95.75 89.35 93.25

5000 95 87.55 91.4

6000 94.16 85.25 91.66

7000 93.57 83 91.42

8000 93.12 79.15 91.5

9000 92.777 75.35 91.11

10000 92.5 73 90.7

Figure 6 Graphical representation of Software fault prediction accuracy

0

20

40

60

80

100

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000S
o

ft
w

a
re

 f
a

u
lt

 p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

(%
)

Number of class data samples

CADME

HA-LCBS

 DP-GCNN

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3244–3258 | 3253

Table 1 , figure 6 depicts performance results of SFPA

with number of class data samples . Among three

methods, proposed CADME technique gives enhanced

accuracy results when compared to conventional methods.

Let us assume, the number of data samples is considered

as 1000 for estimating the accuracy. By using CADME,

the accuracy was found to be 99.2% and HA-LCBS [1]

,DP-GCNN [2] was 97% and 98.2%. Likewise, various

performance outcomes are examined with number of data

samples. Finally, observed results of proposed CADME

are compared to conventional methods. average of ten

comparisons denotes that performance of the accuracy

with CADME technique is enhanced by 12% and 2% than

the [1] ,[2] respectively. This improvement is achieved

through the Iterative dichotomized linear regressive

Quadratic MilBoost. The ensemble classification

technique constructs the decision tree classifier and

measures the similarity among class data samples as well

as mean of the specific class. Then weak learner outcomes

are integrated to create a strong output by minimizing

quadratic loss. This helps to improve SFPA.

Table 2 Precision

Number of

class data

samples

Precision (%)

CADME HA-LCBS DP-GCNN

1000 99.49 97.87 98.96

2000 98.97 97.32 98.44

3000 97.94 94.89 96.42

4000 96.8 93.22 94.60

5000 96.79 90.58 95.13

6000 96.39 90.19 95.02

7000 96.12 89.38 94.36

8000 95.91 84.67 95.18

9000 95.75 81.81 94.98

10000 95.62 79.72 94.51

Figure 7 Graphical representation of precision

0

10

20

30

40

50

60

70

80

90

100

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
re

ci
si

o
n

 (
%

)

Number of class data samples

CADME

HA-LCBS

 DP-GCNN

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3244–3258 | 3254

Table 2 , figure 7 depicts experimental evaluation results

of precision using CADME technique, HA-LCBS [1] DP-

GCNN [2]. Examined outcomes denote that the overall

performance results of precision using the proposed

CADME technique were found to be increased when

compared to conventional methods. Let us assume 1000

numbers of class data samples in initial iteration and the

observed precision outcomes with CADME technique

were found to be 99.49 % whereas the performance of

precision results of [1] and [2] was found to be 97.87 %

and 98.96% respectively. Likewise, dissimilar

performance outcomes are examined with different

number of class data samples. Accordingly, average

performance outcomes denote performance of precision

using the CADME technique by 8% and 1% than the [1]

,[2]. This is due to application of an improved Iterative

dichotomized linear regressive Quadratic MilBoost

ensemble classifier. Ensemble classifier precisely

classifies data samples to defective or non-defective and

obtains strong classification results by applying the

downhill simplex method. The downhill simplex method

is used to discover weak learner results by lesser quadratic

loss. This aids to enhance true positives and minimize

false positives.

Table 3 Recall

Number of

class data

samples

Recall (%)

CADME HA-LCBS DP-GCNN

1000 99.69 98.92 99.16

2000 99.23 98.37 98.69

3000 98.96 96.29 98.18

4000 98.64 94.28 98.04

5000 97.84 93.90 95.34

6000 97.27 92.92 95.73

7000 96.87 89.38 96.17

8000 96.57 88.23 95.44

9000 96.34 84.37 95.22

10000 96.15 83.09 95.24

Figure 8 Graphical representation of recall

Table 3 , figure 8 illustrate overall performance of recall

using number of numbers of class data samples. For every

method, ten various performance results are examined and

the outcomes shown in figure 8. Performance of recall by

70

75

80

85

90

95

100

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
ec

a
ll

 (
%

)

Number of class data samples

CADME

HA-LCBS

 DP-GCNN

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3244–3258 | 3255

CADME method is higher when compared to [1] [2]. This

is because of CADME technique increases true positive

rate as well as minimizes the false negative in software

fault prediction with the help of an Iterative dichotomized

linear regressive Quadratic MilBoost ensemble classifier.

Examined performance outcomes of CADME technique

are compared to results of conventional methods. Overall

comparison outcomes denote that performance of recall

using CADME method is considerably enhanced by 7%

and 1% than the [1],[2].

Table 4 F-score

Number of

class data

samples

F-score (%)

CADME HA-LCBS DP-GCNN

1000 99.58 98.39 99.05

2000 99.09 97.84 98.56

3000 98.44 95.58 97.29

4000 97.71 93.74 96.28

5000 97.31 92.21 95.23

6000 96.82 91.53 95.37

7000 96.49 89.38 95.25

8000 96.23 86.41 95.30

9000 96.04 83.07 95.09

10000 95.88 81.37 94.87

Figure 9 Performance results of F-score

Table 4 , figure 9 demonstrate overall performance

outcome of F-score against number of data samples. F-

score in the fault prediction is estimated depend on

precision and recall. Overall examined result indicates

which performance results of F-score with CADME

technique are improved when compared to conventional

methods. This is due to application of the proposed

ensemble classifier increasing performance of precision

and recall in software fault prediction. Lastly, overall

performances of CADME technique are compared to

outcomes of conventional methods. Average of ten

comparisons represents which entire performance of F-

score is considerably enhanced by 7% and 1% than the

[1], [2] respectively.

0

10

20

30

40

50

60

70

80

90

100

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
 -

sc
o

re
 (

%
)

Number of class data samples

CADME

HA-LCBS

 DP-GCNN

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3244–3258 | 3256

Table 5 Software fault prediction time

Number of

class data

samples

Software fault prediction time (ms)

CADME HA-LCBS DP-GCNN

1000 13 19 16

2000 16.4 28.15 22

3000 21 35.45 28.5

4000 26 42.55 34

5000 31 59.35 42.5

6000 42.6 75.35 52.8

7000 47.6 85.95 63

8000 56.8 105.25 88

9000 67.5 125.25 108

10000 76 140.35 120

Figure 10 Performance results of Software fault prediction time

Performance analysis of 𝑆𝐹𝑃𝑇 versus the number of class

data samples is shown in table 5 and figure 10. From the

figure, a software fault prediction time gets enhanced as

improving the number of class data samples. Examined

outcomes represent that overall performance of the

proposed CADME technique decreases the 𝑆𝐹𝑃𝑇 when

compared to existing methods. Let us assume 1000 class

data samples for performing experiments. Entire

performance of 𝑆𝐹𝑃𝑇 by CADME technique was found

to be 13𝑚𝑠. In addition, the software fault prediction time

using HA-LCBS [1], and DP-GCNN [2] was found to be

19𝑚𝑠 and 16𝑚𝑠. For every method, a variety of

performance outcomes is examined with dissimilar counts

of input data samples. Overall performance outcomes

designate that the 𝑆𝐹𝑃𝑇 is significantly minimized by

43% and 27% than the existing [1] [2] respectively. This

is because of the metric dispersal class extraction and

significant software metric selection. First, the Jarque–

Bera stochastic test is used for extracting java classes from

the packages. Followed by, significant software metrics

selected by applying the generalized canonical

correlation. Depend on correlation measure, relevant

metrics are chosen. Selected metrics are given to the

proposed ensemble classifier for fault prediction.

Ensemble classifier eliminates weak learner outcomes

which have superior quadratic loss than the threshold by

applying segmented linear regression. This process

reduces time complexity of fault prediction.

5. Conclusion

Fast growth of larger as well as further multifaceted

software scheme needs rapid and precise methods for

0

20

40

60

80

100

120

140

160

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
o

ft
w

a
re

 f
a

u
lt

 p
re

d
ic

ti
o

n
 t

im
e

(m
s)

Number of class data samples

CADME

HA-LCBS

 DP-GCNN

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3244–3258 | 3257

identifying possible defects in source code of software.

Therefore, a novel CADME technique is designed for

detecting software defects accurately by lesser time

consumption. In the CADME technique, metric dispersal

class extraction is performed by means of the Jarque–Bera

stochastic test. Followed by, generalized canonical

correlative normal discriminant analysis is performed to

identify the significant metrics for fault prediction. These

two processes of the CADME technique help to reduce

time utilization of software fault prediction. Finally, the

ensemble technique called Iterative Dichotomize Linear

Regressive Quadratic MilBoost is developed for accurate

defective or non-defective software data samples with

lesser misclassification rate. Comprehensive experimental

measurement is done by different parameters . Overall

observed results indicate that the presented CADME

method attains enhanced accuracy with lesser time for

software defect prediction than the conventional methods.

References

[1] Ayad Tareq Imam, Basma R. Al-Srour, Aysh

Alhroob, “The automation of the detection of large

class bad smell by using genetic algorithm and deep

learning”, Journal of King Saud University –

Computer and Information Sciences, Elsevier,

Volume 34, Issue 6, 2022, Pages 2621-2636.

https://doi.org/10.1016/j.jksuci.2022.03.028

[2] Lucija Šikić, Adrian Satja Kurdija, Klemo Vladimir,

Marin Šilić, “Graph Neural Network for Source

Code Defect Prediction”, IEEE Access, Volume 10,

2022, Pages 10402 – 10415. DOI:

10.1109/ACCESS.2022.3144598

[3] Sweta Mehta & K. Sridhar Patnaik, “Improved

prediction of software defects using ensemble

machine learning techniques”, Neural Computing

and Applications, Springer, Volume 33, 2021, Pages

10551–10562. https://doi.org/10.1007/s00521-021-

05811-3

[4] Inderpreet Kaur And Arvinder Kaur, “A Novel Four-

Way Approach Designed With Ensemble Feature

Selection for Code Smell Detection”, IEEE Access,

Volume 9, 2021, Pages 8695 – 8707. DOI:

10.1109/ACCESS.2021.3049823

[5] Umamaheswara Sharma Bhutamapuram,

Ravichandra Sadam, “With-in-project defect

prediction using bootstrap aggregation based diverse

ensemble learning technique”, Journal of King Saud

University - Computer and Information Sciences,

Elsevier, 2021, Pages 1-17.

https://doi.org/10.1016/j.jksuci.2021.09.010

[6] Fahad H. Alshammari, “Software Defect Prediction

and Analysis Using Enhanced Random Forest

(extRF) Technique: A Business Process

Management and Improvement Concept in IOT-

Based Application Processing Environment”,

Mobile Information Systems, Hindawi, Volume

2022, September 2022, Pages 1-11.

https://doi.org/10.1155/2022/2522202

[7] Haonan Tong,Bin Liu,and Shihai Wang, “Kernel

Spectral Embedding Transfer Ensemble for

Heterogeneous Defect Prediction”, IEEE

Transactions on Software Engineering , Volume 47,

Issue 9, 2021, Pages 1886 – 1906. DOI:

10.1109/TSE.2019.2939303

[8] Zhen Li , Tong Li , YuMei Wu , Liu Yang , Hong

Miao , and DongSheng Wang, “Software Defect

Prediction Based on Hybrid Swarm Intelligence and

Deep Learning”, Computational Intelligence and

Neuroscience, Hindawi, Volume 2021, December

2021, Pages 1-17.

https://doi.org/10.1155/2021/4997459

[9] ShivaniJain, AnjuSaha, “Improving performance

with hybrid feature selection and ensemble machine

learning techniques for code smell detection”,

Science of Computer Programming, Elsevier,

Volume 212, 2021, Pages 1-34.

https://doi.org/10.1016/j.scico.2021.102713

[10] Amal Alazba and, Hamoud Aljamaan, “Code smell

detection using feature selection and stacking

ensemble: An empirical investigation”, Information

and Software Technology, Elsevier,

[11] Volume 138, 2021, Pages 1-14.

https://doi.org/10.1016/j.infsof.2021.106648

[12] Tushar Sharma, Vasiliki Efstathiou, Panos Louridas,

Diomidis Spinellis, “Code smell detection by deep

direct-learning and transfer-learning”, Journal of

Systems and Software, Elsevier, Volume 176, 2021,

Pages 1-25.

https://doi.org/10.1016/j.jss.2021.110936

[13] Seema Dewangan, Rajwant Singh Rao, Alok Mishra

and Manjari Gupta, “Code Smell Detection Using

Ensemble Machine Learning Algorithms”, Applied

Science, Volume 12, 2022, Pages 1-22.

https://doi.org/10.3390/app122010321

[14] Hafiz Shahbaz Munir, Shengbing RenID*,

Mubashar Mustafa, Chaudry Naeem Siddique,

Shazib Qayyum, “Attention based GRU-LSTM for

software defect prediction”, PLoS ONE, Volume 16,

Issue 3, 2021, Pages 1-19.

https://doi.org/10.1371/journal.pone.0247444

[15] Pasquale Ardimento, Lerina Aversano, Mario Luca

Bernardi, Marta Cimitile, Martina Iammarino,

“Temporal convolutional networks for just-in-time

design smells prediction using fine-grained software

metrics”, Neurocomputing, Elsevier, Volume 463,

https://doi.org/10.1016/j.jksuci.2022.03.028
https://doi.org/10.1007/s00521-021-05811-3
https://doi.org/10.1007/s00521-021-05811-3
https://doi.org/10.1016/j.jksuci.2021.09.010
https://doi.org/10.1155/2022/2522202
https://doi.org/10.1155/2021/4997459
https://doi.org/10.1016/j.scico.2021.102713
https://doi.org/10.1016/j.infsof.2021.106648
https://doi.org/10.1016/j.jss.2021.110936
https://doi.org/10.3390/app122010321
https://doi.org/10.1371/journal.pone.0247444

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3244–3258 | 3258

2021, Pages 454-471.

https://doi.org/10.1016/j.neucom.2021.08.010

[16] Jiaxi Xu, Fei Wang, Jun Ai, “Defect Prediction With

Semantics and Context Features of Codes Based on

Graph Representation Learning”, IEEE Transactions

on Reliability, Volume 70, Issue 2, 2021, Pages 613

– 625. DOI: 10.1109/TR.2020.3040191

[17] Hao Wang, Weiyuan Zhuang, and Xiaofang Zhang,

“Software Defect Prediction Based on Gated

Hierarchical LSTMs”, IEEE Transactions on

Reliability, Volume 70, Issue 2, 2021, Pages 711 –

727. DOI: 10.1109/TR.2020.3047396

[18] Xiao Yu, Jin Liu , Jacky Wai Keung , Qing Li ,

Kwabena Ebo Bennin, Zhou Xu, Junping Wang , and

Xiaohui Cui, “Improving Ranking-Oriented Defect

Prediction Using a Cost-Sensitive Ranking SVM”,

IEEE Transactions on Reliability , Volume 69, Issue

1, 2020, Pages 139 – 153.

DOI: 10.1109/TR.2019.2931559

[19] Aleksandar Kovaˇcevi´, Jelena Slivka, Dragan

Vidakovi , Katarina-Glorija Gruji ,Nikola Luburi,

Simona Proki, Goran Sladi, “Automatic detection of

Long Method and God Class code smells through

neural source code embeddings”, Expert Systems

with Applications, Elsevier, Volume 204, 2022,

Pages 1-18.

https://doi.org/10.1016/j.eswa.2022.117607

[20] Mouna Hadj-Kacem and Nadia Bouassida, “A multi-

label classification approach for detecting test smells

over java projects”, Journal of King Saud University

- Computer and Information Sciences, Elsevier,

2021, Pages 1-10.

https://doi.org/10.1016/j.jksuci.2021.10.008

[21] Mohamed Maddeh, Sarra Ayouni , Sultan Alyahya,

And Fahima Hajjej, “Decision tree-based Design

Defects Detection”, IEEE Access , Volume 9, 2021,

Pages 71606 – 71614, DOI:

10.1109/ACCESS.2021.3078724

https://doi.org/10.1016/j.neucom.2021.08.010
https://doi.org/10.1109/TR.2019.2931559
https://doi.org/10.1016/j.eswa.2022.117607
https://doi.org/10.1016/j.jksuci.2021.10.008

