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Abstract: The aim of software fault prediction is to sense fault-prone software modules and enhances software quality as well as testing 

effectiveness through early recognition of faults. It aids to achieve desired software quality through lower cost. Earlier fault prediction 

classification algorithms to forecast fault-prone software modules. The prediction accuracy of conventional techniques was established to 

be significantly minimized with better misclassification. The selection of significant metrics from the source code is the fundamental step 

in the software prediction process. Therefore a novel technique called CAnonical Discriminant Quadratic Regressive Milboost Ensemble 

(CADME) technique is introduced for improving the software prediction accuracy as well as minimizing misclassification rate. Proposed 

CADME technique comprised metric selection , classification. Initially, number of JAVA packages given as input from the dataset. Then 

the metric dispersal class extractions are carried by using Jarque–Bera stochastic test. After the class extraction, the important software 

metrics are chosen for software prediction using generalized canonical correlative normal discriminant analysis. Following the metric 

selection, the software fault prediction is through by means of Iterative Dichotomize Linear Regressive Quadratic MilBoost. As a result of 

JAVA classes known with defects or not are predicted in an accurate manner by reducing the loss. This assists to develop the precision and 

F-score in fault prediction. Simulation results are performed on factors namely accuracy, precision, recall, F-score, and time complexity. 

The results as well as discussion of various metrics specified that proposed CADME technique improves the accuracy and minimum time 

complexity of software prediction than the conventional methods. 

Keywords:  Software fault prediction, Jarque–Bera stochastic test-based metric dispersal class extractions, generalized canonical 

correlative normal discriminant analysis based software metrics selection, Iterative Dichotomize Linear Regressive Quadratic MilBoost.  

1. INTRODUCTION 

Software fault forecast is employed to enhance software 

quality, as well as improve the maintenance in the testing. 

Software fault is a defect that takes occurs when the 

expected result doesn't equivalent to the actual results. 

Testing is important part of software improvement 

process however is usually manual, error-prone, as well as 

luxurious.  Software testing is process of producing 

reliable, robust, as well as trustworthy software code 

through detecting faults. But, it still time-utilizing process. 

In a few testing circumstances, numerous faults are 

identified over long time. Therefore the detection of faults 

with minimum time consumption is a demanding issue to 

improve software quality. Numerous works have designed 

for software fault prediction.  

For identifying the process of detecting software defects , 

Hybrid Approach to detect Large Class Bad Smell (HA-

LCBS) was developed in [1]. But refactoring procedure of 

huge class imperfection prediction was not performed.  

For predicting software module as defective or not 

defective, Defect Prediction based on Convolutional 

Graph Neural Network (DP-GCNN) was designed in [2] . 

However time utilization of defect forecast was 

challenging issue.  

The different ensemble ML techniques were presented in 

[3] for predicting defects of software systems. But it failed 

to carry out defects prediction with more accuracy and 

minimum errors. For code smell recognition based on 

feature selection, A new four-way approach was 

introduced in [4] .But correlation between the learners 

was not analyzed to improve the code smell detection 

accuracy.  

A Diverse Ensemble Learning Technique (DELT) was 

introduced in [5] for software fault classification. But it 

failed to estimate quality of software scheme . An 

extended Random Forest (extRF) technique was designed 

in [6] for software defect forecast and analysis. However 

it failed to give analytical assessment of ML methods for 

forecast uses.  

For cross-project defect forecast , Kernel Spectral 

Embedding Transfer Ensemble (KSETE) technique was 

designed in [7]. But feature learning capability was not 

improved. Hybrid Swarm Intelligence and DL model was 

developed [8] for enhancing software quality and 

efficiency by predicting the defects. However, it failed to 
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extract features as well as build software defect forecast 

models as well as compare efficiency of dissimilar 

learning algorithms. For detecting code smells, Three-

hybrid feature selection by ensemble ML  algorithms was 

developed in [9].   But structural metrics were not 

adequate for detecting code smell to achieve better 

performance.  

A stacking heterogeneous ensemble approach was 

introduced in [10] for predicting the code smell. But the 

model complexity in ensemble learning was not 

minimized to observe trade-offs among building 

multifaceted method and attaining superior recognition 

performance.  

1.1 contributions of manuscript  

To overcome conventional problems, new CADME 

technique is designed by new contributions, 

➢ CADME technique is developed depend on class 

extraction, metric selection, as well as classification. This 

technique enhances software fault prediction accuracy.  

➢ CADME technique uses the Jarque–Bera 

stochastic test to extract the Java classes from the software 

packages. A generalized canonical correlative normal 

discriminant analysis is applied in the CADME technique 

to identify the relevant and irrelevant software metrics.  

This process minimizes the software fault prediction. 

➢ Iterative Dichotomize Linear Regressive 

Quadratic MilBoost is applied for predicting the defective 

or non-defective java extracted classes by means of 

constructing the weak learners as Gibbs-Poston indexive 

ID3 (Iterative Dichotomiser 3) decision tree.  The outputs 

of weak learner results are combined and compute the 

quadratic loss.  The proposed ensemble classifier uses 

segmented linear regression to select the weak learner to 

further reduce time complexity.  Downhill simplex 

technique is utilized to find strong classification outcomes 

by minimum loss. This process improves the accuracy and 

F-score.  

➢ Lastly, comprehensive experimental evaluation 

is performed through assortment of performance metrics 

to demonstrate enhancement of CADME method over 

existing techniques. 

1.2 Outline of manuscript 

Outline of manuscript is structured as below. In Section 2, 

presents  literature review of software fault prediction. 

Section 3 is gives a concise clarification of CADME 

technique through architecture diagram and various 

processes. In Section 4, provides experimental settings by 

dataset explanation. In section 5, performance outcomes 

of CADME method as well as conventional techniques are 

discussed through dissimilar parameters. Finally, Section 

6 summarizes manuscript. 

 

2. Literature Review 

Deep learning models were performed in [11] to classify 

the smells for detecting code smells. However, it failed to 

minimize the code smell detection. In [12], five ensemble 

ML and two DL algorithms were developed to distinguish 

code smells from the source code. But learning algorithms 

were not explored to discover greatest methods for code 

smell recognition. 

Gated Recurrent Unit (GRU) through LSTM was 

developed [13] for software defect prediction.  But, it 

failed to extract significant features for software defect 

forecast. Temporal Convolutional Network (TCN) was 

developed in [14] to forecast presence of design code 

smells. But approach was not effective to improve 

prediction performance results.  

For predicting software defect patterns, Graph neural 

network was developed in [15] . However, it failed to 

discover improved technique of faulty code smell. A 

Gated hierarchical LSTM network (GH-LSTM) was 

designed [16] to extract both semantic features for 

defecting the prediction of code smell. But it failed to 

investigate performance of designed method in cross-

project defect forecast.  

 For enhancing   ranking-oriented defect forecast ,  

cost-sensitive rankingSVM (CSRankSVM) method was 

introduced in [17].  However, data imbalance learning was 

not performed. Multiple machines learning approach-

based code smell detection was developed in [18] for 

recognition of code smells.  But it failed to develop a 

systematic scheme for code smell recognition. Multi-label 

classification method was introduced in [19] for 

predicting the test smells by using a deep representation 

of the source code. However, it was not efficient to 

perform other types of test smells. A decision tree 

algorithm was designed in [20] for identifying software 

defects. However, it did not focus on eliminating the 

defects and correction approaches. 

3. Proposal Methodology  

In software scheme, test code is dependable for testing 

source code. These source codes are vulnerable to 

dissimilar problems such as potential defective modules 

in software products during development. Software fault 

is contaminated portion of program,  that sometime 

expires program unforeseenly, or may assist hackers to 

read the program, that have disturbing effect on quality as 

well as security of software products. Therefore, Accurate 

and timely fault prediction has become a fundamental 

aspect to improve software quality and reliability.  Based 

on this motivation, an accurate and timely software fault 

forecast CADME method is introduced. motivation for 

CADME technique is to select the software metrics 
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through ML methods for the classification process with no 

degrading model's effectiveness.  

 

 

Figure 1 architecture of the proposed CADME technique   

Figure 1 given above illustrates architecture of proposed 

technique to predict software faults through enhanced 

accuracy as well as minimum time utilization. Initially, 

JAVA packages Dataset ‘𝐷𝑆 is considered as input. The 

number of JAVA packages ‘𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}’ are 

collected from dataset. First, proposed CADME method 

carry out the normal metric and abnormal metric dispersal 

class extraction by applying the Jarque–Bera stochastic 

test. Jarque–Bera stochastic test is statistical test 

employed to identify whether sample data (i.e. class) 

matches a normal distribution. After the class extraction, 

generalized canonical correlative normal discriminant 

analysis is applied to select the significant software 

metrics. Normal discriminant analysis is ML technique to 

recognize pertinent and irrelevant metrics through assist 

of generalized canonical correlation.  Generalized 

canonical correlation analysis is a statistical method used 

for finding the cross-correlation among the sets of 

variables (i.e. metrics).   

After extracting the classes and metrics, the CADME 

technique performs the software fault prediction using 

Iterative Dichotomize Linear Regressive Quadratic 

MilBoost. The Quadratic MilBoost is an ensemble 

technique used for predicting the defective or non-

defective java extracted java classes by constructing the 

set of weak learners as a Gibbs-Poston indexive ID3 

(Iterative Dichotomiser 3) (GIID3) decision tree.  Output 

of weak learner outcomes is merged and measures 

quadratic loss.  Segmented linear regression is ML to 

select weak learner results through minimum loss by 

setting the threshold for reducing time complexity of the 

fault forecast.  The downhill simplex method is a 

numerical method to find strong classification results with 

minimum loss.  

3.1  Jarque–Bera stochastic generalized canonical 

normal discriminant analysis 

CADME method is to perform class extraction and metric 

selection.  While constructing a ML model for software 

fault forecast, not all metrics are important every time.  

Adding unnecessary software metrics directs to decrease 

in general accuracy of method as well as increases its 

complexity. Hence, class extraction and metric selection 

process are the important fundamental steps as building 

ML model to enhance overall accuracy of software fault 

forecast and minimize the complexity.   

 Therefore, the proposed CADME technique first 

performs the metric dispersal class extractions and 

significant metric selection.  The metric dispersal class 

extractions process is done by applying a Jarque–Bera 

stochastic test. The proposed stochastic test is a statistical 

measure of the probability distribution of a random 

variable such as the measured empirical JAVA package 

function ‘and the cumulative JAVA package function. 

The stochastic test refers to the random probability 

distribution or patterns that are analyzed statistically.    

https://en.wikipedia.org/wiki/Empirical_distribution_function
https://en.wikipedia.org/wiki/Empirical_distribution_function
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After that, generalized canonical correlative normal 

discriminant analysis is used to select significant metrics 

for software fault forecast. It is ML method used for 

determining  a linear combination of metrics that separates 

into two or more sets namely relevant as well as irrelevant 

metrics. Resulting relevant features used for 

dimensionality reduction before later classification. 

Dimensionality reduction is procedure of minimizing 

number of irrelevant metrics through attaining  set of 

relevant metrics. 

 

Figure 2 flow process of Jarque–Bera stochastic generalized canonical normal discriminant analysis 

Figure 2 shows the flow process of class extraction and 

software metric selection by using Jarque–Bera stochastic 

generalized canonical normal discriminant analysis. First, 

the JAVA packages were collected from the dataset and 

provided as input. By applying the Jarque–Bera stochastic 

test, normal metric dispersal classes and abnormal metric 

dispersal classes are estimated.  The Jarque–Bera 

stochastic test analysis process is given below, 

𝑆𝑡 =
𝑚

6
 [𝜑𝑠

2 + 0.25(𝜑𝑘 − 3)2]  (1) 

Where, 𝑚 denotes the number of Java Packages, 𝜑𝑠  

denotes a sample skewness, 𝜑𝑘 is the sample kurtosis.  

The skewness and kurtosis describe a particular aspect of 

a probability distribution. The sample skewness is 

measure of asymmetry of probability distribution of 

random variables namely measured empirical JAVA 

package function ‘and cumulative JAVA package 

function.  

𝜑𝑠 =
1

𝑚
∑(𝐸𝐹𝑛(𝑝)−𝐶𝐹𝑛(𝑝))

3

1

𝑚
∑((𝐸𝐹𝑛(𝑝)−𝐶𝐹𝑛(𝑝))

2
)

3/2   (2)  

Where, 𝜑𝑠 denotes a skewness, empirical JAVA package 

function ‘𝐸𝐹𝑛(𝑝)’ and cumulative JAVA package 

function ‘𝐶𝐹𝑛(𝑝)’ , 𝑚 denotes a number of Java Packages. 

𝜑𝑘 =
1

𝑚
∑(𝐸𝐹𝑛(𝑝)−𝐶𝐹𝑛(𝑝))

4

1

𝑚
∑((𝐸𝐹𝑛(𝑝)−𝐶𝐹𝑛(𝑝))

2
)

2    (3) 

Where, 𝜑𝑘 denotes a kurtosis, 𝐸𝐹𝑛(𝑝) denotes an 

empirical JAVA package function and ‘𝐶𝐹𝑛(𝑝)’ denotes a 

cumulative JAVA package function, 𝑚 denotes a number 

of Java Packages. The output of the Jarque–Bera 

stochastic test ‘𝑆𝑡’ is always nonnegative. If it is distant 

from zero, the metric dispersal classes is identified the 

abnormal metric dispersal classes. The output of ‘𝑆𝑡 is 

closer to the zero is said to be a normal metric dispersal 

classes. In this way, metric dispersal classes are extracted.  

 With the extracted classes, significant software metrics 

are selected for accurate software fault prediction to 

minimize the complexity. The proposed technique uses 

the generalized canonical correlative normal discriminant 

analysis. It is ML method for identifying relevant and 

irrelevant metrics through generalized canonical 

correlation.  It is method of creating sense of cross-

correlation among sets of variables (i.e. metrics).   

Let us consider the number of metrics   

𝑀𝑖 = {𝑚1, 𝑚2, 𝑚3, … 𝑚𝑛}  ∈  𝐷𝑆  (4) 

Where, 𝐷𝑆 denotes a dataset, 𝑚1, 𝑚2, 𝑚3, … 𝑚𝑛 denotes 

the number of software metrics. Here two sets such as 

relevant and irrelevant sets are initialized. Mean value of 

set is computed as below, 

𝜇𝑠 =
1

𝑛
 ∑ 𝑚𝑖

𝑛
𝑖=1  (5) 

https://en.wikipedia.org/wiki/Empirical_distribution_function
https://en.wikipedia.org/wiki/Empirical_distribution_function
https://en.wikipedia.org/wiki/Empirical_distribution_function
https://en.wikipedia.org/wiki/Empirical_distribution_function
https://en.wikipedia.org/wiki/Empirical_distribution_function
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 Where, 𝜇𝑠 denotes a mean of sets and 𝑛 

indicates a number of software metrics. Therefore, the 

correlation between the mean and software metrics is 

estimated as given below,  

𝐶𝐶 = 𝑐𝑣𝑎𝑟 [𝜇𝑠, 𝑚𝑖]                                  (6) 

Where 𝐶𝐶  correlation, 𝑐𝑣𝑎𝑟  denotes a covariance 

measured between the mean value ‘𝜇𝑠’ and the metrics 

‘𝑚𝑖’.   

 

Figure 3 correlations between mean and software 

metrics 

Figure 3 depicts the correlation between the mean and 

software metrics for finding the significant metrics. The 

correlation is mathematically computed as given below,  

𝑐𝑣𝑎𝑟 [𝜇𝑠, 𝑚𝑖] =
∑(𝑚𝑖− 𝜇𝑠𝑖)(𝑚𝑗−𝜇𝑠𝑗)

𝑛
                                    

(7) 

 

Where, ‘𝜇𝑠𝑖’ indicates mean of set ‘𝑖’ and ‘𝜇𝑠𝑗’ denotes 

mean of set ‘𝑗’. Therefore, the minimum covariance 

provides higher correlation results.  Based on correlation 

measures, the metrics are identified as relevant as well as 

irrelevant.  Only significant relevant software metrics are 

chosen for fault prediction. Algorithm of Jarque–Bera 

stochastic generalized canonical normal discriminant 

analysis is given below,  

// Algorithm 1:  Jarque–Bera stochastic generalized canonical normal discriminant analysis 

Input: Dataset ‘𝐷𝑆’, Java Packages ‘𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}’ 

Output: Significant software metric selection  

Begin  

Step 1:  For each Java Package ‘𝑃’ in the Dataset ‘𝐷𝑆’   

Step 2:      Measure Jarque–Bera stochastic test ‘𝑆𝑡’ 

Step 3:   Estimate the difference between the empirical JAVA package function and the cumulative JAVA package 

function using (2) (3) 

Step 4:      If ‘𝑆𝑡  𝑐𝑙𝑜𝑠𝑒𝑟 𝑡𝑜 0’ 

Step 5:         Strong correlation established between ‘𝐸𝐹𝑛(𝑝)’ and ‘𝐶𝐹𝑛(𝑝)’ 

Step 6:          Extract normal metric dispersal java class  

Step 7:   else 

Step 8:         Extract abnormal metric dispersal java class  

Step 9:  end if  

Step 10: end for 

Step 11:  For extracted java class ‘𝐶’ 

Step 12:      Apply generalized canonical correlative normal discriminant analysis 

Step 13:  Define number of sets 𝑠𝑖 and 𝑠𝑗 

Step 14:  Define mean value ‘𝜇𝑠𝑖’ and 𝜇𝑠𝑗 

Step 15:      Measure the generalized canonical correlation between the mean and software metrics  ‘𝑐𝑣𝑎𝑟 [𝜇𝑠, 𝑚𝑖]’ 

Step 16:           Categorizes the software metrics into a particular set  

Step 17:     Return significant software metrics for different java classes 

End  

 

Algorithm 1  shows a process of the java class extraction 

and significant metric selection. First, Jarque–Bera 

stochastic test is applied for identifying the normal and 

abnormal dispersal java class. After the class extraction, 

significant software metrics are selected by applying a 

generalized canonical correlative normal discriminant 
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analysis. As a result, significant software metrics are 

identified and therefore it minimizing time utilization of 

the software faults forecast.  

3.2 Iterative Dichotomize Linear Regressive 

Quadratic MilBoost-based software fault forecast  

Subsequent to software metric chosen process, the 

software fault prediction is performed through Iterative 

Dichotomize Linear Regressive Quadratic MilBoost 

(Multiple Instance Learning) Ensemble learning. The 

proposed technique is an ensemble meta-algorithm which  

converts performance of weak classifier results to strong 

ones. Weak classifier is base classifier which not efficient 

to give precise software prediction results. On the 

converse, the proposed ensemble meta-algorithm is a 

strong classifier which gives accurately higher 

classification outcomes through integrating set of weak 

classification results.  Main advantage of MilBoost boost 

technique is to learn the multiple instances (i.e. input 

samples) as well as gives precise classification outcomes 

and minimizes the error rate.  

 

figure 4 block diagram of Iterative Dichotomize Linear Regressive Quadratic MilBoost 

Figure 4 depicts the structure of the MIL Boosting 

technique for fault prediction.  The ensemble boosting 

technique includes a training set {𝑐𝑖 , 𝑦} where  𝑐𝑖 

represents an input (i.e. number of classes), ‘𝑦’ denotes 

strong classification results.  The proposed MIL Boosting 

technique uses a ‘𝑘’ number of weak learners as Gibbs-

Poston indexive ID3 (Iterative Dichotomiser 3) (GIID3) 

decision tree algorithm for classifying the java package 

class with defects and on defects based on the selected 

software metrics.  The advantage of the ID3 (Iterative 

Dichotomiser 3) decision tree is to handle both numerical 

and categorical data.  It also handles multi-output 

problems and the output classification outcomes are 

integrated to attain strong results.  

Let us consider the extracted software metrics 

‘𝑚1, 𝑚2, 𝑚3, … 𝑚𝑛 ’ and java package classes 𝑐1, 𝑐2, … 𝑐𝑚 

. The ID3 (Iterative Dichotomiser 3) decision tree is 

applied to identify the software faults in the java package 

classes. The decision tree is build by root node, internal 

node, as well as leaf nodes. In tree, each root node carry 

outs "test" on input every branch indicates result of test, 

as well as every leaf node provides class label .  
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Figure 5 structure of ID3 decision tree 

Figure 5 illustrates the structure of the ID3 decision tree 

with root, internal, as well as leaf nodes.  For every 

iteration of algorithm, root node calculates similarity 

between the java package classes 𝑐1, 𝑐2, … 𝑐𝑚 and man of 

the particular class by using the Gibbs-Poston index.  The 

Gibbs-Poston index is a statistical method for measuring 

the similarity between two variables. The index estimation 

is given below, 

𝑊 → 𝐼 = 𝑄 [1 −
∑ |𝑐𝑖−𝑚𝑐𝑗|𝑛

𝑖=1

2𝑛
]         (8) 

Where, 𝑄  denotes the number of categories, 𝑐𝑖 denotes an 

input java package class, 𝑚𝑐𝑗 denotes a mean of the 

particular categories. Here, two categories are initialized 

as defective and non-defective, ‘𝑛’ indicates a number of 

java package class data samples, 𝑊 indicates an output of 

weak learner results.  The higher similarity value indicates 

that the java package classes are categorized into either 

defective or non-defective categories. Finally, the results 

are obtained at the leaf node of the decision tree.   

The weak learner did not efficiently provide accurate 

classification outcomes. So, proposed boosting method 

combines weak learner results to enhance  precision of 

software fault prediction.  To attain strong classification 

outcomes, output of weak learners is summed as follows,   

𝑦 = ∑ 𝑊𝑖
𝑘
𝑖=1      (9) 

Where ‘𝑦’ indicates the ensemble classification output, 𝑊𝑖 

indicates weak classification results.  For each weak 

classification result, the weight is initialized randomly.    

𝑦 = ∑ 𝑊𝑖 ∗ 𝛿𝑘
𝑖=1           (10) 

Where ‘𝛿’ indicates weight of weak learner results. After 

weight assignment, the error is measured among actual 

and predicted outcomes. Quadratic loss is used to validate 

the accuracy of the predictive model. It works by taking 

the difference among actual and forecasted outcomes as 

given below, 

𝑄𝐿 =
1

2
∗ [𝑊𝑎𝑐𝑡 − 𝑊𝑝𝑟𝑒]2   (11) 

Where 𝑄𝐿 denotes a quadratic loss calculated as variation 

among actual outcomes ‘𝑊𝑎𝑐𝑡’ and predicted outcomes 

‘𝑊𝑝𝑟𝑒’. Depend on quadratic loss value, initial weight gets 

updated. Segmented linear regression is applied to select 

weak learner results through lesser error by setting 

threshold for minimizing the complexity of the fault 

prediction.   

𝑍 =  {
𝑄𝐿 < 𝑇  ; 𝑠𝑒𝑙𝑒𝑐𝑡 𝑤𝑒𝑎𝑘 𝑙𝑒𝑎𝑟𝑛𝑒𝑟 

𝑄𝐿 > 𝑇  ; 𝑟𝑒𝑚𝑜𝑣𝑒 𝑤𝑒𝑎𝑘 𝑙𝑒𝑎𝑟𝑛𝑒𝑟
    (12) 

 Where 𝑍  denotes an output of segmented linear 

regression, 𝑄𝐿  denotes a quadratic loss, 𝑇 indicates a 

threshold. As outcome , weak learner through lesser 

quadratic loss is selected for next process and removes the 

others.  

After that, weight of weak learner updated. If weak learner 

performs accurate classification, after that initial weight 

minimized. Otherwise, weight enhanced.  Depend on 

updated outcomes, ensemble technique gives final 

classification results with minimum loss with aid of 

downhill simplex technique. Downhill simplex technique 

is a numerical method that helps to discover lesser of 

objective function (i.e. quadratic loss). This aids to reduce 

wrong fault perdition resulting in it enhancing the 

precision and F-score in the classification process.  

𝐹 = arg min 𝑄𝐿 (𝑊)  (13) 

 From (13), 𝐹 denotes an output of downhill simplex,  

arg 𝑚𝑖𝑛 indicates argument of minimum function, 𝑄𝐿  

represents Downhill simplex method, 𝑊 and denotes a 

weak learner. Like this, every java package classes are 

properly classified through enhanced accuracy, precision, 

and lesser loss.  Algorithmic process of classification is 

given below,  

 

 

 

 

 

Root node 

Internal node 

Leaf node 
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// Algorithm 2: Iterative Dichotomize Linear Regressive Quadratic MilBoost based software fault prediction  

Input: extracted software metrics ‘𝑚1, 𝑚2, 𝑚3, … 𝑚𝑛 ’ , java package classes 𝑐1, 𝑐2, … 𝑐𝑚 

Output: Increase the software fault prediction accuracy   

Begin 

Step 1:    For each extracted metrics ‘𝑚𝑖’ and Java package classes 𝑐1, 𝑐2, … 𝑐𝑚 

Step 2:       Construct a ‘𝑘’ weak learners   

Step 3:        Initialize the two output categories’ defective and non defective (  𝑅1, 𝑅2) 

Step 4:        for each category  

Step 5:          Initialize the mean ‘ 𝑚𝑐𝑗’   

Step 6:          End for 

Step 7:       Measure similarity coefficient ‘𝐼’ 

Step 8:       Classify the data into a particular category  

Step 9:  End for 

Step 10:     Combine a set of weak learners' results ‘𝑦 = ∑ 𝑊𝑖
𝑘
𝑖=1  ’ 

Step 11:     For each 𝑊𝑖 

Step 12:       Initialize the weight ‘𝛿’ 

Step 13:       Calculate quadratic loss  ‘𝑄𝐿 ‘ 

Step 14:       Apply segmented regression  

Step 15:      if (𝑄𝐿 < 𝑇)  then  

Step 16:          Select weak learner results  

Step 17:  else 

Step 18:         Remove the weak learners  

Step 19:  end if  

Step 20:   Apply downhill simplex method 

Step 21:    Find weak learner with minimum error  

Step 22:  Obtain strong classification results 

End 

 

Algorithm 2 provides process of Iterative dichotomized 

linear regressive Quadratic MilBoost to enhance software 

fault prediction accuracy as well as precision. Initial,  

ensemble technique constructs  ‘𝑘’ set of Gibbs-Poston 

indexive ID3 (Iterative Dichotomiser 3) decision tree 

classifier. Initialize number of classes with mean value.  

After that Gibbs-Poston index similarity is measured 

among Java package classes and the mean. Depend on 

similarity value, Java package classes are categorized into 

a specific class.   Then weak classification results are 

integrated and assigned weights. After that, quadratic loss 

is calculated for every weak learner's outcomes. 

Segmented regression selects the results with a minimum 

loss than the threshold and it is used for further process. 

Then the downhill simplex method is applied for finding 

weak learner results by lesser loss. This aids to enhance 

software fault prediction accuracy , precision.  

4. Experimental Evaluation   

Experimental setup of CADME and conventional  

methods HA-LCBS [1] DP-GCNN [2] are implemented 

in Java language and the dataset extracted from 

https://drive.google.com/drive/folders/101QbQ-

TtQpyZa-APCFo4hCGAc_c-g6-Y . Different numbers of 

class data samples are collected ranging between 1000 and 

10000 for software fault prediction. First, the number of 

classes is extracted from the java packages using Jarque–

Bera stochastic test. After that, the significant software 

metrics are selected for minimizing the complexity of 

software prediction by using generalized canonical 

correlative normal discriminant analysis. Finally, the 

software fault prediction is performed by means of 

Iterative Dichotomize Linear Regressive Quadratic 

MilBoost for identifying defects or non-defects   

4.1 Performance Results  

Performance analysis of CADME and conventional  

methods HA-LCBS [1] DP-GCNN [2] are explained 

based on software fault prediction accuracy, precision, 

recall, F-measure, time complexity with respect to class 

data samples.. 

Software fault prediction accuracy: It calculated as 

ratio of a number of (i.e., class data samples) predicted 

positively or accurately divided by total number of class 

data samples. It is formulated as below.  

 𝑆𝐹𝑃𝐴 = ∑
𝐶𝑃𝑎𝑐𝑐

𝐶𝑖
∗ 100𝑛

𝑖=1    

     (14) 

https://drive.google.com/drive/folders/101QbQ-TtQpyZa-APCFo4hCGAc_c-g6-Y
https://drive.google.com/drive/folders/101QbQ-TtQpyZa-APCFo4hCGAc_c-g6-Y
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 Where, 𝑆𝐹𝑃𝐴’ denotes a software fault 

prediction accuracy, 𝐶𝑖 denotes a class samples .   ‘𝐶𝑃𝑎𝑐𝑐’ 

denotes a class data samples predicted positively or 

accurately. It is measured in percentage (%). 

Precision: Estimates the number of properly positive 

class data samples against total number of positive 

instances. It  is mathematically stated as given below.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑝

𝑡𝑟𝑝+ 𝑓𝑙𝑝
    

   (15) 

Where, t𝑟𝑝 denotes a true positive,𝑓𝑙𝑝 indicates false 

positive rate. It is measured in percentage (%).  

Recall: Evaluates the number of correctly positive class 

data samples as well as negative class data samples. 

Precision is mathematically stated as given below.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑝

𝑡𝑟𝑝+ 𝑓𝑙𝑛
     

  (16) 

 Where, t𝑟𝑝 denotes a true positive , 𝑓𝑙𝑛 indicates 

false negative. It is measured in percentage (%).  

F-score: it is calculated as average of precisions and 

recall. It is estimated as below,   

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = [2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+  𝑟𝑒𝑐𝑎𝑙𝑙
] ∗ 100     (17) 

F-score is measured in percentage (%). 

Software fault prediction time: It is referred as amount 

of time utilized through algorithm for software fault 

prediction. It  is calculated as given below,   

𝑆𝐹𝑃𝑇 =  ∑ 𝐶𝑖
𝑛
𝑖=1 ∗ [𝑇𝑖𝑚𝑒 (𝑆𝑀)] (18)  

  

Where, 𝑆𝐹𝑃𝑇 denotes a Software fault prediction time , 

𝐶𝑖 indicates number of class data samples, 𝑇𝑖𝑚𝑒 (𝑆𝑀)  

represent time for detecting software fault prediction.  It 

is measured milliseconds (ms). 

Table 1   Software fault prediction accuracy 

Number of   

class data 

samples 

Software fault prediction accuracy (%) 

CADME HA-LCBS  DP-GCNN 

1000 99.2 97 98.2 

2000 98.25 96 97.25 

3000 97 92.05 95 

4000 95.75 89.35 93.25 

5000 95 87.55 91.4 

6000 94.16 85.25 91.66 

7000 93.57 83 91.42 

8000 93.12 79.15 91.5 

9000 92.777 75.35 91.11 

10000 92.5 73 90.7 

 

 

Figure 6 Graphical representation of Software fault prediction accuracy 
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Table 1 , figure 6 depicts performance results of SFPA 

with number of class data samples . Among three 

methods, proposed CADME technique gives enhanced 

accuracy results when compared to conventional methods. 

Let us assume, the number of data samples is considered 

as 1000 for estimating the accuracy. By using CADME, 

the accuracy was found to be 99.2% and HA-LCBS [1] 

,DP-GCNN [2] was 97% and 98.2%.  Likewise, various 

performance outcomes are examined with number of data 

samples. Finally, observed results of proposed CADME 

are compared to conventional methods. average of ten 

comparisons denotes that performance of the accuracy 

with CADME technique is enhanced  by 12% and 2% than 

the [1] ,[2] respectively.  This improvement is achieved 

through the Iterative dichotomized linear regressive 

Quadratic MilBoost. The ensemble classification 

technique constructs the decision tree classifier and 

measures the similarity among class data samples as well 

as mean of the specific class. Then weak learner outcomes 

are integrated to create a strong output by minimizing 

quadratic loss.  This helps to improve SFPA. 

Table 2   Precision  

Number of   

class data 

samples 

Precision (%) 

CADME HA-LCBS  DP-GCNN 

1000 99.49 97.87 98.96 

2000 98.97 97.32 98.44 

3000 97.94 94.89 96.42 

4000 96.8 93.22 94.60 

5000 96.79 90.58 95.13 

6000 96.39 90.19 95.02 

7000 96.12 89.38 94.36 

8000 95.91 84.67 95.18 

9000 95.75 81.81 94.98 

10000 95.62 79.72 94.51 

 

                               

 

Figure 7 Graphical representation of precision  
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Table 2 , figure 7 depicts experimental evaluation results 

of precision using CADME technique, HA-LCBS [1] DP-

GCNN [2]. Examined outcomes denote that the overall 

performance results of precision using the proposed 

CADME technique were found to be increased when 

compared to conventional  methods. Let us assume 1000 

numbers of class data samples in initial iteration and the 

observed precision outcomes  with CADME technique 

were found to be 99.49 % whereas the performance of 

precision results of [1] and [2] was found to be 97.87 % 

and  98.96% respectively. Likewise, dissimilar 

performance outcomes are examined  with different 

number of class data samples.  Accordingly, average 

performance outcomes denote performance of precision 

using the CADME technique by 8% and 1% than the [1] 

,[2]. This is due to application of an improved Iterative 

dichotomized linear regressive Quadratic MilBoost 

ensemble classifier. Ensemble classifier precisely 

classifies data samples to defective or non-defective and 

obtains strong classification results by applying the 

downhill simplex method. The downhill simplex method 

is used to discover weak learner results by lesser quadratic 

loss. This aids to enhance true positives and minimize 

false positives.  

Table 3   Recall   

Number of   

class data 

samples 

Recall (%) 

CADME HA-LCBS  DP-GCNN 

1000 99.69 98.92 99.16 

2000 99.23 98.37 98.69 

3000 98.96 96.29 98.18 

4000 98.64 94.28 98.04 

5000 97.84 93.90 95.34 

6000 97.27 92.92 95.73 

7000 96.87 89.38 96.17 

8000 96.57 88.23 95.44 

9000 96.34 84.37 95.22 

10000 96.15 83.09 95.24 

 

 

 

Figure 8 Graphical representation of recall  

Table 3 , figure 8 illustrate overall performance of recall 

using number of numbers of class data samples. For every 

method, ten various performance results are examined and 

the outcomes shown in figure 8. Performance of recall by 
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CADME method is higher when compared to [1] [2]. This 

is because of CADME technique increases true positive 

rate as well as minimizes the false negative in software 

fault prediction with the help of an Iterative dichotomized 

linear regressive Quadratic MilBoost ensemble classifier. 

Examined performance outcomes of CADME technique 

are compared to results of conventional methods. Overall 

comparison outcomes denote that performance of recall 

using CADME method is considerably enhanced   by 7% 

and 1%  than the [1],[2].  

Table 4 F-score   

Number of   

class data 

samples 

F-score (%) 

CADME HA-LCBS  DP-GCNN 

1000 99.58 98.39 99.05 

2000 99.09 97.84 98.56 

3000 98.44 95.58 97.29 

4000 97.71 93.74 96.28 

5000 97.31 92.21 95.23 

6000 96.82 91.53 95.37 

7000 96.49 89.38 95.25 

8000 96.23 86.41 95.30 

9000 96.04 83.07 95.09 

10000 95.88 81.37 94.87 

 

 

Figure 9   Performance results of F-score  

Table 4 , figure 9 demonstrate overall performance 

outcome of F-score against number of data samples.  F-

score in the fault prediction is estimated depend on  

precision and  recall. Overall examined result indicates 

which performance results of F-score with CADME 

technique are improved when compared to conventional 

methods.  This is due to application of the proposed 

ensemble classifier increasing performance of precision 

and recall in software fault prediction. Lastly, overall 

performances of CADME technique are compared to 

outcomes of conventional methods. Average of ten 

comparisons represents  which entire performance of F-

score is considerably enhanced by 7% and 1% than the 

[1], [2] respectively.  
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Table 5   Software fault prediction time 

Number of   

class data 

samples 

Software fault prediction time (ms) 

CADME HA-LCBS  DP-GCNN 

1000 13 19 16 

2000 16.4 28.15 22 

3000 21 35.45 28.5 

4000 26 42.55 34 

5000 31 59.35 42.5 

6000 42.6 75.35 52.8 

7000 47.6 85.95 63 

8000 56.8 105.25 88 

9000 67.5 125.25 108 

10000 76 140.35 120 

 

 

Figure 10   Performance results of Software fault prediction time 

Performance analysis of 𝑆𝐹𝑃𝑇 versus the number of class 

data samples is shown in table 5 and figure 10. From the 

figure, a software fault prediction time gets enhanced as 

improving the number of class data samples. Examined 

outcomes represent  that overall performance of the 

proposed CADME technique decreases the 𝑆𝐹𝑃𝑇 when 

compared to existing  methods.  Let us assume 1000 class 

data samples for performing experiments. Entire 

performance of 𝑆𝐹𝑃𝑇 by CADME technique was found 

to be  13𝑚𝑠. In addition, the software fault prediction time 

using HA-LCBS [1], and DP-GCNN [2] was found to be  

19𝑚𝑠 and 16𝑚𝑠. For every method, a variety of 

performance outcomes is examined with dissimilar counts 

of input data samples. Overall performance outcomes 

designate that the 𝑆𝐹𝑃𝑇 is significantly minimized by 

43% and 27% than the  existing [1] [2] respectively. This 

is because of the metric dispersal class extraction and 

significant software metric selection. First, the Jarque–

Bera stochastic test is used for extracting java classes from 

the packages. Followed by, significant software metrics 

selected by applying the generalized canonical 

correlation. Depend on correlation measure, relevant 

metrics are chosen. Selected metrics are given to the 

proposed ensemble classifier for fault prediction. 

Ensemble classifier eliminates weak learner outcomes 

which have superior quadratic loss than the threshold by 

applying segmented linear regression. This process 

reduces time complexity of fault prediction.   

5.  Conclusion  

Fast growth of larger as well as further multifaceted 

software scheme needs rapid and precise methods for 
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identifying possible defects in source code of software. 

Therefore, a novel CADME technique is designed for 

detecting software defects accurately by lesser time 

consumption.  In the CADME technique, metric dispersal 

class extraction is performed by means of the Jarque–Bera 

stochastic test. Followed by, generalized canonical 

correlative normal discriminant analysis is performed to 

identify the significant metrics for fault prediction. These 

two processes of the CADME technique help to reduce 

time utilization of software fault prediction. Finally, the 

ensemble technique called Iterative Dichotomize Linear 

Regressive Quadratic MilBoost is developed for accurate 

defective or non-defective software data samples with 

lesser misclassification rate. Comprehensive experimental 

measurement is done by different parameters . Overall 

observed results indicate that the presented CADME 

method attains enhanced accuracy with lesser time for 

software defect prediction than the conventional methods. 
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