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Abstract: This paper provides  a new energy management method for electric vehicle charging in ANFIS based Moth flame optimization 

(ANFIS-MFO) for the Energy management. The proposed system consists of a grid connected Solar PV system & battery powered energy 

management system, which is a combination of solar PV and battery power. The system is based on a moth flame algorithm tuned ANFIS 

technique is used to find optimal power reference for the EV battery based on SOC of the battery. In the proposed system, the peak power 

of the solar PV system is captured and analyzed. The performance of the proposed method tested with standard P&O-MPPT method. The 

effective execution of the suggested operation for each mode occurred, and a reduction in the cost of power purchase from the grid was 

achieved through the proposed MFO EMS. Additionally, the charging and discharging of the battery were carried out effectively without 

any loss. The simulation is carried out in MATLAB/SIMULINK and the outputs are validated. 

Keywords: Pv, EV, ANFIS, Moth flame optimization 

I. INTRODUCTION  

As the world faces a critical situation with the decline of 

fossil fuels and the harmful effects of global warming, there 

has been a surge in popularity for another energy sources. 

Among these renewable resources such as hydel, wind, tidal, 

and solar energy has emerged as the greatest favored option 

due to its ability to convert energy without emitting 

pollutants. Over the last 15 years, the need for solar power 

has increased from 25% to 30%. One of the many merits of 

solar power is its eco-friendliness and abundance in nature. 

The management of this energy system heavily relies on 

power electronics [1-2]. The DC power generated by a PV 

source can be converted into AC power by utilizing a Power 

Electronics converter. This converted energy can then be 

utilized to power local loads or supplied to the grid for 

broader use. Numerous sources suggest the importance of 

this converter in enabling the proper functioning of the solar 

energy system [3-5]. 

PV cells typically have a low conversion efficiency, with a 

voltage range of approximately 0.5-0.8V. Monitoring the 

maximum power point of the PV system is imperative for 

optimizing performance. Inclusion of a battery is necessary 

to ensure a consistent power supply to the load, given the 

intermittent nature of the PV energy source. This battery can 

store excess energy for later use or supply the energy to the 

local load or grid as needed. For a dependable and regular 

power supply, it is important to include a battery in a solar 

energy system, according to many sources [6-7]. The 

balance relating the energy provided and the energy used by 

the load determines the mode of operation for a solar energy 

system. This balance can vary based on different operating 

modes. By utilizing a bi-directional converter, it is possible 

to reduce the number of batteries needed for energy storage 

while making sure that electricity stays on even in the event 

that one of the cells fails. This converter offers several 

advantages and is a recommended component for a well-

functioning solar energy system [8] A comprehensive 

survey of the MFO algorithm was published in [9], covering 

its development from inception to April 2019. The authors 

provided a detailed analysis of various MFO method 

alternatives, including any improvements, modifications, or 

hybridizations that have been made. Furthermore, they 

examined the diverse range of fields where the MFO 

algorithm was utilized in the following field i.e., 

engineering, medical, and machine learning. This survey 

paper serves as a valuable resource for those interested in 

the MFO algorithm and its various applications. A literature 

study on the MFO algorithm was published in [10], covering 

all the variants of the algorithm This study analyses 

improvements, binary and multi-objective versions, 

hybridizations, modifications, and applications in the fields 

of engineering, chemistry, medicine, machine learning, 

fuzzy logic, image segmentation, networking, etc., along 

with information on the relevant journals and publishers., 

fuzzy inference systems (FIS), neuro-fuzzy systems and 

Artificial neural networks (ANN) are examples of intelligent 

control strategies that have become more and more popular 

in recent years for industrial automation. These schemes 

operate without requiring a same model of the system and 

are immune to system subtleties, making them advantageous 

in most of the nonlinear systems [11-12]. ANFIS is one of 

the neuro-fuzzy models that is thought to be simpler, 

quicker, more accurate, and stronger in generalisation 
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abilities [13]. In order to mimic the cognitive powers of the 

human mind, it inherits the learning and parallel data 

processing abilities of artificial neural networks as well as 

the inference capability of fuzzy inference systems. 

II. PROPOSED SYSTEM 

The Proposed structure Block Diagram is depicted 

in Figure.1. Here the system comprises of a PV & battery as 

a Input source it is linked to the AC Grid via a Inverter. 

 

Fig.1 Overall Operation Block of ANFIS-MFO EMS 

System 

A. Solar PV system  

Figure 2 represents an analogous circuit model for the PV 

cell, which is utilized to calculate the photovoltaic reference 

model output current (IPV) based on the output voltage 

(VPV), as well as the cell temperature (TC) and irradiance 

(G). The output power, current, and voltage of the solar PV 

reference model are significantly influenced by these 

parameters. Equations (1) and (2) are used to determine the 

connection between PV current and voltage. 

𝐼𝑃𝑉 = 𝐼𝑆𝐶 × [1 − 𝐴1 × (𝑒
(

𝑉𝑃𝑉
𝐴2×𝑉𝑂𝐶

)
− 1)]  (1) 

Equation 1, also referred to as the I-V equation, is used to 

show how the output voltage (VPV) and current (IPV) of a 

photovoltaic cell correlate at various light levels. This 

equation is widely employed to describe the characteristics 

of PV cells. 

Where, 

𝐴1 = (1 −
𝐼𝑀𝑃

𝐼𝑆𝐶
) × 𝑒

(
−𝑉𝑀𝑃

𝐴2×𝑉𝑂𝐶
)

𝐴2 =
(
𝑉𝑀𝑃
𝑉𝑂𝐶

−1)

ln(1−
𝐼𝑀𝑃
𝐼𝑆𝐶

)

   

    (2) 

Where, 

The A1 parameter in the equation is influenced by 

the features of a photovoltaic cell, and its value decreases as 

IMP / ISC increases and with increasing VMP, as described 

in the equation. A2 is another parameter that governs how 

quickly A1 diminishes with increasing VMP. MPP 

corresponds to the point at which the solar PV module 

generates the maximum power, denoted by IMP. ISC 

represents the current obtained by the solar PV array when 

no voltage is applied to it. VMP refers to the voltage at MPP, 

while VOC is the voltage generated by the PV cell or module 

when the current through it is zero. 

Various factors, such as temperature and irradiance, impact 

the VMP, IMP, VOC, and ISC parameters of a PV panel. 

The relationship between these parameters and the current-

voltage (I-V) plot of a PV module can be described by 

equations (3), (4), and (5), which take into account of the of 

temperature (TC) and irradiance (G). 

𝐼𝑆𝐶(𝐺, 𝑇𝐶) = 𝐼𝑆𝐶𝑆 ×
𝐺

𝐺𝑆
× (1 + 𝛿 × (𝑇𝐶 − 𝑇𝑆))

𝐼𝑀𝑃(𝐺, 𝑇𝐶) = 𝐼𝑀𝑃𝑆 ×
𝐺

𝐺𝑆
× (1 + 𝛿 × (𝑇𝐶 − 𝑇𝑆))

 

   (3) 

Parameters such as temperature and solar intensity influence 

current of a photovoltaic unit at the short-circuit, represented 

as ISC (Tc, G). At typical test circumstances with a cell 

temperature of approximately 25°C and an air mass of 1.5, 

the short-circuit current is identified as ISC. The reference 

intensity equal to 1000 W/m2 (Gs), and the temperature 

constant of short-circuit current, alpha (indicating the degree 

of current decrease with temperature increase), are integral 

to this relationship. TS (25°C) represents the reference 

temperature. The current at the maximum power point 

(MPP) generated by the PV unit under precise temperature 

and intensity circumstances is IMP (Tc, G), with IMPS 

representing the MPP current during STC. Equation (3) 

establishes the relationship between ISC and IMP with G and 

TC, incorporating the parameters and their dependencies. 

𝑉𝑂𝐶(𝑇𝐶) = 𝑉𝑂𝐶𝑆 + 𝜀 × (𝑇𝐶 − 𝑇𝑆)

𝑉𝑀𝑃(𝑇𝐶) = 𝑉𝑀𝑃𝑆 + 𝜀 × (𝑇𝐶 − 𝑇𝑆)
   

   (4) 

V OC(T C) = PV unit's open-circuit voltage for specified 

temperature. 

VOCS= The OC voltage during STC 

ε = A measure of how much the voltage changes with 

temperature is the OC voltage's temperature constant. 

V MPS= The voltage at MPP when STC . 

Equation (4) links VOC and VMP to TC by using the 

previously mentioned factors and their interdependencies. 

𝑇𝐶 = 1.14 × (𝑇 − 𝑇𝑆) + 0.0175 × (𝐺 − 300) (5) 
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The photovoltaic (PV) module's thermal behavior is 

modeled using an equation that relates the module 

temperature (T), cell temperature (TC), and irradiance 

(G). The Standard temperature is 25°C. The Cell 

temperature and the irradiance are dependent on the 

module temperature. These equations take into 

consideration the influence of temperature coefficients 

and other parameters on the I-V characteristics of the PV 

unit under different temperature and irradiance 

circumstances and are thus regarded to be exact 

representations. 

 

Fig.2. IV and PV characteristics of the considered PV array 

B.  Perturb & Observe MPPT  

 The effectiveness of  PV array is highly dependent on 

their efficiency in generating energy. Because of the 

extremely nonlinear power characteristics of solar cells, 

external variables like  irradiance & temperature continually 

affect how much energy they can produce. Monitoring solar 

cell output voltage constantly is essential to maximizing 

energy production and ensuring that it stays nearby to the 

extreme power point despite temperature and irradiance 

changes. Its total efficiency is increased by monitoring and 

collecting the solar PV system's peak output continually 

throughout the day, which ultimately boosts the productivity 

of the solar cell. With every release, MPPT algorithms gain 

traction and become more efficient. 

The MPPT regulator may use a variety of MPPT approaches, 

including perturbation and observation (P&O) , Incremental 

conductance (IC)  and fuzzy logic controller. The selection 

of an algorithm depends on various factors such as the design 

requirements of the system, including its speed, complexity, 

and reliability. To identify and obtain peak power from solar 

PV systems, two MPPT algorithms were developed in this 

study: P&O MPPT and fuzzy MPPT. Because of its low rate 

and simplicity of connection, the perturbation and 

observation (P&O) approach has grown acceptance in solar 

photovoltaic systems. To calculate the PV power, this 

method measures the voltage and current data from the PV 

module. Equation (6) is used to guide algorithmic changes as 

well as boost converter modifications based on the 

comparative findings. 

𝐷𝑘+1 = 𝐷𝑘 ± ∆𝐷                                                        (6) 

The P&O MPPT method follows a particular process to 

determine the ideal duty cycle. Every cycle, the perturbations 

that have come before and since, Dk and Dk+1, are added 

together with a step size D, resulting in Dk+1 + Dk. The PV 

current and voltage are measured, and power, instantaneous 

change in current, previous instant power (P), and 

instantaneous change in voltage (V) are calculated. If Power 

is superior than zero, the procedure checks V. D decreases 

the duty cycle if V is likewise bigger than zero and increases 

it otherwise. D increases the duty cycle if P is less than 0 and 

V is larger than 0; if not, D decreases the duty cycle. An 

overview of the MPPT algorithm procedure for perturbation 

and observation is shown in Table 1. 

Table 1. PO Perturbation Probability 

ΔP ΔV D 

+ + + 

+ - - 

- + - 

- - + 

 

Three major obstacles must be overcome by the P&O MPPT 

system: a protracted convergence time; variations in the 

vicinity of the peak power point; and a drifting problem 

brought on by abrupt changes in irradiance and partial shade 

situations. In the PO MPPT system, the magnitude of the step 

size ΔD is important since a big variation in decay time might 

result in rapid settling and severe fluctuations. while a small 

ΔD results in smoother oscillations and a slower steady-state. 

The key feature of the MPPT procedure is the determination 

of the direction of the Perturb and Observe (PO) MPPT 

algorithm, dictating how it tracks steady state peak power 

point. Yet, this change in track only happens with an upsurge 

in intensity, leading to a decrease in the efficiency of the PO 

MPPT.  The proposed adaptive PO MPPT method with a 

adjustable step size to address these problems was discussed 

by researchers, but it is still regarded as an insufficient 

solution. Potential solutions to overcome the limitations of 

the standard Perturbation and Observation MPPT method 

have been suggested in the form of soft calculation 

techniques based on PV peak power point trailing methods. 

A summary of the route of the Perturbation and Observation 

MPPT procedure is provided in Table 1. 
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C. DC–AC converter 

An inverter control system is responsible for converting DC 

electricity to AC power and reducing high-frequency 

harmonics in the grid system using an AC filter. The 

parameter control method is used by the controller to 

generate PWM logic signals for the inverter's switches. The 

main parts of the inverter are the IGBT and filters, while the 

DC connector and filtering circuitry are auxiliary 

components. Stabilizing the input voltage from the DC 

power supply to the inverter system involves the utilization 

of a 600 uF capacitor. Connection to the grid is established 

through an AC filter, aiming to mitigate the influence of 

harmonics originating from the grid. The voltage control 

loop and the inner current loop, constituting the regulator 

system, are overseen by a PI controller. An increase in 

electrical dependability is achieved by ensuring that the VSI 

inverter is operated with a certain amount of energy to 

stabilise the DC link voltage Vdc.  

 

Fig 3. Flowchart of Perturb & Observe MPPT 

III.  ADAPTIVE NEURO FUZZY INFERENCE SYSTEM 

 Figure 8 depicts the ANFIS architecture, which comprises 

five levels. Unlike fuzzy c-mean, scatter partition, and tiered 

separation, the grid partition procedure divides the input 

space into subsets that are likely to include input vectors, 

bringing the number of rules down to a manageable amount.. 

Layer 1, also called as the input fuzzification layer, is where 

input is fuzzified. This layer uses a mathematical expression, 

provided by the equation, to assign membership values to 

each subset of the given input space in the fuzzy system. 

                   𝑜𝑖𝑗
(1)

= 𝜇𝑗(𝐼𝑖𝑗
(1)

)   (7) 

The second tier of the ANFIS design is called the Fuzzy 

AND operation layer, Here, the T-norm operator of the 

algebraic product is used by each node to conduct a fuzzy-

AND operation. The result of each node is its output, which 

is its product. 

𝑜𝑘
(2)

= 𝜔𝑘 = ∏ 𝑜𝑖𝑗
(1)𝑞

𝑖=1    

  (8) 

The third layer of the ANFIS architecture is called the 

normalizing layer. Its purpose is to compute the outcome of 

every node by dividing the activation value of each rule in 

the fuzzy system by the total amount of all the initial values. 

This step normalizes the initial values of the fuzzy rules to 

ensure that they all contribute to the final output 

proportionally. 

𝑜𝑘
(3)

= 𝜔𝑘̅̅ ̅̅ =
𝑜𝑘

(2)

∑ 𝑜𝑚
(2)𝑦2

𝑚=1

   

   (9) 

Nodes with linear factors make up the fourth layer of the 

ANFIS architecture. Every node k in this layer implements 

the direct function, which is represented by an equation, and 

has a set of corresponding variable parameters (d1k, d2k,... 

dyk, d0). 

𝑜𝑘
(4)

= 𝜔𝑘̅̅ ̅̅  𝑓𝑘 = 𝜔𝑘̅̅ ̅̅  (𝑑1𝑘𝐼1
(1)

+ 𝑑2𝑘𝐼2
(1)

+ ⋯+ 𝑑𝑦𝑘𝐼𝑦
(1)

+

𝑑0) (10) 

The fifth layer in the ANFIS model includes a 

single node that produces the network's output by 

algebraically summing up all the inputs. Horse Herd 

Optimization is used for optimizing the ANFIS parameters; 

the specifics of this procedure are covered in the section that 

follows.. 

𝑈𝑎 = 𝑜5 = ∑ 𝑜𝑘
(4)

=
𝑦2

𝑘=1 ∑ 𝜔𝑘̅̅ ̅̅ 𝑓𝑘 =
𝑦2

𝑘=1

∑ 𝜔𝑘𝑓𝑘
𝑦2

𝑘=1

∑ 𝜔𝑘
𝑦2

𝑘=1

 

  (11) 

 

Fig 4. Layers of ANFIS Network 

There are several methods for determining the mean squared 

error (MSE). 

𝑀𝑆𝐸 = (
1

𝑁
) ∑ |𝑡𝑖 − 𝑜𝑖|

2
𝑖                                                   

(12) 

The ANFIS network's tunable parameters are adjusted 

using the PSO technique in an effort to minimize the mean 

squared error—that is, the difference among the target value 

(t) and the yield value (o). N is the total amount of outputs 

in the output layer of the network. 
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IV.  MOTH FLAME OPTIMIZATION ALGORITHM 

This section provides information on the MFO methods 

history and its functioning procedure with scientific 

formulations in Sections A and B, respectively. 

A.  Inspiration 

Moths are an insect species belonging to the class 

Arthropoda. They feature two sets of large arms coated in 

scales, a thorax, two antennae, a head, six legs, and an 

abdomen.. They are nocturnal creatures that rely on 

moonlight for navigation, and their unique navigation 

techniques have captured the interest of metaheuristics 

researchers. According to Fig. 3, moths navigate by using an 

oblique orientation mechanism. Moths maintain a steady 

angle with the moon, resulting in a crosswise leaning, to keep 

their journey straight. As the distance from a flame decreases, 

a helical route signal is initiated to link the moth with the 

flare, ensuring effective steering. Moths employ distance 

from a flame to help in their navigation. 

 MFO Algorithm 

Each location in basic MFO is described as a matrix of 

decision factors, and each moth represents a possible 

resolution. 

𝑋 =

[
 
 
 
 
𝑋1

𝑋2

:
:

𝑋𝑁]
 
 
 
 

=

[
 
 
 
 

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑛−1 𝑥1,𝑛

𝑥2,1 ⋱ ⋯ ⋯ 𝑥2,𝑛

⋮ ⋯ ⋱ ⋮ ⋮
𝑥𝑁−1,1 ⋯ ⋯ ⋱ 𝑥𝑁−1,𝑛

𝑥𝑁,1 𝑥𝑁,2 ⋯ 𝑥𝑁,𝑛−1 𝑥𝑁,𝑛 ]
 
 
 
 

 

where i = 1, 2,..., N, and Xi = xi,1, xi,2,..., xi,n.The problem's 

dimension is represented by the number n, where n is the 

numeral of moths. An illustration of a moth's fitness is 

displayed as a vector below: 

𝐹𝑖𝑡[𝑋] =

[
 
 
 
 
𝐹𝑖𝑡[𝑋1]

𝐹𝑖𝑡[𝑋2]
:
:

𝐹𝑖𝑡[𝑋𝑛]]
 
 
 
 

 

Below is a display of the flame matrix. Since every moth 

flies around a flame, the size must match that of the moth 

matrix previously described. 

𝐹𝑀 =

[
 
 
 
 
𝐹𝑀1

𝐹𝑀2

:
:

𝐹𝑀𝑁]
 
 
 
 

=

[
 
 
 
 

𝐹𝑚1,1 𝐹𝑚1,2 ⋯ 𝐹𝑚1,𝑛−1 𝐹𝑚1,𝑛

𝐹𝑚2,1 ⋱ ⋯ ⋯ 𝐹𝑚2,𝑛

⋮ ⋯ ⋱ ⋮ ⋮
𝐹𝑚𝑁−1,1 ⋯ ⋯ ⋱ 𝐹𝑚𝑁−1,𝑛

𝐹𝑚𝑁,1 𝐹𝑚𝑁,2 ⋯ 𝐹𝑚𝑁,𝑛−1 𝐹𝑚𝑁,𝑛 ]
 
 
 
 

 

The flame matrix's matching fitness is shown below. 

𝐹𝑖𝑡[𝐹𝑀] =

[
 
 
 
 
𝐹𝑖𝑡[𝐹𝑀1]

𝐹𝑖𝑡[𝐹𝑀2]
:
:

𝐹𝑖𝑡[𝐹𝑀𝑛]]
 
 
 
 

 

The moth and the flame are the two main characters of MFO. 

In order to get the desired effects, the moth must pass 

through the flame. The following equation defines the 

logarithmic twisting function, which is useful  to simulate 

the moth's twisting motion: 

 

𝑋𝑖
𝐾+1 = {

𝛿𝑖. 𝑒
𝑏𝑡 . cos(2𝜋𝑡) + 𝐹𝑚𝑖(𝑘), 𝑖 ≤ 𝑁. 𝐹𝑀

𝛿𝑖. 𝑒
𝑏𝑡 . cos(2𝜋𝑡) + 𝐹𝑚𝑁.𝐹𝑀(𝑘), 𝑖 ≥ 𝑁. 𝐹𝑀

 

The formula _i = XKi Fmi shows the separation between a 

moth at point Xi and its consistent flare (Fmi). The twisting 

aeronautical search is resolute by b and t (a arbitrary numeral 

among -1 and 1), which indicate how accurate the moth is 

approaching its flame in Fig. 4. A moth is seen flying in a 

helix pattern towards a similar flame in Fig. 5. The cost of t 

falls across the repetitions, matching the examination and 

manipulation at the start and end of the repetitions. Fig. 6 

displays the moth's next position along with a mathematical 

illustration of it. 

𝑟 = −1 + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟 (
−1

𝑀𝑎𝑥𝑖𝑡𝑒𝑟

) 

𝑡 = (𝑟 − 1) × 𝑘 + 1 

When Maxiter is the Extreme number of repetitions, k is a 

random integer between 0 and 1, and r is the convergence-

ensuring constant, whose value decreases, Every iteration, 

the flame location for the previous and current repetitions is 

gathered and sorted based on the universal and limited 

search fitness values. Only the finest N.FM blazes are kept, 

while other fires are extinguished, resulting in the one flaw 

that was briefly mentioned. The finest and worst fitness 

levels are the first and last flames, respectively. The moths 

then arrived in the same sequence to snare each flame 

individually. Over the course of the number of repetitions, 

the similar- and low-level moths will always catch the final 

flame. The MFO algorithm's operational flow is shown in 

Figure 7 for twenty starting moths across 500 iterations (the 

representation of  MO and FM in Fig. 7 stand for moth and 

flame, respectively). The quantity of flames (N.FM) that 

have been lowered during the repetition may be calculated 

using the formula below. 

𝑁. 𝐹𝑀 = 𝑟𝑜𝑢𝑛𝑑 (𝑁. 𝐹𝑀𝐿𝑎𝑠𝑡𝑖𝑡𝑒𝑟

− 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑖𝑡𝑒𝑟

(𝑁. 𝐹𝑀𝐿𝑎𝑠𝑡𝑖𝑡𝑒𝑟 − 1)

𝑀𝑎𝑥𝑖𝑡𝑒𝑟

) 
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Figure 5. A moth's nighttime flight path 

 

Fig 6. Spiral of a logarithm in relation to time 

 

Fig 7. Moth turning in a spiral around the flame 

 

Fig 7. Place of Moth 

V. SIMULATION RESULTS & DISCUSSIONS 

MATLAB/Simulink software is used to construct 

and evaluate the simulation model of the solar PV-based EV 

charging utilizing the Moth-flame Optimization (MFO) 

Method based ANFIS energy control system. The proposed 

system's simulated circuit diagram is shown in Figure 8. 

 

Fig 8 Simulation Circuit Diagram 

Figure 9 & 10 shows the moth flame convergence plot and 

the training diagram of the ANFIS with moth flame 

optimization is represented. SOC of the battery and power 

reference are considered as input and output for the ANFIS 

controller for training. The moth flame reach the global 

minimum point at 25 iteration with root mean square error 

of the training process. 

 

Figure 9. Moth flame convergence graph 

 

Fig 10. Training of ANFIS with MFO 

Figures 11 and 12 display the Solar PV  scheme  voltage and 

current. PV irradiation ranges from 1000 to 500 w/m2 for 

0.5 seconds. At 1000 irradiance, the PV current and voltage 

are 600A and 510 V, respectively. At 500 irradiances, the 

PV current and voltage are 300 and 508A, respectively. 
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Fig 11. PV Voltage and Current 

Figure 12 shows the EV Battery Current and Voltage. The 

SOC of the battery is depicted in figure 13. The EV Battery 

voltage is maintained at 510 V and current is keep increase 

from 0 seconds and after 0.5 seconds EV battery current is 

maintained at 65 A. The SOC of the EV battery is increases 

from 25 % to 25.004 % from 0 to 1 seconds.  

 

Fig 12. Battery current and voltage 

 

Fig 13 SOC of the Battery 

Figure 14 displays the Grid's voltage and current. Grid 

current is kept at 150 A, while grid voltage is kept at 230 V 

rms. 

 

Fig 14. Grid Voltage and current 

 

Fig 16. Power of grid, PV and battery 

Figure 16 depicts the grid, photovoltaic, and battery power. 

The PV electricity is utilized for charging the EV battery for 

0 to 0.5 seconds, with any surplus power being sent to the 

grid. From 0.5 to 1 seconds, PV power decreases to 150 kW 

and grid power reduces to 100 kw. Here EV battery power 

maintained constant power charging of 38 kw. From these 

test results, MFO optimized ANFIS energy management 

effectively control the battery charging without any delay 

and loss. 

V. CONCLUSION 

The paper suggests a novel method for energy management 

that is based on ANFIS-trained moth flame optimization. 

Here the PV & battery are connected to the grid.  PV is 

employed with Perturb & observe MPPT & Inverter control. 

Here the SOC of the battery is monitored consistently 

according to the change in the SOC of the battery the 

Charging & Discharging of the Energy management is done. 

As the Electric vehicle battery is charged & discharged 

effectively. Better control of energy among the source and 

the grid, as well as for charging EV batteries, is provided by 

the suggested system with ANFIS-MFO training. Each 

mode's recommended operation was successfully 

completed, and the ANFIS moth flame optimization EMS 
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led to a decrease in the price of grid power procurement. If 

the ANFIS-MFO based technique is implemented in the 

stand-alone operation mode, it is envisaged that the EMS 

operation process may further be improved. 
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