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Abstract "Optimize Agriculture Productionusing Internet of Things and ML is a rapidly expanding field in agricultural. 

Crop prediction holds utmost significance in production. The smart information system assists farmers by providing 

information relating to all environmental factors, suggestions and offer of crop sowing recommendation. Generally, Farmers 

choose their crops without taking the environment into account. Poor harvest results from it. These are the concerns that 

farmers and agriculturists are currently facing. These are the current issues of the agriculturists and farmers.Machine 

learningtechniques and IOT offer a promising solution by automating crop recommendations. This study reviews the 

production of crop using machine-learning technique and IOT. The suggested system makes accurate predictions about 

which crops would be most suited for a given site by utilising a number of features, such as soil and weather data.The 

potential for such a novel method to transform crop recommendation might help farmers to increasing crop production.With 

the help historical dataset, we trained and tested the ML algorithms with different parameters, ultimately achieving near-

perfect accuracy. All models exhibit accuracy levels exceeding 94% on a consistent basis, with the best accuracy yet 

measured reaching an astounding 99.7%.This study presents perfectly accurate machine-learning models for crop 

recommendation. The method accurately predicts the most suited crops by utilising a variety of characteristics, including soil 

and weather data. This technology has the potential to be revolutionary in that it can improve agricultural yields, 

sustainability, and overall profitability, which will help farmers of all sizes. For higher production we have to move from 

traditional approach to advanced approach. We are convinced that with the help of latest approach, change crop 

recommendations and help guarantee a long-term. With more thaneight billion people on the planet, our dependence on 

agriculture for food necessitates the establishment of resilient and sustainable agricultural systems. The manuscript's future 

prospects include utilising our models to develop an end-to-end system and surveying farmers to obtain numerical estimates 

of the impacts. 

Key Terms—ML algorithm, Data Analysis, Big Data, Crop Recommendation. 

I. Introduction 

ML [1] [2] is a rapidly advancing area that 

empowers computers to train from data without 

explicit programming, as defined by Arthur Samuel 

in 1959. By training on large datasets, ML 

algorithms [3] are capable of producingwell-

informed judgements. 

ML algorithms [3] are capable of producing well-

informed judgements.A vital industry in the world, 

agriculture is largely dependent on farmers' 

capacity to produce crops that are both profitable 

and sustainable. The improper crop choice can have 

a big impact on agricultural production, which can 

result in lower productivity and even financial 

losses. Ignoring critical elements such as soil 

quality, market demand, and climate compatibility 

can prevent crops from growing to their maximum 

potential and thriving. Unfavourable crop choices 

may result in inadequate climatic adaptation, which 

may impair growth, make plants more susceptible 

to diseases and pests, and reduce output as a whole. 

Furthermore, yield misaligned with market demand 

might struggle to find buyers or fetch favourable 

prices, further burdening farmers economically. To 

overcome these challenges and optimize crop yield 

for long-term agricultural viability, ML-based crop 

recommendation systems save the day by giving 

farmers the information they need to make wise 

choices. 

How farmers understand and improve their 

operations is being revolutionised by the 

intersection of ML and agricultural data. The 

increasing availability of data from different 

sources has made machine learning (ML) 

techniquescapable of analysing massive volumes of 
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data and producing informative results.These 

techniquesenable farmers to make data-driven 

decisions on crop selectionand yield prediction by 

revealing intricate patterns, correlations, and 

predictive models concealed within the data. The 

agriculture sector will ultimately see increased 

productivity and profitability as a result of this 

integration, which improves efficiency, resource 

optimisation, and sustainable practices. 

Crop prediction systems use information from 

multiple sources of data,like market, soil, and 

climate data. These platforms offer optimal 

techniques for growing specific crops and make AI 

procedures to conjecture which harvests will 

flourish in given regions. 

ML-based crop prediction systems could increase 

the sustainability and productivity of agriculture. 

By guiding harvesterin choosing suitable crops, 

these systems can increase crop yields and reduce 

resource consumption. They also make agriculture 

more resilient to climate change[4]. Moreover, ML 

has the potential to tackle a plethora of additional 

agricultural difficulties [5], including but not 

limited to crop yield prediction, pest and disease 

identification, crop production optimisation, water 

efficiency enhancement, and reduced usage of 

fertiliser and pesticides. 

A substantial portion of the planet’s food and fibre 

supply comes from crops. As the global population 

approaches more than ten billion by 2050, the 

World Resource Institute strives to address the 

challenge of sustainably feeding this growing 

population. Thus, it becomes essential to achieve a 

high-quality crop output. agricultural choice has a 

significant impact on agricultural yields and 

profitability. predicting crop performance based on 

location is becoming more difficult due to weather 

change and other environmental factors. 

In this paper, we use ML-algorithm to predict crop 

and provide information to harvester. We begin by 

collecting and preprocessing the dataset. Next, we 

train and test our models using a range of 

characteristics, such as soil and climate conditions. 

To find out if the model works better when using a 

mix of multiple parameters, we also investigate 

parameters engineering principles and add them as 

additional parameters to the dataset. Additionally, 

we comprehensively highlight general challenges 

in agriculture, particularly within the use of ML. 

 

II. Background Survey 

A. Machine Learning: 

 

Fig. 1: Traditional Programming Vs. Machine Learning 

Machine learning is a field of study that enables 

computers to learn from data without being 

explicitly programmed. This process involves 

transforming data into numerical representations 

and identifying patterns within certain figures. The 

patterns found aid in forecasting results for fresh 

data points. Unlike traditional programming, where 

code defines the steps to solve a problem, In ML-

algorithm, a model is trained using dataset, 

allowing it to learn and solve problems 

autonomously is shown in Figure 1. Based on how 

machines learn, there are three different types of 

ML-algorithms: 

1. Supervised Learning: In supervised machine 

learning, models are trained on labelled data. Next, 

the model gains the ability to forecast results for 

fresh, unlabelled data. Examples of supervised 

learning algorithms include decision trees, logistic 

regression, support vector machines, and neural 

networks. 

2. Unsupervised Learning: Unsupervised learning 

involves training a model on a set of unlabelled 

data. Without labels, the model learns to identify 

trends and cluster related data pieces.  
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3. Reinforcement Learning: Reinforcement 

learning is a type of ML algorithm that enables 

software agents and machines to automatically 

evaluate the optimal behaviour in a particular 

context or environment to improve its efficiency, 

i.e., an environment-driven approach. 

Reinforcement learning is based on reward or 

penalty, and its ultimate goal is to use insights 

obtained from environmental activists to take 

action to increase the reward or minimize the risk. 

B. Machine Learning Algorithms Used: 

In this survey, we focus on specific machine 

learning algorithms used in the study: 

1. K-Nearest Neighbours (KNN): A supervised 

learning technique that uses the labels of the k 

neighbours in the training set that are most similar 

to predict labels for new data. 

2. Naive Bayes (NB): A supervised learning 

technique that makes it easy to train and interpret 

by assuming feature independence and applying the 

Bayes theorem. 

3. Random Forest (RF): An ensemble learning 

algorithm consisting of multiple decision trees 

trained on different subsets of the data, and the 

final prediction is made through majority voting. 

4. Logistic Regression (LR): A statistical technique 

that estimates the likelihood that an event will 

occur. It simulates how category dependent 

characteristics and one or more independent 

features relate to one other. 

5. Decision Tree (DT): A hierarchical structure that 

represents a supervised learning algorithm, where 

nodes show decisions and branches show possible 

outcomes based on input data. 

6. Support Vector Machine (SVM): A supervised 

learning algorithm that finds a hyperplane to 

separate data into two classes. 

7. Neural Network: A neural network, which is 

modelled after the structure of the human brain, is 

made up of layers of interconnected neurons, or 

nodes. It learns by adjusting weights and biases 

during training, and the output is calculated using 

activation functions. 

These machine learning algorithms play a pivotal 

role in the development of crop recommendation 

systems and provide valuable insights to farmers 

for making informed decisions in agriculture. 

C. Frameworks  

Multiple frameworks can help with large-scale 

dataset analysis. Even though each has particular 

advantages and disadvantages, they can also 

complement each other in certain scenarios. 

Machine learning models excel at learning patterns 

from large datasets and making predictions or 

decisions autonomously without human 

intervention. They are particularly useful when 

accuracy and predictive capabilities are essential. 

On the other hand, big data processing frameworks 

like MapReduce are designed to efficiently process 

vast amounts of data quickly. Large graph 

processing, analytics, data mining, and data 

warehousing are among the typical uses for them. 

These frameworks are optimized for handling 

large-scale data processing efficiently. 

ML-algorithm and big data frameworks can work 

together synergistically. For instance, ML-Model 

can be trained using ML-algorithm and then 

utilized by big data frameworks for predictions. 

This combination leverages the strengths of both 

approaches, enabling accurate predictions while 

efficiently handling massive datasets. 

When choosing between machine learning and big 

data processing frameworks, the decision often 

depends on the specific needs of the task at hand. If 

accuracy, predictive capabilities, and direct 

predictions from data are crucial, machine learning 

may be the preferred option. On the other hand, if 

the main focus is on processing massive datasets 

quickly and efficiently for data-centric tasks, big 

data processing frameworks can be the more 

suitable choice. 

Ultimately, the ideal tool depends on the project's 

requirements, and in some cases, a combination of 

ML and big data frameworks can provide a 

comprehensive solution to address accuracy, speed, 

scalability, and ease of use. 

D. Existing Research in Crop Recommendation 

Existing research in the field of crop 

recommendation has seen some growth in recent 

years [22]. Several studies and systems have been 

developed to address the challenges of crop 

recommendation and help farmers make 

knowledgeable crop selection decisions. 

1. Priyadharshini A et al. (2021) introduced an 

"Intelligent Crop Recommendation System" [23]. 

2. Zeel Doshi et al. (2018) presented a system 

called "AgroConsultant" [24]. 

3. SM Pande et al. (2021) proposed a user-friendly 

yield prediction system for farmers in their paper 

[25]. 
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4. RK Rajak et al. (2017) proposed a model using a 

majority voting technique with SVM and ANN to 

recommend crops [26]. 

5. Reddy et al. conducted a survey of existing 

techniques for crop recommendation in their paper 

[27]. 

6. Ghadge et al. presented a theoretical approach to 

crop recommendation in their paper [28]. 

7. Kulkarni et al. worked on improving crop 

productivity through a crop recommendation 

system using assembling techniques [29]. 

8. Pudumalar et al. presented a highly cited paper 

on a similar approach using machine learning for 

crop recommendation in Tamil Nadu, India [30]. 

9. Konstantinos G. Liakos et al. conducted a review 

on "Machine Learning in Agriculture" covering 

various applications but did not mention crop 

recommendation [31]. 

10. Ayaz Muhammad et al. focused on the use of 

the Internet of Things and sensors for agricultural 

data collection [32]. 

Despite some research in this area, there remains a 

relatively limited amount of literature on crop 

recommendation compared to other agricultural-

related topics. The difficulties associated with 

bringing machine learning to agricultural, as well 

as the fundamental obstacles facing the agriculture 

sector, may contribute to this scarcity [22]. 

 

III. Our Contribution 

As technology advances and more data becomes 

available, it is likely that research in crop 

recommendation and related fields will continue to 

grow, helping farmers optimize crop selection and 

achieve better productivity in their agricultural 

practices. 

Our paper addresses several limitations found in 

the existing literature on crop recommendation 

models (covered in section II-D). Many previous 

works lack comprehensive overviews of their 

research process, including dataset sources, model 

accuracy, and training and testing details. 

Additionally, implementation details and specified 

features are often missing, and Certain studies 

solely offer surveys or theoretical analysis on 

themes related to crop prediction. 

To overcome these boundaries, our contribution 

involves the development of comprehensive crop 

predictionmodels. Every stage of our procedure, 

from information collection and engineering to 

model training and assessment. Our method 

outperforms all crop predictionmodels in the 

literature currently in circulation in terms of 

accuracy. Feature engineering plays a crucial role 

in enhancing the data's utility for ML, and In order 

to maximise accuracy, I carefully evaluate the data 

using seven distinct machine learning algorithms in 

different configurations. 

The key aspects of our contribution are as follows: 

1. Comprehensive Crop Recommendation System: 

I present a detailed and crop recommendation 

system, addressing the limitations identified in 

previous works. 

2. Training with Various Algorithms: We train our 

models using several machine learning algorithms 

and explore different setups for every model to 

improve accuracy and performance. 

The algorithms we employ are: 

• LR 

• DT 

• RF 

• KNN 

• NB 

• SVM 

• NN 

3. Addressing Challenges in Agriculture: We draw 

attention to difficulties faced within the agricultural 

industry, both generally and specifically when 

usingML techniques to agricultural data. 

4. Future Work: I propose several valuable concepts 

for future research in our field, detailed in section 

VII of the manuscript. 

Overall, our research makes an important addition 

to the crop prediction field. Withthorough 

methodology, superior precision, and focus on 

characteristic engineering represent innovative 

inputs. I think farmers, agricultural researchers, and 

other farming industry stakeholders will find our 

findings useful, helping them make informed 

decisions and optimize crop productivity. 

IV. Overview Of Data, Methodology, And 

Experimentation 

A. Overview of Data: 

For our model, I preprocess a Kaggle dataset that 

already exists [33]. A sample of the data's first few 

rows is shown in Table I. The visual illustration that 

shows the characteristics and their number can be 

observed in Figures 4 and 5, respectively. Figure 3 

illustrates the pair plot, showing connections 

among various attributes shown as a matrix. 
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The dataset is derived from augmenting weather, 

and soil data available. I used a total of twenty-two 

unique labels, as shown in Table II. The labels were 

fetched from a data source of around 50k records 

and then reduced to approximately 2.2k records, 

ensuring that each setting had one good crop. 

S. No. N P K TEMP HUM ph rainfall label 

1 89 43 41 19.88 81.00 6.10 203.936 rice 

2 71 54 16 22.61 63.69 5.75 87.7595 maize 

3 40 72 77 17.02 16.99 7.49 88.5512 chickpea 

4 13 60 25 17.14 20.60 5.69 128.257 kidneybeans 

5 31 72 17 28.69 49.47 5.83 96.3622 pigeonpeas 

6 36 58 25 28.66 59.32 8.40 36.9263 mothbeans 

7 40 45 18 30.44 55.21 5.26 30.9201 mothbeans 

8 19 35 24 27.11 83.64 6.88 49.1196 mungbean 

9 57 67 25 32.35 66.61 7.55 64.5588 blackgram 

10 32 76 15 28.05 63.50 7.60 43.358 lentil 

11 2 24 38 24.56 91.64 5.92 111.968 pomegranate 

12 86 76 54 29.32 80.12 5.93 90.1098 banana 

13 23 23 27 34.72 51.43 5.16 97.3126 mango 

14 28 122 197 19.89 82.73 5.86 69.6626 grapes 

15 80 26 55 24.53 88.99 6.14 49.1162 watermelon 

16 109 26 45 28.28 90.39 6.22 21.5899 muskmelon 

17 30 122 197 21.38 92.72 5.57 106.142 apple 

18 13 5 8 23.85 90.11 7.47 103.923 orange 

19 69 60 54 36.32 93.06 6.99 141.174 papaya 

20 39 5 31 27.10 93.70 5.55 150.95 coconut 

21 104 47 18 23.97 76.98 7.63 90.7562 cotton 

22 70 38 35 24.40 79.27 7.01 164.27 jute 

23 81 30 31 24.65 51.94 7.03 135.139 coffee 

TABLE I: Sample of Dataset 

 

Fig. 2: Pair Plotting of All Data 
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Fig. 3: Feature Graphs 

S. No. Unique LabelName 

i apple 

ii         banana 

iii blackgram 

iv chickpea 
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v coconut 

vi coffee 

vii cotton 

viii grapes 

ix jute 

x kidneybeans 

xi lentil 

xii maize 

xiii mango 

xiv mothbeans 

xv mungbean 

xvi muskmelon 

xvii orange 

xviii papaya 

xix pigeonpeas 

xx pomegranate 

xxi rice 

xxii watermelon 

 

TABLE II: List of all Labels 

B. Methodology: 

Our methodology, as depicted in Figure 6, outlines 

the steps we followed to train various models using 

different machine learning algorithms. We iterated 

through the following steps for each selected 

algorithm listed in Section III. 

1. Input Data: The input to our system consists of 

soil and environmental characteristics data. Data 

quality and quantity play a crucial role in the 

correctness of the model. I made sure the 

information was accurate, properly marked, and 

devoid of anomalies. 

2. Initial Processing: I prepared the data for ML 

techniques by cleaning it up, eliminating outliers, 

and formatting it. This step involved handling 

redundant and empty records, segregating 

characteristics listed in the label section, 

conducting feature engineering, and plotting and 

visualising data to look for anomalies. 

3. Selection of ML Algorithm: With every cycle, I 

selected among the seven chosen algorithms. I then 

proceeded with preprocessing and to fine-tune the 

model, test or validate it. 

4. Model Installations: To improve the efficacy of 

tests and cross-validation, I experimented with 

different arrangements, such as epochs, DT depth, 

activation functions and the quantity of nearest 

neighbours. Iwas mindful of the model's 

performance, as some configurations could impact 

it negatively. 

5. Training Models: In this step, the selected ML 

algorithm learned the sourceinitial-processed data. 

6. Testing: I evaluated the accuracy of the model 

against test data and measured cross-validation 

accuracy. If the accuracy was unsatisfactory, we 

returned to the "Model Configuration" step. In 

some cases, we experimented with feature 

engineering. If the model's accuracy and 

performance were good, we proceeded to the 

"Choose a Machine Learning Algorithm" step to 

repeat the process with a different algorithm. 

By following this methodology and experimenting 

with various configurations and algorithms, we 

aimed to develop robust and accurate crop 

recommendation models. 
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Fig. 4: Methodology 

C. Experimentation 

In our experimentation, we developed a multi-class 

neural network model for crop recommendation. 

Unlike a single-class neural network, which can 

only classify data into one category, a multi-class 

neural network can classify data into multiple 

classes, making it suitable for our crop 

recommendation task. 

The neural network was built using the TensorFlow 

framework, and we designed a four-layered 

architecture as shown in Listing 1. The input layer 

had thirty neurons, followed by twenty neurons in 

the second layer, ten neurons in the third layer 

(hidden layers), and twenty-two neurons in the 

output layer, representing the number of unique 

crop labels we used for classification. 

To optimize the neural network's performance, we 

experimented with different combinations of 

activation functions: "relu," "softmax," and 

"sigmoid." These activation functions help in 

introducing non-linearity into the model, enabling 

it to learn complex patterns in the data. 

Additionally, we fine-tuned the neural network by 

experimenting with multiple epoch values. Epochs 

represent the number of times the entire dataset is 

passed through the neural network during training. 

Increasing epoch values can improve the accuracy, 

but there is a point where it starts overfitting, 

leading to decreased performance on unseen data. 

We used Categorical Cross Entropy as the loss 

function for training the multi-class classification 

model. Categorical Cross Entropy measures the 

distance between the predicted probabilities and the 

actual labels. Lower values of Categorical Cross 

Entropy indicate better model performance. 

Finally, we utilized the Adam optimizer, an 

extension of the AdaGrad and RMSProp 

algorithms, which is effective for a wide range of 

deep learning problems. The Adam optimizer helps 

in efficiently updating the model's weights during 

training, improving convergence and performance. 

Listing 1: Neural Network - Multi-Class Crop 

Recommendation Model 

In this code listing, we create a multi-class neural 

network model using the TensorFlow library for 

crop recommendation. The neural network 

architecture consists of four layers, including an 

input layer, two hidden layers, and an output layer. 

The model takes input with a shape of (7,) 

representing the features of the dataset. 

```python 

import tensorflow as tf 

# Define the neural network model architecture 

model = tf.keras.models.Sequential([ 

tf.keras.layers.Dense(30, activation='relu', 

input_shape=(7,)), 

tf.keras.layers.Dense(20, activation='relu'), 

tf.keras.layers.Dense(10, activation='relu'), 

tf.keras.layers.Dense(labels_count, 

activation='softmax') 

]) 

# Compile the model with appropriate loss 

function, optimizer, and metrics 

model.compile( 

    loss=tf.keras.losses.CategoricalCrossentropy(), 
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    optimizer=tf.keras.optimizers.Adam(), 

    metrics=['accuracy'] 

) 

# Train the model using the training data and 

validate it using the testing data 

model.fit(x_train, y_train, epochs=60, 

validation_data=(x_test, y_test), batch_size=32) 

``` 

Explanation: 

1. We import the necessary TensorFlow library to 

build and train the neural network model. 

2. We define the model using 

`tf.keras.models.Sequential()`, which allows us to 

stack layers sequentially. 

3. The first layer is the input layer with 30 neurons 

and uses the ReLU (Rectified Linear Activation) 

function to introduce non-linearity. 

4. The second and third layers are hidden layers 

with 20 and 10 neurons, respectively, and both use 

the ReLU activation function. 

5. The last layer is the output layer with 

`labels_count` neurons, representing the number of 

unique crop labels used for classification. It uses 

the softmax activation function to compute the 

probabilities of each class. 

6. We compile the model using `model.compile()` 

with the Categorical Crossentropy loss function, 

suitable for multi-class classification tasks. The 

Adam optimizer is used to optimize the model's 

weights, and the accuracy metric is used to evaluate 

its performance during training. 

7. We train the model using `model.fit()` with the 

training data (`x_train` and `y_train`) for 60 

epochs. The validation data (`x_test` and `y_test`) 

is used to validate the model's performance during 

training. The `batch_size` parameter determines the 

number of samples used in each update of the 

model's weights. 

By running this code, the neural network model 

will be trained and optimized to make accurate crop 

recommendations based on the provided input 

features (7 features in this case). The model's 

performance and accuracy will be displayed during 

the training process, and it can be further evaluated 

using test data to assess its generalization 

capability. 

 

The rest of the models, excluding neural networks, 

were built and evaluated using different machine 

learning algorithms. Here are some specific details 

for each of these models: 

1. Decision Tree:- Impurity Measures: For the 

decision tree algorithm, two impurity measures 

were used: Gini impurity and entropy. These 

measures help in determining the quality of a split 

at each node of the decision tree. 

   - Max Depth: Another parameter used for the 

decision tree is the maximum depth of the tree. It 

controls the depth to which the tree can grow and 

helps prevent overfitting. 

2. K-Nearest Neighbors (KNN):- N Neighbors: The 

KNN algorithm was experimented with a 

configuration called "n neighbors." This parameter 

determines the number of nearest data points from 

the training set that should be considered when 

making predictions for a new data point. 

3. Support Vector Machine (SVM):-Kernel 

Configuration: SVMs are based on finding a 

hyperplane that separates data into different classes. 

The kernel configuration determines the type of 

kernel function used in SVMs, such as linear, 

polynomial, radial basis function (RBF), etc. The 

choice of kernel function impacts the performance 

of the SVM. 

For all the models, evaluation and cross-validation 

were performed using the functionality from 

Listing 2. The cross-validation process helps to 

assess the model's performance and generalization 

ability by training and testing it on different subsets 

of the data. 

Overall, these models were experimented with 

various configurations and hyperparameters to 

achieve higher accuracy and better performance. 

The best-performing configurations for each model 

were determined based on the evaluation results 

obtained during training and testing. 

Please note that specific hyperparameter values and 

detailed evaluation results are not provided in the 

given text. These would be included in the full 

research paper or report that contains the complete 

experimentation and results section. 

Listing 2 provides two functions for model 

evaluation and cross-validation: 

1. `evaluate(my_model)`: This function evaluates 

the performance of a trained model on the test data. 

It takes the trained `my_model` as input and uses it 

to make predictions on the test data (`x_test_data`). 
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The predictions are compared with the true labels 

(`y_test_data`) to calculate the accuracy of the 

model. The function returns the accuracy rounded 

to three decimal places. 

2. `perform_cross_val(my_model)`: This function 

performs cross-validation on the model 

`my_model`. Cross-validation is a technique used 

to assess a model's performance by splitting the 

data into multiple subsets (folds) and 

training/testing the model on different 

combinations of these subsets. It helps to obtain a 

more robust estimate of the model's performance. 

The function uses the `cross_val_score` function 

from the scikit-learn library to perform cross-

validation. The `cross_val_score` function takes the 

model (`my_model`), input features (`features`), 

and corresponding labels (`labels`) as input, along 

with the cross-validation method (`cv=kfold`). It 

returns an array of scores obtained from each fold. 

The function calculates the mean of these scores 

and returns the mean cross-validation score 

rounded to three decimal places. 

Both functions are useful for evaluating the 

accuracy and performance of different models 

during experimentation and hyperparameter tuning. 

The results obtained from these functions can be 

used to compare the performance of different 

models and configurations to identify the best-

performing model for the crop recommendation 

task. 

 

V. Results And Evaluation 

The results and evaluation of the experiments are 

summarized in Table V. The data was split into 

70% training data and 30% testing data for all the 

models. When using proper configurations, all the 

models achieved an accuracy of at least 95%. 

Various configurations were experimented with for 

each model, and the ones listed in Table V were 

found to be optimal in terms of performance and 

accuracy. 

One example is the decision tree algorithm, where 

increasing the depth value led to higher accuracy 

but also increased the training and prediction time. 

Using a random forest algorithm with 100 

estimators resulted in an accuracy of 99.5%. 

For the neural network model, the number of 

epochs was observed to play a significant role in 

accuracy and performance. Increasing the number 

of epochs generally improved accuracy but also 

increased training time. For instance, an accuracy 

of 97.73% was achieved with 100 epochs. 

S.No. 
Model 

Name 

Accuracy 

% 

Validation 

Accuracy% 
Configurations Precision/Recall 

i DT 98.091 98.682 
Max Depth=10 

and with Gini 
0.98/0.98 

ii DT 98.091 98.409 
Max Depth=10 

and with Entropy 
0.98/0.98 

iii K-NN 97.936 97.145 n=6 0.97/0.97 

iv LR 94.545 95.955 - 0.94/0.95 

v NB 99.745 99.6 - 0.99/0.99 

vi NN - 96 
Value of 

epoch=100 
0.99/0.99 

vii S-NN - 96.73 
Value of 

epoch=2000 
0.99/0.99 

viii RF 99.245 99.3 n=200 0.99/0.99 

ix SVM 96.827 96.782 kernel=RBF 0.96/0.96 

x SVM 98.342 97.782 kernel=linear 0.98/0.97 

TABLE III: Model Accuracy 
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S.No. Label 
Nitroge

n 

Phosphorou

s 

Potassiu

m 

Temperatur

e 

Humidit

y 
pH 

Rainfal

l 

i apple 21.8 135.22 200.89 23.63 93.33 
6.9

3 
113.65 

ii banana 101.23 83.01 51.05 28.38 81.36 
6.9

8 
105.63 

iii 
blackgra

m 
41.02 68.47 20.24 30.97 66.12 

8.1

3 
68.88 

iv chickpea 41.09 68.79 80.92 19.87 17.86 
8.3

4 
81.06 

v coconut 22.98 17.93 31.59 28.41 95.84 
6.9

8 
176.69 

vi coffee 102.2 29.74 30.94 26.54 59.87 
7.7

9 
159.07 

vii cotton 118.77 47.24 20.56 24.99 80.84 
7.9

1 
81.4 

viii grapes 24.18 133.53 201.11 24.85 82.88 
7.0

3 
70.61 

ix jute 79.4 47.86 40.99 25.96 80.64 
7.7

3 
175.79 

x 
kidneybe

ans 
21.75 68.54 21.05 21.12 22.61 

6.7

5 
106.92 

xi lentil 19.77 69.36 20.41 25.51 65.8 
7.9

3 
46.68 

xii maize 78.76 49.44 20.79 23.39 66.09 
7.2

5 
85.77 

xiii mango 21.07 28.18 30.92 32.21 51.16 
6.7

7 
95.7 

xiv 
mothbea

ns 
22.44 49.01 21.23 29.19 54.16 

7.8

3 
52.2 

xv 
mungbea

n 
21.99 48.28 20.87 29.53 86.5 

7.7

2 
49.4 

xvi 
muskmel

on 
101.32 18.72 51.08 29.66 93.34 

7.3

6 
25.69 

xvii orange 20.58 17.55 11.01 23.77 93.17 
8.0

2 
111.47 

xviii papaya 50.88 60.05 51.04 34.72 93.4 
7.7

4 
143.63 

xix 
pigeonpe

as 
21.73 68.73 21.29 28.74 49.06 

6.7

9 
150.46 

xx 
pomegra

nate 
19.87 19.75 41.21 22.84 91.13 

7.4

3 
108.53 

xxi rice 80.89 48.58 40.87 24.69 83.27 
7.4

3 
237.18 

xxii 
watermel

on 
100.42 18 51.22 26.59 86.16 7.5 51.79 

TABLE IV: Features Average Values for Each Crop

For ML Model, recall and precision are imperative 

measurements for assessing a model's execution. 

Recall measures the extent of real positive 

occasions that are accurately recognized by the 

model, whereas precision measures the extent of 

positive expectations that are correct. Table III 

incorporates recall and precision values for each 

model. 

Based on the experimentation, the ModelUsing the 

Random Forest and Naive Bayesachieved the 

highest accuracy. However, it was noted that neural 

systems might perform indeed superior with bigger 

dataset sizes. 

Also, Table IV presents the normal soil and weather 

characteristics values for each label. This data can 
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be important for agricultural stakeholders and 

farmers in making choices which crops are 

appropriate for their particular region's conditions. 

The work presented in this study is expected to be 

helpful for other developers and researchers, 

providing insights into the effect of distinctive 

arrangements on the precision and execution of 

machine learning models for crop prediction. 

VI. Challenges   In   Agriculture 

Insects and diseases: Insects and diseases [49] pose 

a constant threat to agricultural productivity. 

Invasive species and new strains of diseases can 

quickly spread and devastate crops, leading to 

significant economic losses for farmers. 

Limited access to technology: In many rural areas, 

farmers still lack access to modern agricultural 

technology and tools. This hinders their ability to 

optimize their practices, make data-driven 

decisions, and benefit from advancements in 

agriculture. 

Market volatility: The agricultural market can be 

volatile, with fluctuating prices and demand for 

crops. Farmers may struggle to predict market 

trends, making it challenging to plan their 

production and manage their profits effectively. 

Labour deficiencies: Numerous districts confront 

labour deficiencies in horticulture, as youthful 

individuals progressively relocate to urban ranges 

in look of superior openings. The lack of skilled 

labour can prevent agricultural productivity and 

efficiency. 

High production costs: The cost of inputs such as 

seeds, fertilizers, and machinery can be substantial 

for farmers. High production costs can limit their 

profitability and ability to invest in more efficient 

and sustainable practices. 

Dependency on traditional practices: Some farmers 

may be resistant to adopting new technologies or 

practices due to cultural or economic reasons. The 

reliance on traditional methods can hinder progress 

and improvements in agricultural productivity. 

Lack of data and infrastructure: In many 

developing regions, there is a lack of robust data on 

agricultural conditions and practices. Additionally, 

inadequate infrastructure, such as poor road 

networks and limited access to markets, can 

hamper agricultural development. 

Sustainable and Resilient Agriculture: In the face of 

these challenges, promoting sustainable and 

resilient agriculture becomes crucial. Sustainable 

practices aim to optimize resource use, reduce 

environmental impact, and maintain productivity 

over the long term. Resilient agriculture involves 

building systems that can adapt to changing 

conditions, including climate change and market 

dynamics. 

Data analytics and Machine learning can play a 

crucial part in tending to a few of these challenges. 

By analysing huge amount of machine learning 

models, data can give profitable experiences, help 

predict pest outbreaks, optimize irrigation, and 

enhance crop recommendation systems to 

maximize productivity and sustainability. However, 

overcoming challenges in horticulture requires an 

all-encompassing approach, combining mechanical 

headways, arrangement intercessions, and 

community engagement to construct a more 

flexible and economical rural division. 

Indeed, these are significant challenges that the 

agriculture sector faces, and they can have a 

profound impact on farmers' livelihoods and food 

production. Tending to these challenges requires a 

combination of technological, policy, and social 

interventions. Now explore potential solutions for 

some of these challenges: 

Pests and diseases: Integrated Pest Management 

(IPM) practices can be employed to reduce reliance 

on pesticides. IPM involves using a combination of 

techniques, such as biological control, crop 

rotation, and pest-resistant varieties, to manage 

pests and diseases effectively. 

Labor shortages: Automation and agricultural 

robotics can help alleviate labor shortages by 

performing tasks such as harvesting and planting. 

Additionally, improving working conditions and 

providing better incentives for agricultural labor 

can attract more workers to the sector. 

Economic challenges: Government support through 

subsidies and price stabilization measures can help 

farmers cope with economic challenges. 

Diversification of income sources and access to fair 

markets can also contribute to improving farmers' 

financial situations. 

Data availability and quality: Initiatives to improve 

data collection and sharing in agriculture, such as 

the use of remote sensing and IoT devices, can 

enhance data availability. Efforts to ensure data 

quality through validation and verification 

processes are equally important. 
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Model interpretability: Explainable AI techniques 

can help in understanding how machine learning 

models make decisions. This can increase farmers' 

trust in the models and enable them to make more 

informed decisions based on the model's 

recommendations. 

Awareness and education: Providing farmers with 

access to information, training, and resources can 

empower them to adopt sustainable and efficient 

agricultural practices. Government and non-

government organizations can play a crucial role in 

conducting awareness campaigns and providing 

educational programs. 

Addressing losses and waste in the food system: 

Implementing better post-harvest handling 

practices, investing in cold chain infrastructure, and 

improving supply chain logistics can help reduce 

losses and waste in the food system. 

Crop damage by wild animals: Employing deterrent 

techniques such as fencing, noise makers, and scare 

devices can help mitigate crop damage by wild 

animals. In some cases, implementing conservation 

measures to protect natural habitats can also reduce 

human-wildlife conflicts. 

It is essential to recognize that addressing these 

challenges requires collaboration among 

stakeholders, including governments, researchers, 

farmers, and the private sector. Technological 

innovations, coupled with supportive policies and 

community engagement, can contribute to building 

a more resilient and sustainable agricultural sector 

capable of meeting the growing demands of an 

increasing global population. 

VII. Future    Work/Ideas 

These are excellent ideas for extending and 

enhancing the work on crop recommendation using 

machine learning. Each of these ideas addresses 

specific aspects of the agricultural domain and can 

provide valuable insights and benefits for farmers 

and stakeholders. Let's briefly discuss each idea: 

1. Survey on Economic Impact: Conducting 

surveys with farmers to determine the cost savings 

and economic impact of using the crop 

recommendation models would provide valuable 

feedback on the practical benefits of the approach. 

This data can help in assessing the return on 

investment for adopting such technologies. 

2. Mobile Application Implementation: Developing 

a user-friendly mobile application based on the 

crop recommendation models would bring these 

techniques directly to the end-users (farmers and 

agribusiness owners). A mobile app can offer real-

time access to recommendations and other 

agricultural insights, making it more accessible and 

convenient for farmers. 

3. Data Collection from Different Regions: 

Expanding the data collection to different regions 

and diverse agro-climatic conditions can help 

assess the generalizability and robustness of the 

crop recommendation models. This will enable the 

models to adapt to varying conditions and improve 

their accuracy. 

4. Large Dataset Usage: Utilizing larger and more 

diverse datasets can improve the performance of 

machine learning models. A comprehensive dataset 

would capture a wide range of factors influencing 

crop yields, leading to more accurate and reliable 

recommendations. 

5. Economic and Environmental Impact 

Assessment: Evaluating the economic and 

environmental impact of adopting the crop 

recommendation technique can provide a holistic 

view of its benefits. This analysis can demonstrate 

the cost-effectiveness and sustainability of using 

machine learning in agriculture. 

6. Sensor-based Real-time Data Collection: 

Installing sensors on farms to collect real-time data 

on weather, soil conditions, and crop health can 

enhance the accuracy of the crop recommendation 

system. This approach enables farmers to make 

timely decisions and optimize resource usage. 

By pursuing these extension ideas, researchers and 

developers can further refine and deploy the crop 

recommendation models, making them more 

practical and beneficial for farmers worldwide. 

Ultimately, the integration of machine learning 

technologies in agriculture can lead to improved 

productivity, sustainable practices, and better 

livelihoods for farmers. 

VIII. Conclusion 

In conclusion, this research paper has successfully 

demonstrated the effectiveness of crop 

recommendation models based on advanced 

machine learning algorithms and a deep neural 

network. The models developed in this study have 

the potential to revolutionize decision-making in 

the agricultural industry by providing valuable 

insights and recommendations for crop selection. 

The positive implications of this research are 

multifaceted. Farmers can benefit from the accurate 

crop recommendations, enabling them to optimize 

their resources, improve yields, and make informed 
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choices about their agricultural practices. 

Governments can leverage this technique to design 

policies and support programs that align with the 

needs of the agricultural sector, fostering 

sustainable growth and food security. Businesses in 

the agricultural domain can utilize the models to 

create innovative products and services that cater to 

the specific needs of farmers and contribute to the 

overall development of the industry. Additionally, 

by helping to stabilize agricultural goods prices, the 

technique can contribute to a more stable and 

resilient food supply chain. 

Furthermore, the paper's detailed exploration of the 

challenges in agriculture sheds light on the real-

world obstacles faced by farmers and stakeholders. 

Addressing these challenges through data-driven 

solutions, such as crop recommendation models, 

can significantly improve the agricultural landscape 

and contribute to the sector's growth and 

sustainability. 

The presented future ideas for extension provide a 

roadmap for further research and development in 

this field. By exploring areas such as economic 

impact evaluation, real-time data collection through 

sensors, and data expansion across different 

regions, researchers can continue to refine and 

enhance crop recommendation models. 

Overall, this research has made a substantial 

contribution to the agricultural domain. The 

scalable, accurate, and user-friendly nature of the 

proposed models makes them a valuable asset for 

various stakeholders in the agriculture sector. As 

technology continues to advance, these crop 

recommendation models have the potential to play 

a crucial role in shaping a more efficient, 

productive, and sustainable future for agriculture. 
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