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Abstract: This research introduces a cutting-edge approach to image deblurring while prioritizing data privacy. Leveraging federated 

learning and incorporating advanced techniques such as the wiener filter, encrypted image storage, and cloud-based infrastructure, the 

proposed framework enables collaborative model training across distributed edge devices while preserving the confidentiality of sensitive 

data. The framework utilizes a cloud server and database for efficient data management and storage, ensuring seamless integration and 

scalability. By employing federated learning, individual devices participate in model training without compromising data privacy, while 

encrypted image storage safeguards against unauthorized access. The wiener filter enhances the deblurring process, optimizing image 

quality and accuracy. Through federated learning, the framework achieves collaborative model training across diverse edge devices, 

effectively distributing computational tasks while minimizing data exposure. The integration of encrypted image storage ensures robust 

protection of sensitive data, mitigating privacy concerns associated with centralized data storage. The utilization of the wiener filter 

enhances image deblurring performance, resulting in improved image quality and sharper outputs. The framework offers a holistic 

solution for privacy-preserving image deblurring, combining state-of-the-art techniques with federated learning to achieve superior 

results while maintaining data privacy and security. 
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1.Introduction 

In the era of heightened data security, particularly in 

sensitive domains like image processing [1], the proposed 

framework introduces an innovative solution. Leveraging 

federated learning and advanced methodologies, including 

the Wiener filter, encrypted image storage, and cloud-

based infrastructure [2], we address challenges in 

collaborative model training across edge devices while 

preserving individual data privacy [3] [4]. Federated 

learning minimizes the need for centralized data collection, 

reducing privacy risks [5]. Encrypted image storage 

ensures data protection during transit [6]. The Wiener filter 

enhances image deblurring, excelling in image restoration 

tasks [7].  

This framework sets a new standard for privacy-conscious 

image deblurring, combining federated learning with 

advanced image processing in cloud-assisted device 

environments [8].  

In the realm of privacy-preserving image processing, 

researchers have explored techniques to balance privacy 

risks with image quality and accuracy [9]. Traditional 

methods like differential privacy and secure multiparty 

computation offer robust data protection during processing 

[10]. Recent advances, including homomorphic encryption 

and secure aggregation, enhance privacy by enabling 

computations on encrypted data [11]. Federated learning 

emerges as a promising paradigm for collaborative model 

training across distributed edge devices while preserving 

privacy [12]. Decentralizing the training process in 

federated learning minimizes privacy concerns associated 

with centralized data storage and processing [13].  

Researchers employ various federated learning algorithms 

and optimization techniques to enhance model 

convergence, communication efficiency, and privacy 

guarantees [14]. Integrating cloud-assisted infrastructure in 

privacy-preserving image processing frameworks allows 

scalability, flexibility, and resource optimization [15]. 

Despite the promise of federated learning and cloud-

assisted computing in privacy-preserving image 

processing, challenges such as communication overhead, 

model performance degradation, and security risks persist 

[17]. The scalability and reliability of cloud infrastructure 
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may pose issues in resource-constrained environments 

[17]. In [18], the authors explore computer graphics and 

image processing technology evolution, introducing an 

algorithm with improved efficiency under Gaussian noise 

interference. Research in [19] presents a hand gesture 

recognition system using advanced image processing 

techniques, leading to enhanced accuracy and reduced 

error rates. The objectives of this research are: 

• To develop a framework that ensures the privacy 

of sensitive image data throughout the deblurring process 

by employing federated learning techniques, the 

framework aims to enable collaborative model training 

across distributed edge devices while minimizing the 

transmission of raw data to centralized servers, thereby 

reducing the risk of privacy breaches. 

• To optimize computational resources by 

distributing the deblurring process across a 

network of edge devices as the framework seeks 

to leverage the computational capabilities of these 

devices to perform local model training, 

minimizing the burden on centralized servers and 

improving overall computational efficiency. 

• The framework aims to enhance the quality and 

sharpness of deblurred images by integrating 

advanced image processing techniques such as the 

wiener filter. 

• To develop a scalable and adaptable framework 

that can accommodate varying computational 

demands and data volumes. 

• The framework aims to be versatile and 

applicable to a wide range of image processing 

tasks and application domains by achieving high-

quality deblurring results while preserving data 

privacy. 

2. Methodology 

The proposed system addresses image deblurring 

challenges with a privacy-centric approach, leveraging 

federated learning. This decentralized technique 

collaboratively improves a deblurring model across edge 

devices while preserving image data confidentiality. The 

architecture involves edge devices, a cloud server as a 

model aggregator, encrypted image storage, and the wiener 

deblurring algorithm. Edge devices, including smartphones 

and IoT devices, process blurred images locally, enhancing 

clarity with the wiener algorithm. Deblurred images are 

encrypted before transmission to the cloud server, ensuring 

confidentiality. The cloud server facilitates federated 

learning, aggregating model updates without accessing raw 

image data. This approach allows collaborative model 

training while preserving individual user data privacy. 

Encrypted storage prevents unauthorized access to image 

data, adding an extra layer of security. Figure 1 represents 

the proposed framework. 

The proposed framework for federated learning addresses 

two key challenges: communication overhead and model 

performance degradation. Communication overhead is 

mitigated by adopting localized model training, efficient 

aggregation techniques, and adaptive communication 

protocols. Model performance degradation is addressed by 

employing heterogeneity-aware aggregation, dynamic 

learning rate adjustments, and privacy-preserving model 

updates. By integrating these strategies, the proposed 

framework aims to achieve a harmonious integration of 

federated learning with privacy preservation, ensuring 

efficient and resilient collaboration training in distributed 

environments. 

 

Fig 1 Framework of privacy-preserving image deblurring 

2.1 Federated Learning for Privacy-Preserving Image 

Deblurring 

Federated learning is a decentralized model training 

technique. In image deblurring, edge devices capture and 

process blurred images locally. Only model updates, not 

raw image data, are transmitted to a central server. The 

server aggregates these updates to improve the global 

model, while raw data remains on the edge devices, 

preserving individual privacy. By adopting this framework, 

sensitive image data is processed privately, making it a 

privacy-conscious solution for image deblurring. 

2.2 Wiener Deblurring Algorithm for Image 

Enhancement 

The proposed Wiener filter algorithm is designed to 

address various types of blurring, including motion blur 

and defocus blur. The algorithm is versatile and capable of 

handling different degradation processes that lead to 

blurring in images. It estimates the blur kernel and 

performs spectral analysis to effectively restore sharpness 

and clarity to images affected by motion blur, defocus blur, 

and other types of blur. The adaptive nature of the Wiener 

filter allows it to work with images with unknown blur 

characteristics, making it a comprehensive solution for 

image deblurring tasks. This information could be 
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explicitly mentioned in the paper to enhance clarity about 

the algorithm's applicability to a wide range of blurring 

scenarios. 

2.3 Secure Encrypted Storage for Confidential Image 

Data 

To ensure the confidentiality and privacy of sensitive 

image data, the proposed framework incorporates secure 

encrypted storage solutions. Encrypted storage techniques 

are employed to protect both the raw blurred images and 

the deblurred images generated during the processing 

pipeline. By encrypting image data at rest, the proposed 

framework mitigates the risk of unauthorized access and 

data breaches, safeguarding user privacy and compliance 

with data protection regulations. Furthermore, encrypted 

storage solutions provide an additional layer of security 

during data transmission between edge devices and the 

central server, preventing interception or tampering of 

sensitive image data. By integrating secure encrypted 

storage mechanisms, the proposed framework enhances the 

overall security and privacy posture of the image 

deblurring system. 

2.4 Wiener filter algorithm 

The input for the wiener filter is observed or degraded 

image that needs to be deblurred, blur kernel representing 

the degradation process (it defines how each pixel in the 

original image spreads or blurs into neighbouring pixels), 

the ratio of signal power to the noise power in the observed 

image and the output is estimated original image after 

deblurring using the Wiener filter 

Algorithm: Weiner Filter Algorithm 

1. import numpy as np 

2. from scipy.signal import convolve2d 

3. def wiener_filter(blurred_image, PSF, SNR): 

# Compute the power spectral density (PSD) of the blur 

kernel 

4. PSF_fft = np.fft.fft2(PSF, s=blurred_image.shape) 

5. PSD_PSF = np.abs(PSF_fft) ** 2 

# Compute the power spectral density (PSD) of the 

observed image 

6. blurred_image_fft = np.fft.fft2(blurred_image) 

7. PSD_blurred_image = np.abs(blurred_image_fft) ** 2 

# Estimate the signal-to-noise ratio (SNR) 

8. SNR_estimate = np.mean(PSD_blurred_image) / 

np.mean(PSD_PSF) 

# Compute the Wiener filter 

9. Wiener_filter = np.conj(PSF_fft) / (PSD_PSF + SNR / 

SNR_estimate) 

# Apply the Wiener filter to the observed image 

10. deblurred_image_fft = blurred_image_fft * 

Wiener_filter 

11. deblurred_image = np.fft.ifft2(deblurred_image_fft) 

12. deblurred_image = np.abs(deblurred_image) 

13. return deblurred_image 

14. deblurred_image = wiener_filter(blurred_image, PSF, 

SNR) 

 

2.5    Implementation 

The implementation involves a sophisticated integration of 

various components and technologies to ensure the 

confidentiality, integrity, and privacy of sensitive image 

data while achieving effective image deblurring. At the 

core of the proposed implementation lies the utilization of 

edge devices equipped with secure enclaves, such as Intel 

SGX or ARM TrustZone, which provide hardware-based 

isolation for sensitive computations. These secure enclaves 

ensure that image data and model parameters remain 

encrypted and protected from unauthorized access, thereby 

enhancing data security and privacy. The implementation 

uses edge devices with secure enclaves to ensure sensitive 

image data remains confidential during effective image 

deblurring. Differential privacy techniques add noise to 

model updates, and homomorphic encryption techniques 

ensure privacy-preserving model aggregation.  

Furthermore, Multi-Party Computation (MPC) protocols 

are employed to enable collaborative model training while 

preserving data privacy. MPC protocols are crucial for 

secure and private collaborative model training in 

federated learning. They allow multiple parties to jointly 

compute a function over their private inputs without 

revealing their inputs to each other. This enhances the 

security and privacy of the collaborative process. MPC 

protocols provide a robust mechanism for preserving the 

privacy of individual data contributions, ensuring 

collaborative model training without exposing sensitive 

information. They also provide security against collusion, 

even if a subset of parties colludes, they gain no additional 

information about each other's private inputs beyond what 

is revealed by the joint computation. Incorporating MPC 

protocols into federated learning frameworks ensures that 

collaborative model training remains secure and private 

while improving models through collective intelligence. 

Laplace(x,b)=1/2b*[exp(-|x|/b) (1) 

Differential privacy adds noise to the output of a function 

to ensure privacy. The laplace mechanism adds noise 

sampled from a laplace distribution with scale parameter 

here b=Δf/ε is the scale parameter, Δf is the sensitivity of f 

and ε  is the privacy budget. 

H(f)=S(f)/[S(f)+N(f)]/SNR (2) 

The wiener filter estimates the original signal s(t) from a 

degraded observation d(t) using the power spectral density 

(PSD) of the signal and the noise here H(f) is the wiener 

filter in the frequency domain, S(f) is the PSD of the 
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original signal, N(f) is the PSD of the noise, and SNR is 

the signal-to-noise ratio. 

Federated learning on distributed edge devices presents 

several challenges, including synchronization, privacy, 

device heterogeneity, user adoption and trust, and 

scalability issues. Robust synchronization protocols, 

privacy-preserving mechanisms, adaptive algorithms, user-

friendly interfaces, and scalable cloud services can address 

these challenges. Proactively addressing these challenges 

during the implementation phase enhances the framework's 

robustness, efficiency, and user acceptance in real-world 

scenarios. 

3. Results                           

For experiments, a dataset of blurred images is selected 

with corresponding ground truth sharp images for training 

and evaluation. The dataset was pre-processed by resizing 

images to a consistent resolution, normalizing pixel values, 

and dividing them into shards for distribution to edge 

devices. The dataset used here is the Blur dataset sourced 

from Kaggle. This dataset contains 1050 blurred and sharp 

images (350 triplets); each image triplet is a set of three 

photos of the same scene: sharp, defocused-blurred, and 

motion-blurred images. The dataset was collected and 

made available on Kaggle by Aleksey Alekseev. The 

dataset includes images affected by different types of blur, 

ensuring a comprehensive evaluation of the deblurring 

framework's effectiveness. To ensure consistency, images 

were resized to a uniform resolution and pixel values were 

normalized. Efforts were made to diversify scene types, 

but there might be some overrepresented or 

underrepresented objects. The dataset's composition may 

introduce biases, including those related to individual 

shooting styles. Potential limitations related to 

representativeness, resolution, image quality, dataset size, 

and overfitting had to be recognized.  

A custom framework has been developed for secure and 

privacy-preserving computations in federated learning. It 

uses TensorFlow Federated and PySyft for coordination 

and differential privacy mechanisms. Libraries like 

TensorFlow Privacy and PyDP ensure differential privacy, 

while homomorphic encryption and MPC protocols enable 

secure aggregation and collaboration. Differential privacy 

can be integrated through local or global differential 

privacy, but there's a trade-off between privacy and model 

utility. Figure 2 presents two key images: the blurred 

images, where blurring artifacts have degraded the quality 

of the image, and the deblurred images, which are the 

result of applying the wiener filtration algorithm to reduce 

blurring artifacts and restore the original image's sharpness 

and clarity. The research analyzes the correlation between 

blurred and sharpened image sizes across different devices. 

Device 2 excels in preserving image details during the 

deblurring process, resulting in larger, high-quality 

sharpened images. On the other hand, Device 4 achieves 

consistent results irrespective of the input image sizes. The 

study suggests that larger sharpened images may impact 

computational efficiency. Future analyses could explore 

the impact of blur types, image content, and resolution on 

the framework's performance. 

Table 1 Experimental Data for Image Deblurring on Edge 

Devices 

Device 

ID 

Number 

of images 

Blurred 

images 

(MB) 

Sharpened 

images 

(MB) 

Local 

training 

time 

(minutes) 

1 100 250 245 35 

2 150 375 365 40 

3 120 300 295 38 

4 80 200 195 30 

 

The devices mentioned in Table 1 are edge master-alpha, 

edge blurrer-pro, cloud edge-gamma, and secure compute-

delta with the device IDs 1,2,3,4, respectively. Device 1 is 

efficient in processing a moderate number of images with a 

relatively short training time. Device 2 processed the 

highest number of images among all devices, resulting in a 

longer training time. Device 3 demonstrated efficient 

processing with a moderate number of images and a 

reasonable training time. Device 4 processed the fewest 

images among all devices but achieved a relatively short 

training time. Figure 3 depicts the correlation between the 

number of processed images and local training time for 

four devices. Each dot represents a device, with position 

indicating images processed and training time. A rising 

line signifies increased time with more images, while a 

descending line suggests reduced time. Device 2 shows the 

steepest slope, highest increase in time per image. Device 4 

has the shallowest slope, indicating the lowest increase. On 

average, device 1 exhibits the lowest time per image, followed 

by device 4, device 3, and device 2. 

 

Fig 3 Correlation between the number of images and local 

training time 
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Figure 4 illustrates the correlation between sizes of blurred 

and sharpened images on four devices. A rising line 

suggests an increase in size from blurred to sharpened 

images. The line of best fit indicates a consistent ratio 

between sizes across devices. Device 2 processed the 

largest blurred images, resulting in the largest sharpened 

images among all devices. 

 

Fig 4 Correlation between blurred and sharpened image 

sizes 

Table 2 illustrates the trends in data usage for each device 

over the five rounds. For example, device 3 shows an 

increasing trend in data usage from round 1 to round 5, 

while device 1 and device 4 exhibit fluctuations in their 

data usage over the rounds. The cloud server's data usage 

remains constant at 0.9 MB throughout all rounds. This 

indicates a consistent contribution to the total data usage 

across rounds, which may suggest a stable workload or 

data processing pattern. Despite fluctuations in individual 

device data usage, the total data usage remains relatively 

stable across rounds, ranging from 6.0 MB to 6.4 MB. This 

suggests overall consistency in the data processing 

workload or volume over the five rounds. It is possible 

analyse the percentage contribution of each device to the 

total data usage for each round. This information can help 

identify which devices play a significant role in data 

processing and whether there are any shifts in their 

contributions over time. By comparing the data usage of 

different devices with their computational capabilities or 

processing speeds, it is possible to assess the efficiency of 

each device in terms of data processing. This can inform 

decisions regarding device allocation or optimization 

strategies to improve overall efficiency. 

Table 2 Communication Overhead Analysis 

Round 

Device 

1 

(MB) 

Device 

2 

(MB) 

Device 

3 

(MB) 

Device 4 

(MB) 

Cloud 

server 

(MB) 

Total 

(MB) 

1 1.2 1.5 1.1 1.3 0.9 6.0 

2 1.4 1.6 1.3 1.2 0.9 6.4 

3 1.3 1.7 1.4 1.1 0.9 6.4 

4 1.5 1.4 1.2 1.3 0.8 6.2 

5 1.1 1.3 1.6 1.2 0.7 6.0 

 

 

Fig 5 Percentage contribution of each device to total data 

usage over rounds 

The graph illustrates the percentage contribution of each 

device to the total data usage over different rounds. In 

round 1, device 1 contributed approximately 20% to the 

total data usage, while device 2 contributed around 25%, 

device 3 around 18%, and device 4 around 37%. While 

moving through the rounds, it is possible to observe the 

fluctuations in the percentage contributions of each device. 

For instance, device 4's contribution decreases slightly in 

round 2 but increases again in subsequent rounds. When 

compared to conventional deblurring techniques like 

Weiner filter, blind deconvolution, Richardson-Lucy 

algorithm and inverse filtering, the proposed model offers 

improved PSNR, SSIM and perceptual quality as shown in 

table 3. 

Table 3 Comparison with existing models 

Technique PSNR 

(dB) 

SSIM Perceptual 

Quality 

Wiener Filter 25.6 0.78 7.2 

Blind 

Deconvolution 

27.3 0.81 7.8 

Richardson-Lucy 26.8 0.79 7.5 

Inverse Filtering 24.5 0.75 6.9 

Proposed Model 30.2 0.85 8.2 

 

Federated learning reduces privacy risks, but can lead to 

communication overhead, degraded performance, and 

security risks. Cloud infrastructure must be scalable and 

reliable, while encrypted image storage may introduce 

computational overhead. Synchronization of distributed 

edge devices and user adoption are also challenges. 

Addressing these issues is crucial for the practical 

implementation of the framework and advancing privacy-

preserving image deblurring.  

4. Conclusion and Future Work 

The study proposes an adaptive framework for secure and 

efficient image processing with federated learning 

techniques. The study finds that device 2 exhibits the 
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highest increase in training time per additional image 

processing, while device 1 is the most computationally 

efficient. The study suggests optimization strategies such 

as adaptive model complexity, dynamic learning rates, and 

load-balancing techniques to address the trade-off between 

computational speed and model accuracy. Device 2 yields 

larger sharpened images, indicating its capacity for high-

resolution processing. Future analyses could explore the 

impact of blur types, image content, and resolution on the 

observed patterns. To enhance the robustness and 

generalizability of experiments, future research could 

explore the use of additional datasets that capture a broader 

range of scenarios and challenges in image deblurring. 
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