
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1689–1697 |  1689 

Comparative Analysis of Energy Efficiency in Desktop Web Browsers: 

Towards Sustainable Software Applications 

P.S. Felix*1, Dr. M. Mohankumar2 

Submitted:13/03/2024       Revised: 28/04/2024        Accepted: 05/05/2024 

Abstract: The pursuit of sustainability necessitates a multifaceted approach to mitigate various forms of pollution, particularly carbon 

emissions, prevalent in electricity generation and the usage of electrical and electronic devices. Electricity generation, primarily reliant on 

fossil fuels like coal, natural gas, and oil, contributes significantly to global greenhouse gas emissions, prompting exploration into cleaner, 

renewable energy sources such as solar, wind, hydro, and biomass. Similarly, electrical and electronic devices, crucial in modern lifestyles, 

exhibit varying levels of energy efficiency, denoted by star ratings, with higher ratings indicating lower power consumption. Beyond 

hardware considerations, software applications also play a pivotal role in energy consumption, with ongoing research focusing on 

enhancing their efficiency. This article compares the energy consumption of different desktop web browsers during routine internet usage 

tasks, aiming to identify the most energy-efficient option. To achieve this, the Green IT Hexagon methodology is applied, offering a 

comprehensive framework for evaluating software energy usage. This research article encompasses defining the scope, identifying usage 

scenarios, selecting representative websites, setting up a standardized test environment, measuring power consumption using a Power 

Reading Unit (PRU), and conducting detailed data analysis and comparison. This experiment underscores the importance of considering 

software energy efficiency alongside hardware considerations in the pursuit of sustainability, offering insights into optimizing energy usage 

in the digital realm. 

Keywords: green software engineering, green computing, sustainable software, green it, green environment 

1. Introduction 

Sustainability is a global goal that requires reducing various 

types of pollution that harm the environment and human 

health. One of the main sources of pollution is carbon 

emission, which causes global warming and climate change. 

Carbon emission occurs when fossil fuels are burned to 

generate electricity or power vehicles and machines. 

Therefore, it is important to identify and address the major 

contributors to carbon emission and find ways to reduce 

them. One of the major contributors to carbon emission is 

electricity generation, which accounts for about 25% of 

global greenhouse gas emissions [14].  

Electricity generation depends on the type and amount of 

fuel used, as well as the efficiency and capacity of the power 

plants. Coal, natural gas, and oil are the most common fossil 

fuels used for electricity generation, and they emit high 

levels of carbon dioxide and other pollutants. Renewable 

energy sources, such as solar, wind, hydro, and biomass, are 

cleaner and more sustainable alternatives, but they face 

challenges such as cost, availability, and reliability. 

Another major contributor to carbon emission is the use of 

electrical and electronic devices, such as lights, fans, air 

conditioners, refrigerators, etc. These devices consume 

electricity and emit heat, which adds to the global warming 

effect [18]. To reduce electricity consumption and carbon 

emission, these devices are given star ratings to indicate 

their energy efficiency. The higher the star rating, the lower 

the electricity consumption and carbon emission. The public 

is encouraged to buy and use higher-rated devices for a more 

sustainable world.  

The software plays a more significant role than hardware in 

determining the energy efficiency of electronic devices. 

Software applications are programs that run on devices and 

perform various tasks, such as browsing the internet, 

playing games, editing documents, and sending emails. 

Software applications vary in their energy consumption 

depending on their design, functionality, and performance. 

Some software applications use more energy than others 

because they require more processing power, memory, or 

network bandwidth [13]. 

Ongoing research is focused on enhancing the energy 

efficiency of computers and developing systems and 

algorithms related to energy-efficient technologies. “Green 

IT” [16] encompasses all IT solutions that conserve energy 

at multiple usage levels, including hardware, software, and 

services. The hardware should consist of energy-saving 

desktop PCs and thin-client structures. In this article, we 

compare the energy consumption of different desktop web 

browsers, which are software applications that allow users 

to access the internet. The internet is widely used for various 

purposes, such as education, entertainment, communication, 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

1 Karpagam Academy of Higher Education, Pollachi Main Road, 

Coimbatore, Tamil Nadu, India 

ORCID ID:  0000-0002-0592-0426 
2 Karpagam Academy of Higher Education, Pollachi Main Road, 

Coimbatore, Tamil Nadu, India 

ORCID ID:  0000-0002-7021-2725 

* Corresponding Author Email: psfelix@gmail.com 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1689–1697 |  1690 

and information.  

Desktop web browsers are the main interface between users 

and the internet, and they differ in their features, speed, 

security, and compatibility. We collect data on the power 

consumption of the most popular web desktop browsers, 

such as Google Chrome, Microsoft Edge, and Internet 

Explorer, while performing search engine tasks for daily 

activities. We aim to identify which web browser is the most 

energy-efficient and environmentally friendly. 

2. Literature Review 

Energy-efficient software development is key to 

sustainability. This process extends beyond coding to 

include all phases from planning to maintenance [3]. The 

goal is to create green software by applying green principles 

throughout the process, including software testing. This 

approach allows for efficient collection of energy 

consumption data and optimization of software operations. 

The green concept is crucial in today's efficient software 

development, which involves various phases and activities. 

Software metrics are used to analyze and improve code. 

High-end games and applications requiring 3D and video 

editing necessitate a powerful Graphic Processing Unit 

(GPU) [4]. Monitoring GPU performance and power usage 

can identify energy-intensive areas in scripts, particularly 

for video rendering and game development. 

This study conducts a systematic mapping of sustainability 

and software architecture research to assess the current state 

of the art and identify future research needs [5]. The results 

reveal a disproportionate focus on specific, mostly technical 

aspects of sustainability in existing works. This focus 

neglects the holistic perspective necessary to address 

sustainability, a multi-faceted concern.  

The research aims to address this gap. Software architecture 

quality significantly impacts sustainability. Despite their 

potential, scenario-based evaluation methods are 

underutilized and not integrated with architecture-level 

metrics, limiting their effectiveness [6]. Current literature 

reviews lack critical reflection on the applicability of these 

methods for sustainability evaluation. This study aims to 

bridge this gap by reviewing scenario-based methods for 

sustainability and categorizing over 40 architecture-level 

metrics. 

The treatment of sustainability as a software quality 

property and define a software sustainability assessment [7] 

method that helps make sustainability-driven design 

decisions. The method essentially relies on the definition of 

so-called 'decision maps', i.e. views aimed at framing the 

architecture design concerns around the four sustainability 

dimensions mentioned above-technical, economic, social 

and environmental sustainability. This research delves into 

sustainability in software engineering, with a focus on South 

Asian professionals. It highlights the industry's neglect of 

sustainability, despite its academic importance, leading to 

misunderstandings [8]. The study, involving a survey of 221 

practitioners, found that while sustainability is valued, its 

integration in software development is unclear. The results 

underscore the need for explicit guidelines and heightened 

awareness for sustainable software development. 

Sustainability in software design is a significant research 

challenge. Current research is focused on understanding 

sustainability and integrating it into the software 

development lifecycle, but there are few effective guidelines 

for designers. This paper introduces a Sustainability Design 

Catalogue (SSDC) [9] based on past and current research, 

aimed at helping developers elicit sustainability 

requirements and measure software sustainability. The 

SSDC, developed through analysis of four case studies and 

a proposed pilot framework, exemplifies the application and 

quantification of sustainability. Sustainability is a key topic 

in software and requirements engineering, but its 

identification in agile software development is less 

understood. This research aims to incorporate sustainability 

knowledge into agile frameworks like Scrum. Two case 

studies applied the Sustainability Awareness Framework 

[10], identifying over 20 potential sustainability effects for 

each system. The findings suggest that analyzing product 

backlogs for sustainability can aid early identification of 

effects, demonstrating the framework's practical utility. 

Sustainability is gaining importance in software 

engineering, particularly in requirements engineering. 

Despite several approaches to manage sustainability 

impacts, there's a knowledge gap in identifying these effects 

in agile software development. This research aims to 

incorporate sustainability into Scrum, leading to the 

development of a Sustainability-Aware Scrum Framework 

[11]. The work offers recommendations for extending 

Scrum towards sustainability and presents a prototype tool 

for tracking sustainability impacts. Sustainable software 

engineering (SSE) [12] research aims to meet current needs 

without compromising future capacity, but its pillars need 

refinement. A scoping review and meta-synthesis of SSE 

research were conducted to improve existing models. The 

study found a focus on ecological sustainability and product 

sustainability, with sustainability being stratified and 

multisystemic. The findings call for more empirical 

evaluations and a multisystemic, stratified 

conceptualization of sustainability. 

3. Methodology 

The Green IT Hexagon methodology serves as a 

comprehensive approach for the assessment of green 

software. This methodology is designed with the primary 

objective of enhancing Software Energy Usage, thereby 

promoting more sustainable practices in the field of 

Information Technology. The methodology operates on the 

principle that the metrics for energy-efficient software are 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1689–1697 |  1691 

contingent on the useful work performed by the software. 

Given the complexity of modern software, which comprises 

numerous modules each serving a unique purpose, the 

methodology acknowledges that there may be more than 

one applicable metric. 

 

Fig. 1. Green IT Hexagon Methodology diagram 

In the Green IT Hexagon methodology, these software parts 

can be evaluated either individually or in combination. This 

flexibility allows for a more nuanced understanding of the 

software's energy usage patterns and efficiency. However, 

for an accurate comparison of different software, it is 

recommended that the measured modules be as similar as 

possible. Figure 1 shows the Green IT Hexagon 

Methodology diagram. 

Fundamentally, the methodology introduces a universal 

metric for evaluating software energy efficiency. This 

clearly defined metric acts as a benchmark, enabling 

consistent assessment of energy usage and efficiency across 

diverse software systems. Such an approach fosters a 

standardized and impartial appraisal of software energy 

consumption, ultimately advancing the overarching 

objective of promoting energy efficiency and sustainability 

in software development. Commonly used approach to 

measure energy efficiency as below 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑈𝑠𝑒𝑓𝑢𝑙 𝑊𝑜𝑟𝑘 𝐷𝑜𝑛𝑒

𝑈𝑠𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦
 (1) 

4. Existing Work 

Energy monitoring policies for observing a program's 

energy usage can be categorized into two types: external and 

internal evaluators. External energy monitors employ tools 

like voltmeters and ammeters to evaluate the system as a 

whole. However, their ability to monitor individual 

programs is limited as they lack the granularity to identify 

energy usage at the component level. On the other hand, 

internal evaluators are integrated within the system like 

Power Reading Unit (PRU) for power monitoring. They 

measure energy registers, process wakeups, and CPU state 

transitions to provide a more detailed view of a program's 

energy consumption. 

4.1. Energy Optimization in Software Development 

In our previous article [17], we conducted an experiment to 

compare the energy efficiency of two sorting algorithms: 

Bubble Sort and Quicksort. Sorting algorithms are methods 

of arranging data in a specific order, such as ascending or 

descending. Sorting algorithms are widely used in computer 

science and engineering, as they can improve the 

performance and functionality of various applications and 

systems. However, sorting algorithms also consume energy, 

which can have environmental and economic impacts. 

Therefore, it is important to identify which sorting algorithm 

is the most energy-efficient for different types of data. We 

chose Bubble Sort and Quicksort as the two sorting 

algorithms to test, as they are among the most common and 

well-known sorting algorithms. Bubble Sort is a simple 

algorithm that works by repeatedly comparing and 

swapping adjacent elements in an array until the array is 

sorted. Quicksort is a more complex algorithm that works 

by dividing an array into two subarrays based on a pivot 

element, and then recursively sorting the subarrays. Both 

algorithms have different advantages and disadvantages, 

depending on the size and distribution of the data. 

We measured the energy consumption of both algorithms by 

using a Power Reading Unit (PRU) [15], which is a device 

that can accurately measure the power consumption of the 

computer that run the algorithms. We used the same array 

of 100 thousand numerical data as the input for both 

algorithms, and we recorded the start time, end time, and 

time taken by each algorithm to sort the array. 

The results of this experiment that compared the power 

consumption of two sorting algorithms: Quick Sort and 

Bubble Sort. The results showed that Quick Sort was faster 

and more energy-efficient than Bubble Sort, as it took only 

0.088 seconds and consumed 0 Wh, while Bubble Sort took 

1 minute and 17.522 seconds and consumed 1.18 Wh. The 

difference is because Quicksort has a lower time complexity 

than Bubble Sort, which means it performs fewer operations 

and comparisons to sort the array. Time complexity is a 

measure of how the running time of an algorithm changes 

with the size of the input. Quicksort has an average time 

complexity of O(n log n), which means it grows 

interatomically with the input size. Bubble Sort has a worst-

case time complexity of O(n2), which means it grows 

quadratically with the input size. Based on our experiment, 

we concluded that Quicksort is a more energy-efficient 

sorting algorithm than Bubble Sort when the input data is 

large and random. However, this may not be the case for 

other types of data, such as data that is already sorted or 

nearly sorted. 

4.2. Energy Model 

One way to measure the energy consumption of a program 

is to use the equation proposed by [3]: 

𝐸application = 𝐸active + 𝐸wait + 𝐸idle (2) 

This equation shows that the total energy consumed by a 

program in an application model consists of three 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1689–1697 |  1692 

components: Eactive, Ewait, and Eidle. Eactive is the energy 

consumed by the program when it is executing its tasks on 

the system. For example, if the program is sorting an array 

of data, Eactive is the energy used to perform the sorting 

algorithm. Ewait is the energy consumed by the program 

when it is waiting for other components to finish their tasks 

or to provide input or output. For example, if the program is 

reading data from a file, Ewait is the energy used to wait for 

the file to be opened and read. Eidle is the energy consumed 

by the system when it is not doing any work for the program. 

For example, if the program is finished and the system is 

still on, Eidle is the energy used to keep the system running. 

By using this equation, we can analyse the energy efficiency 

of different programs and identify the factors that affect 

their energy consumption. 

5. Approach 

To conduct this experiment on the power consumption of 

desktop web browsers, we followed the systematic approach 

detailed below. Figure 2 shows the “Experimental Approach 

Steps” 

 

Fig. 2. Experimental Approach Steps 

(A) Define the Scope: The first step of this experiment is 

to define the scope of the study by selecting the web 

browsers that will be measured for their power 

consumption. The selection criteria should consider 

the most widely used browsers in the market, their 

popularity, and features. Additionally, it's advisable 

to include a browser that may not be commonly used 

but is still available in the default Windows operating 

system. This inclusion allows for an exploration of 

earlier browser versions and their design for energy 

efficiency. 

(B) Identify Usage Scenarios: The next step is to identify 

the usage scenarios that will be used to test the power 

consumption of the web browsers. The usage 

scenarios should reflect the typical and realistic web 

browsing activities that users perform on a daily 

basis. 

(C) Select Websites: The third step is to select the 

websites that will be used for the image searching 

scenario. The websites should be representative of 

the most visited and the most engaging websites on 

the internet. They should also be compatible and 

consistent with all the web browsers that are tested. 

(D) Set Up Test Environment: The fourth stage involves 

establishing the test environment while maintaining 

uniform testing conditions across all web browsers. 

This encompasses both hardware and software 

components of the test system. The hardware 

includes computer components utilized for running 

the web browsers, along with the Power Reading 

Unit (PRU) employed for power consumption 

measurement. Meanwhile, the software component 

comprises the operating system and specific versions 

of web browsers used for testing purposes. It's crucial 

to ensure consistency and control in both hardware 

and software setups, as any variations could 

potentially impact the experiment's outcomes. 

(E) Measure Power Consumption: The fifth step is to 

measure the power consumption of the web browsers 

during the execution of the image searching scenario 

as per the energy efficiency methodology. This is 

done by using the PRU measurement module, which 

is a hardware tool that can accurately measure the 

energy consumption of the chips at hardware 

runtime. The PRU measurement module provides 

insights into the energy usage patterns of the web 

browsers and the algorithms that they use. By 

measuring the power consumption in real-time, the 

experiment captures precise and reliable data on the 

energy efficiency of the web browsers. 

(F) Analyse and Compare: The final step is to analyse the 

data and compare the power consumption of the web 

browsers. This is done by using statistical methods 

and graphical tools to evaluate the results and draw 

conclusions. The analysis considers the different 

aspects and factors that could affect the power 

consumption of the web browsers, such as the user 

actions, the web content, the browser features, and 

the algorithm performance. The comparison should 

highlight the strengths and weaknesses of each web 

browser and identify the most energy-efficient web 

browser under the image searching scenario. 

6. Experimental Procedure 

This experimental procedure aimed to investigate and 

compare the power consumption of popular web browsers 

during specific tasks, shedding light on the potential impact 

of browser usage on overall system power consumption. In 

this experimental procedure the set of steps and instructions 

are followed as per the approach defined above to conduct a 

scientific experiment. Details are as below: 

(1) Study Range: This investigation selected the 

following internet browsers: Google Chrome, 

Microsoft Edge, and Safari. According to the 2024 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1689–1697 |  1693 

report from Similarweb LTD [2], these are among the 

most popular web browsers globally, and their unique 

features and functionalities could influence their 

energy efficiency. 

(2) Scenario of Use: The primary usage scenario for this 

study was determined to be image searching on a 

search engine. This involves commonly performed 

activities such as searching for images, scrolling 

through results for a minute to load more images 

related to the keyword “Flower”, and other related 

web browsing activities that require user interaction, 

network communication, and graphic rendering. The 

aim is to replicate user behaviour and web content as 

accurately as possible in each browser. 

(3) Testing Environment: The specifications of the 

computer, including the processor, RAM, and 

operating system details, were recorded to provide 

context for the experiment. The computer 

configuration is as follows:  

The system operates on a 64-bit Windows 10 Pro 

operating system (Version 22H2, OS Build 

19045.3930) and is powered by an Intel Core i3-3220 

CPU with a clock speed of 3.30 GHz and 8 GB of 

RAM. The CPU is a dual-core processor that 

supports hyper-threading and has a 3 MB cache. The 

RAM is of the DDR3 type and operates at a 

frequency of 1600 MHz. The operating system is the 

most recent version of Windows 10, offering 

enhanced security, performance, and features. 

(4) Test Website: The website www.google.com was 

chosen for testing as it is ranked number 1 on 

Similarweb LTD’s website as of February 2024 [1]. 

After launching all three browsers, the 

www.google.com website should be opened. On this 

website, images of flowers should be searched for 

and the browser should be scrolled for a minute. 

(5) Energy Consumption: Data A Power Reading Unit 

(PRU) [15] integrated into the experimental 

computer was used to measure energy consumption 

during the execution process. Before execution, the 

computer’s idle time energy consumption was 

recorded to establish a baseline according to the 

defined energy model. 

(6) Data Analysis and Comparison: During this phase, 

we analysed the power consumption data collected 

during the experiment, which was captured using the 

PRU-integrated computer. The data was converted 

into a visual representation and tabular column data. 

The results were derived from the various data 

collected. 

7. Results 

The outcomes of the experiment are transformed into a 

comprehensive visual format. This includes the creation of 

detailed charts and tables that provide a clear and in-depth 

understanding of the data. These visual representations 

allow for easier interpretation and comparison of the 

collected data, thereby offering a more thorough analysis of 

the experiment's results. The charts highlight key trends and 

patterns, while the tables present precise numerical values 

for a more exact understanding.  This detailed presentation 

of results aids in a more comprehensive evaluation of the 

experiment. 

7.1. Amperes Comparison 

Figure 3 - The graph of Current Amperes Consumption 

demonstrates the power usage, quantified in Amperes 

(Amperes), by utilizing the formula for Amperes as shown 

below: 

𝐴𝑚𝑝𝑠 =
𝑉𝑜𝑙𝑡𝑠

𝑊𝑎𝑡𝑡𝑠
  (3) 

The values are derived for three distinct web browsers: 

Microsoft Edge, Google Chrome, and Internet Explorer. It 

is observed that the Amperes increase when a browser is 

opened, compared to the idle state. 

Fig. 3. Current Amperes consumption graph 

For Microsoft Edge, the power consumption starts at a 

minimal level and gradually increases as images are 

searched and scrolled through. Once scrolling stops, the 

Amperes usage decreases. 

Google Chrome also begins with minimal power 

consumption, but it experiences a quick surge in the initial 

seconds before dropping as the website loads. As image 

searching and scrolling commence, the Amperes usage 

increases again, fluctuating until scrolling ceases. After 

scrolling stops, the Amperes usage drops slightly but 

remains higher than that of Microsoft Edge when the 

browser is idle. 

Internet Explorer requires a high Amperes level even to 

start the browser, similar to the pattern observed in Google 

Chrome. However, as the website loads and image 

searching begins, there is an immediate spike in power 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1689–1697 |  1694 

consumption, which remains constant until scrolling stops. 

Notably, the Amperes usage at idle for Internet Explorer is 

higher than the other two browsers. 

Table 1 - Current Amperes consumption table below 

provides a reference for the power consumption data for the 

first 20 seconds of the experiment. 

Table 1. Current Amperes consumption table 

Seconds Idle Chrome Edge IE 

1 0.311 0.323 0.319 0.441 

2 0.312 0.370 0.318 0.434 

3 0.311 0.343 0.314 0.452 

4 0.313 0.419 0.314 0.452 

5 0.312 0.419 0.314 0.446 

6 0.311 0.451 0.311 0.407 

7 0.319 0.427 0.325 0.340 

8 0.315 0.349 0.325 0.335 

9 0.315 0.349 0.357 0.335 

10 0.315 0.338 0.335 0.367 

11 0.315 0.381 0.348 0.432 

12 0.317 0.337 0.355 0.423 

13 0.317 0.318 0.355 0.436 

14 0.315 0.318 0.347 0.436 

15 0.318 0.366 0.386 0.451 

16 0.315 0.345 0.366 0.479 

17 0.315 0.437 0.411 0.435 

18 0.317 0.437 0.411 0.435 

19 0.324 0.403 0.421 0.356 

20 0.318 0.457 0.447 0.451 

7.2. Watts Comparison 

Similar to the Amperes data Figure 4 Watts consumption 

graph depicts the power usage in watts during the use of 

three different browsers (Microsoft Edge, Google Chrome, 

and Internet Explorer) to search for images related to the 

keyword “Flower”, as per the defined experimental 

procedure. 

 

Fig. 4. Watts consumption graph 

The power consumption in Watts (W) of the experimental 

computer device can be calculated using the formula: 

𝑃 = 𝑉𝐼  (4) 

Where: 

• P presents the power consumption in Watts (W) 

• V is the voltage in Volts (V) 

• I is the current in Amperes (A) 

The PRU device utilizes this formula, enabling us to 

determine the power usage in Watts during the experiment 

for each browser. The results are presented in Table 2 below. 

In this data, both Microsoft Edge and Google Chrome start 

their power consumption near the idle time watts. Google 

Chrome gradually increases its power usage, which after 

reaching a peak, drops down and maintains a level slightly 

higher than the idle time data. On the other hand, Microsoft 

Edge gradually increases its power consumption, fluctuates 

for a while, and then maintains a similar level until the 

scrolling is stopped. After stopping the scrolling, the power 

consumption drops down to a level near Google Chrome’s 

power usage. 

Internet Explorer starts with a high-power consumption, 

drops immediately, and then increases again once the search 

starts. It maintains a stable power consumption even after 

the scrolling is stopped, which is higher than the other two 

browsers. 

Table 2 - Watts consumption table below provides a 

reference for the power consumption in watts for the first 20 

seconds of the experiment. 

Table 2. Watts consumption table 

Seconds Idle Chrome Edge IE 

1 46.5 47.9 46.9 67.7 

2 46.7 52.9 49.3 66.2 

3 46.9 52.9 54.8 69.2 

4 46.8 62.2 56.8 69.2 

5 46.8 55.3 58.4 68.3 

6 46.8 56.3 58.4 62.3 

7 46.9 58.6 62.7 51.1 

8 47.9 58.6 68.5 50.5 

9 48.1 62.0 68.6 50.5 

10 49.1 59.4 68.5 54.9 

11 49.1 66.3 68.5 66.0 

12 49.2 61.8 70.4 64.8 

13 46.8 61.8 59.4 65.9 

14 48.1 61.1 50.9 65.9 

15 48.1 62.8 50.9 68.9 

16 46.1 60.3 61.7 73.5 

17 46.7 60.3 69.6 67.0 

18 46.8 68.8 58.6 67 

19 46.7 63.8 60 53.3 

20 46.7 62.3 60 68.7 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1689–1697 |  1695 

7.3. Watt Hour Comparison 

To determine the energy usage (measured in watt-hours or 

Wh) of an application was calculated using the following 

equation: 

𝐸 = 𝑃 × 𝑡  (5) 

In this above equation: 

• E stands for the energy usage, which is measured 

in watt-hours (Wh), 

• P is the power, which is measured in watts (W), 

• t is the time, which is measured in hours. 

The final key data point, Watt Hour, is compared in Figure 

5 Watt hour comparison graph above. It clearly illustrates 

that upon the initiation of the application, there is an 

increase in power consumption compared to the idle time, 

which was logged at 81.173 WH. Over the course of a one-

minute experiment, the data from the three browsers 

indicates that Google Chrome consumes the least power, 

followed by Microsoft Edge, with Internet Explorer 

consuming the most. 

 

Fig. 5. Watt hour comparison graph 

Table 3 - Watt Hour consumption table provided below 

offers a detailed reference for the consumption of Watt 

Hours for the first 20 seconds of the experiment. 

Table 3. Watt Hour consumption table 

Browsers Current 

Consumed 

(Wh) 

Watts x Hrs 

Idle 81.173 

Google Chrome 81.587 

Microsoft Edge 81.590 

Internet Explorer 81.629 

 

The results of the experiment reveal distinct patterns in 

power consumption among the three web browsers: 

Microsoft Edge, Google Chrome, and Internet Explorer. 

When examining the Amperes usage, it's evident that all 

browsers exhibit an increase in power consumption when 

active compared to their idle states. Microsoft Edge shows 

a gradual rise in Amperes as images are searched and 

scrolled through, while Google Chrome experiences a quick 

surge followed by fluctuation until scrolling ceases. In 

contrast, Internet Explorer requires high Amperes even at 

startup, with immediate spikes upon searching and scrolling. 

Similarly, when analysing Watts consumption, Microsoft 

Edge and Google Chrome start near idle power but maintain 

different consumption patterns throughout usage. Internet 

Explorer, however, starts with high consumption, drops 

briefly, then stabilizes at a level higher than the other 

browsers. The comparison of Watt Hour usage further 

confirms Google Chrome as the most energy-efficient, 

followed by Microsoft Edge, and with Internet Explorer 

consuming the most power over a one-minute experiment. 

8. Conclusion and Future Work 

This study aimed to evaluate the energy efficiency of three 

prominent desktop web browsers—Microsoft Edge, Google 

Chrome, and the now-discontinued Internet Explorer—

specifically for image searching tasks. Utilizing a 

methodology focused on Power Usage Analysis, we 

measured power consumption in terms of Amperes, Watts, 

and Watt-Hours using the Power Reading Unit (PRU). The 

findings revealed that both Microsoft Edge and Google 

Chrome exhibited relatively lower power consumption, with 

Google Chrome emerging as the most energy-efficient 

among the trio. In contrast, Internet Explorer consistently 

demonstrated higher power usage throughout the 

experiment. These results underscore the significance of 

considering software energy efficiency in web browsers to 

align with broader sustainability objectives, offering 

valuable insights for both users and developers seeking 

environmentally conscious digital solutions. 

By integrating energy-efficient practices into software 

development processes, we can effectively reduce carbon 

emissions and promote greener, more sustainable software 

solutions. This approach not only benefits end-users but also 

contributes to a broader movement toward eco-friendly 

technology. The experiment highlights the importance of 

Power Usage Analysis in software design, with newer 

iterations of desktop browsers like Microsoft Edge and 

Google Chrome incorporating this critical aspect to enhance 

energy efficiency. This shift reflects a growing awareness 

and commitment to sustainable software development 

practices, shaping a more environmentally conscious digital 

landscape. 

As part of future work, we intend to perform more intensive 

search on open-source browsers with more GUI related 

images, animated images, and GPU based image. And also, 

we planned to expand our research to include an 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1689–1697 |  1696 

investigation into the energy efficiency profiles of software 

developed using commonly utilized technologies. This 

expansion aims to delve deeper into understanding how 

different software development approaches and 

technologies impact power consumption. Each experiment 

will highlight the significance of utilizing the Power 

Reading Unit (PRU) in accurately measuring power 

consumption data during the development of applications. 

By conducting these experiments, we aim to provide 

insights into how software developers can optimize their 

applications for energy efficiency, thereby contributing to 

sustainability goals. This future work will not only benefit 

developers by providing them with valuable information on 

energy-efficient software development practices but also 

contribute to the broader discourse on green IT and 

sustainable software engineering. 

Author contributions 

P.S. Felix was instrumental in the conceptualization and 

methodology of the project. They performed the 

experiments, conducted the literature review, and designed 

the experimental procedures. He also took the lead in 

drafting the original manuscript, creating visualizations, 

conducting investigations, and extracting and collecting 

data. M. Mohankumar played a crucial role in validating 

the research, contributing to visualization and data analysis, 

and participating in investigations. Additionally, he was 

responsible for reviewing and editing the manuscript. 

Conflicts of interest 

The authors have stated that there are no conflicts of interest 

related to this research. They affirm that their work was 

conducted independently and without any potential biases 

or financial influences that could have impacted the study’s 

results. 

References 

[1] Similarweb LTD’s Top Websites - [Online]. 

Available: https://www.similarweb.com/top-websites/ 

[2] Similarweb LTD’s Top Browsers - [Online]. 

Available: https://www.similarweb.com/browsers/ 

[3] Stefan Naumann, Markus Dick, Eva Kern, Timo 

Johann, The GREENSOFT Model: A reference model 

for green and sustainable software and its engineering, 

Sustainable Computing: Informatics and Systems, 

Volume 1, Issue 4, 2011, Pages 294-304, ISSN 2210-

5379, https://doi.org/10.1016/j.suscom.2011.06.004 

[4] Achim Guldner, Rabea Bender, Coral Calero, 

Giovanni S. Fernando, Markus Funke, Jens Gröger, 

Lorenz M. Hilty, Julian Hörnschemeyer, Geerd-

Dietger Hoffmann, Dennis Junger, Tom Kennes, 

Sandro Kreten, Patricia Lago, Franziska Mai, Ivano 

Malavolta, Julien Murach, Kira Obergöker, Benno 

Schmidt, Arne Tarara, Joseph P. De Veaugh-Geiss, 

Sebastian Weber, Max Westing, Volker Wohlgemuth, 

Development and evaluation of a reference 

measurement model for assessing the resource and 

energy efficiency of software products and 

components—Green Software Measurement Model 

(GSMM), Future Generation Computer Systems, 

Volume 155, 2024, Pages 402-418, ISSN 0167-739X, 

https://doi.org/10.1016/j.future.2024.01.033 

[5] Vasilios Andrikopoulos, Rares-Dorian Boza, Carlos 

Perales, Patricia Lago, “Sustainability in Software 

Architecture: A Systematic Mapping Study”, 

10.48550/arXiv.2204.11657 

[6] Heiko Koziolek, “Sustainability Evaluation of 

Software Architectures: A Systematic Review”, 

QoSA-ISARCS '11: Proceedings of the joint ACM 

SIGSOFT conference - QoSA and ACM SIGSOFT 

symposium - ISARCS on Quality of software 

architectures - QoSA and architecting critical systems 

- ISARCS, June 2011, Pages 3–12 

10.1145/2000259.2000263 

[7] Lago, P. (2019). Architecture design decision maps for 

software sustainability. In 2019 IEEE/ACM 41st 

International Conference on Software Engineering: 

Software Engineering in Society, ICSE-SEIS 2019 - 

Proceedings (pp. 61-64). Article 8797634 Institute of 

Electrical and Electronics Engineers Inc.. 

10.1109/ICSE-SEIS.2019.00015 

[8] Noman, H.; Mahoto, N.A.; Bhatti, S.; Abosaq, H.A.; 

Al Reshan, M.S.; Shaikh, A. An Exploratory Study of 

Software Sustainability at Early Stages of Software 

Development. Sustainability 2022, 14, 8596. 

10.3390/su14148596 

[9] Oyedeji, S.; Seffah, A.; Penzenstadler, B. A Catalogue 

Supporting Software Sustainability Design. 

Sustainability 2018, 10, 2296. 10.3390/su10072296 

[10] P. Bambazek, I. Groher and N. Seyff, "Application of 

the Sustainability Awareness Framework in Agile 

Software Development," 2023 IEEE 31st International 

Requirements Engineering Conference (RE), 

Hannover, Germany, 2023, pp. 264-274, 

10.1109/RE57278.2023.00034. 

[11] P. Bambazek, I. Groher and N. Seyff, "Requirements 

Engineering Knowledge as a Foundation for a 

Sustainability-Aware Scrum Framework," 2023 IEEE 

31st International Requirements Engineering 

Conference (RE), Hannover, Germany, 2023, pp. 311-

316,10.1109/RE57278.2023.00041. 

[12] S. McGuire, E. Schultz, B. Ayoola and P. Ralph, 

"Sustainability is Stratified: Toward a Better Theory of 

Sustainable Software Engineering," 2023 IEEE/ACM 

45th International Conference on Software 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1689–1697 |  1697 

Engineering (ICSE), Melbourne, Australia, 2023, pp. 

1996-2008, 10.1109/ICSE48619.2023.00169. 

[13] Kern, E. (2018). Green Computing, Green Software, 

and Its Characteristics: Awareness, Rating, 

Challenges. In: Otjacques, B., Hitzelberger, P., 

Naumann, S., Wohlgemuth, V. (eds) From Science to 

Society. Progress in IS. Springer, Cham. 

https://doi.org/10.1007/978-3-319-65687-8_23 

[14] T. Debbarma and K. Chandrasekaran, "Green 

measurement metrics towards a sustainable software: 

A systematic literature review", 2016 International 

Conference on Recent Advances and Innovations in 

Engineering (ICRAIE) 

10.1109/ICRAIE.2016.7939521 

[15] Calero C., Piattini M., Green in Software Engineering, 

(2015), pp. 1-327, 10.1007/978-3-319-08581-4 

[16] Shalabh Agarwal, Asoke Nath, and Dipayan 

Chowdhury, “Sustainable Approaches and Good 

Practices in Green Software Engineering”, 

International Journal of Research and Reviews in 

Computer Science (IJRRCS) 2012, ISSN: 2079-2557 

[17] Irene Manotas, Christian Bird, Rui Zhang, David 

Shepherd, Ciera Jaspan, Caitlin Sadowski, Lori 

Pollock, and James Clause. 2016. An empirical study 

of practitioners' perspectives on green software 

engineering. In Proceedings of the 38th International 

Conference on Software Engineering (ICSE '16). 

Association for Computing Machinery, New York, 

NY, USA, 237–248. 

https://doi.org/10.1145/2884781.2884810 

[18] Shaiful Alam Chowdhury and Abram Hindle. 2016. 

GreenOracle: estimating software energy consumption 

with energy measurement corpora. In Proceedings of 

the 13th International Conference on Mining Software 

Repositories (MSR '16). Association for Computing 

Machinery, New York, NY, USA, 49–60. 

https://doi.org/10.1145/2901739.2901763 


