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Abstract: Tin oxide-based gas sensors have been widely used to detect single-target and multi-component gas mixtures in ambient
atmospheres, utilizing sophisticated classification techniques such as Artificial Neural Networks (ANN). These techniques optimize pattern
recognition, using sensor arrays formed by multiple commercially available sensors, like the TGS class from FIGARO, and Inc. The
integration of ANN with these sensor arrays allows for the effective use of odor sensors, capable of processing data and extracting hidden
information regarding the nature and concentrations of various gases, including toxic and residue components. The development and
refinement of these discrimination techniques hold significant promise for advanced detection and identification of complex gas mixtures,
potentially establishing SnO2-based sensor technology as a reliable and sophisticated method for gas analysis. Comparative analysis of
discrimination techniques, including PCA, LDA, PLSR, SVM, and ANN, reveals that KNN regression outperforms gas concentration

estimation.
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1. INTRODUCTION

As automation and worldwide connection grow, sensors
will become more common, with gas sensors playing an
important role in a variety of applications. [1].
Semiconducting metal oxide-based sensors are tiny,
sensitive, long-lasting, and inexpensive [2], making them
a popular choice for a variety of applications. Figaro
Engineering Inc. developed the first commercially viable
gas sensor in the 1960s, which used SnO2 [3]. SnO2 is
frequently utilized in gas sensors, solar cells, photovoltaic
devices, biological applications, and electrochemical
processes [4]. Tin oxide is often employed in gas sensor
applications because of its great sensitivity to reducing
and oxidizing gases [5]. Nanostructured SnO2, with a
particle size of less than 20 nm and a specific surface area
of 100-200 m2/g, is especially promising for gas sensing
and catalysis. The high surface-to-volume ratio of
nanoparticles affects chemical behavior and increases
their efficacy in heterogeneous processes [6]. The high
adsorption and reactivity of nanostructured tin dioxide are
related to the structure and concentration of surface active
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sites, notably oxygen vacancies and coordinately
unsaturated tin cations [7].

Tin dioxide (Sn0O2), because of its high sensitivity, ease
of use, and chemical and thermal stability, is a commonly
used n-type metal oxide semiconductor (MOS) in gas
sensing [8]. The gadget suffers from gas detection at
ambient temperature, necessitating additional power and
integration at higher working temperatures. Its usefulness
in real-world applications is restricted by its inability to
detect explosive gases at high temperatures, and its main
flaw is a lack of selectivity [9]. Several tactics have been
explored to overcome this, including functionalization,
additives, particle size management, and chemical or
physical filtration. It has been established that noble metal
additions such as palladium, platinum, gold, and silver
increase the sensitivity of SnO2-based gas sensors [10,
11]. MOS's capacity to detect single gases such as CO or
NO2 has greatly increased, but its ability to discriminate
between multiple gas species and recognize mixtures has
not kept pace [12]. The MOS sensor's cross-sensitivity to
different gases severely hampered its development.
Nevertheless, distinct gases in a mixture cannot be
identified separately by a single gas sensor device [13].

Research has indicated the possibility for
qualitative analysis of gases; however, recommendations
for analytical chemistry are frequently disregarded in
these methods [14]. Consistencies in the variance of the
training sample and an absence of a common boundary
with clean air arise from the authors' frequent inability to
combine points corresponding to different concentrations
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of analytics in a single area corresponding to the analyzed
gas [15]. With successful adaptation, this procedure can
be used to analyze data from multi-sensor electronic nose
systems. Its original application was the problem of
qualitative analysis of a gas mixture, and it aims to
formalize that process [16]. Because typical scientific
research is not focused on practical problems, despite the
many publications on selective gas analysis using metal
oxide sensors, these approaches remain far from
commercial implementation [17]. This approach makes
calibration devices for qualitative analysis of one-
component systems challenging because it restricts the
study to a discrete set of gas concentrations [18].

E-nose has been created using feature extraction and
pattern recognition to address cross-sensitivity and
discrimination across gas mixes [19]. In the past, sensor
arrays were primarily concerned with gathering response
values, which led to high costs and power consumption
[20]. E-nose systems extract more characteristics from
dynamic curves, which results in smaller sensor arrays
and lower power usage [21]. This can help with gas
identification by combining response and recovery time
features [22]. Researchers employ dimensional reduction
techniques such as principal component analysis, discrete
wavelet transform, and Fourier transform to convert n-
dimensional space into two- or three-dimensional
projections [23, 24]. Data dimension reduction and gas
classification are also achieved using artificial neural
networks and unsupervised approaches such as KNN and
linear discriminant analysis [25, 26]. Supervised
algorithms, such as SVM and BPNNs, have been
developed to improve gas identification accuracy [27].
Traditional data preparation for tin oxide gas sensors is
complicated, necessitating initial feature extraction before
pattern detection. Furthermore, SnO2 sensors frequently
exhibit cross-sensitivity to multiple gases, reducing
accuracy. Variations in humidity and temperature have an
impact on performance as well.

The main contribution of the work is enumerated as

) High sensitivity and selectivity SnO2-based
sensors have greatly enhanced the detection capabilities
for both single gases and multi-component mixtures. For
accurate and trustworthy gas analysis in a variety of
industrial and environmental applications,  this
development is essential.

o The use of complicated algorithms such as ANN,
PCA, LDA, SVM, and PLSR in sensor arrays improves
gas detection and classification accuracy and usability.

o Sn0O2-based sensors are essential for gas analysis
and detection in a variety of applications, including
industrial ~ safety, healthcare  diagnostics, and
environmental monitoring, due to their versatility and
dependability.

The remainder of the paper is organized as follows:
Section 1 provides an overview of tin oxide, Section 2
examines previous work, Section 3 details the technique
analysis, Section 4 presents the work discussion, and
Section 5 closes the study.

2. RELATED WORKS

Lee et.al [28] the work demonstrated Au-coated SnO2 NR
gas sensors, which are very sensitive to VOC gases,
notably BTXF. Heat treatment of SnO2 NRs increased
their crystallinity, resulting in Au clusters on the sidewalls
that serve as catalytically active sites for VOC oxidation
processes. These highly organized arrays have a large
surface area, are easily reducible, and have good
mechanical strength, making them excellent for
heterogeneous catalysts. The sensors demonstrated
excellent sensing capability, with a high reaction time and
a short response time of less than 2.5 seconds for detecting
10 ppm of each gas. The sensor was integrated into a mini-
GC system to investigate the selective detection of each
gaseous constituent in a BTXF mixture. However, due to
the intricacy of the heat treatment technique and the usage
of gold, au-coated SnO2 NR fuel sensors can be costly.

Kim etal [29] the researchers used gas-flow thermal
evaporation and atomic layer deposition to build a
controlled porous structure for photoactive gas sensors.
AR was introduced into the chamber during thermal
evaporation to adjust the porosity of the SnO2 matrix.
Atomic layer deposition was employed to manufacture
nano-scale TiO2 layers on the surface of porous SnO2,
which resulted in great sensitivity and rapid reaction.
When exposed to CO at a concentration of 50 parts per
million, the 0.2 Torr sensor demonstrated great sensitivity
and reaction rate, as well as a low detection limit of 1 part
per million. The inclusion of a TiO2 layer allowed for a
20% selectivity in response to HCHO. When exposed to
CO, the SnO2 and SnO2@TiO2 heterostructure gas
sensors had a moderate selective response to HCHO at
20%, showing decreased selectivity for particular gases.
Their practical utility may be restricted due to their
dependency on exact deposition pressures and UV light.

Li et.al [30] a cooperative strategy based on machine
learning techniques and sensor integration provided for
accurate NO2 and NH3 gas detection in mining
environments. A wearable sensor array made of graphene
and polyaniline composite has been created to increase
sensitivity and selectivity in mixed gas settings. The
partial least squares and backpropagation neural network
methods show promise for real-world mining detection,
with over 99% theoretical prediction accuracy on NH3
and NO2 values throughout a large relative humidity
range. A wireless wearable wristband is designed to
provide real-time warning of dangerous gases in mines
under varying humidity circumstances. In practice,
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however, voltage acquisition resolution and Bluetooth
transmission bit count may have an impact on calculation
precision.

Verma et.al [31] the sensing behavior of Pd-doped SnO2
thick film sensors for LPG detection on alumina substrates
was explored utilizing nonlinear ANN approaches. The
sensors were made from a 1" x 1" alumina substrate and
subjected to LPG gas. When exposed to 0.5% LPG, the
sensors responded at their maximum rate of 72.08%. The
sensors' sensitivity was evaluated using an ANN
algorithm and two training techniques. However, because
they are primarily optimized for single-gas detection, they
may be unable to distinguish or detect additional gases in
mixed-gas settings. Furthermore, their use in dynamic
real-world contexts may be hampered by their
dependency on precise operating temperatures and doping
levels.

Tombel et.al [32] the study sought to develop effective
approaches for extracting characteristics for machine
learning algorithms that predict VOC categorization. Five
supervised machine learning methods were used for a
preliminary dataset, and 10 feature extraction approaches
were utilized to classify three types of gases based on
sensor response variations. The findings demonstrated
that it is possible to categorize VOC chemicals based on
sensor responses, despite gas sensor constraints such as
limited sensitivity, selectivity, and signal noise.

Zang et.al [33] discussed SnO2, CuO, In203, and ZnO,
distinct MOS Nano fiber, which were created using an
easy-to-use single-needle electrospinning technique. The
array exhibits high sensitivity to a variety of target
analytic gases due to its smooth surface and constant
nanofiber diameter (average of 150 nm). Four MOS
nanofiber sensors yielded distinct response patterns, and a
fabricated E-nose was used to measure five VOC gases
related to human health. To decrease the dimension of the
feature matrix, a PCA algorithm was used in conjunction
with feature extraction from the response curves. As a
result, the constructed E-nose system was able to
distinguish between five distinct VOC gases. The main
disadvantages of utilizing SnO2 in conjunction with other
MOS nanofiber sensor arrays are potential problems with
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selectivity and cross-sensitivity in mixed gas
environments, despite the high sensitivity and capacity to
distinguish between different VOC gases. Furthermore,
the system's computational requirements and complexity
may increase if feature extraction and dimensionality
reduction depend on sophisticated data processing
methods like PCA.

As a result, Because of their intricacy and use of gold, au-
coated SnO2 NR petrol sensors may be costly. Although
highly sensitive, they require refinement in practical
scenarios involving various gases. In mixed gas
environments, SnO2 and SnO2@TiO2 gas sensors may
not be able to distinguish between other gases despite
having a moderately selective response to HCHO. Precise
doping levels and operating temperatures may complicate
their application. Selectivity and cross-sensitivity
problems in mixed gas environments may arise when
SnO2 is used in conjunction with other MOS nanofiber
Sensor arrays.

3. Advanced Gas Detection Using SnO2 Sensor
Arrays: Discrimination Techniques Analysis

3.1 E-Nose Device

Hartman created the first scent analysis equipment in
1954, which consisted of a microelectrode and a
mechanical sensor. Persaud and Dodd introduced the first
intelligent artificial nose model in 1982, capable of
recognizing up to 20 unique scents. lkegami and
Kaneyasu later created an integrated sensor with six metal
oxide semiconductors.

Gardner and Bartlett invented the term "electronic nose"
in 1988 at a pivotal moment, linking it to the biological
sense of smell. Since then, this phrase has spread
worldwide, emphasising the principles of technology.
Notably, the electronic nose (e-nose) system is made up
of several critical components, including a sensor array to
record signals resulting from the interaction of sensing
materials with volatile compounds, a sampling system to
handle and store samples during analysis, and a computer
to store, pre-process, and process data, as illustrated in
Figure 1.

Fig 1: biological olfactory system (A) and e-nose technology (B)
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Electronic noses were first presented in the 1990s by
businesses like AlphaMOS, Neotronics, and Aromascan,
and have since been commercially accessible. Because of
its potential uses, the market for these systems has risen
fast, resulting in the development of a wide range of
devices utilizing diverse sensor technologies. Some e-
nose systems that were formerly commonly used in books
are no longer manufactured. Research and development
have continued to create equipment that mimics human
taste buds, such as Otto and Thomas' 1985 liquid sample
analysis system. This novel device represents a shift in
taste-sensing technology. E-nose technology has also
been investigated for uses other than odor analysis,
including respiration analysis for illness diagnosis, food
quality assessment, environmental tracking, and security
and defense. This diversification highlights e-nose
technology's versatility and effectiveness in numerous
situations, paving the way for its widespread usage in a
variety of sectors.

The gas sensor chamber's adjustable shutter enabled
simple exposure to volatiles. A pneumatic system was
employed to keep the sensors clean in between readings.
The nose was made up of 2 primary parts: the sensor probe
and the main electrical device that linked to the computer.
Figaro Co. of Japan produces a variety of metal oxide
sensors. The primary device, an AT mega 328P-PU
microcontroller, controlled the communication between
the sensors and the computer.

MOX sensors demand temperatures in the hundreds of
degrees Celsius, which necessitates inbuilt heaters that
require 5 volts of electrical power. These sensors rely
largely on heater voltage settings, which may be regulated
by an electrical circuit to modify the sensor's heating
voltage and maintain it at the required level. These
changes can be performed during each sensor reading
cycle.

Table 1: List of sensor models used in our electronic nose device and target odors and gases.

Sensors Target Gas Detection

2600 ppm.

TGS The sensor is extremely sensitive to tiny amounts of air pollutants such as
hydrogen and CO2 in cigarette smoke, detecting hydrogen at levels of just a few

The sensor is extremely sensitive to minute amounts of gaseous air pollutants,
2600 such as and can detect hydrogen at levels of a few ppm.

The sensor is very sensitive to low quantities of odorous gases and VOCs, such
2602 as ammonia and H2S, from waste items at the workplace and at home.

The sensor is extremely sensitive to trace amounts of odorous gases and VOCs,

2603 .

such as ammonia and H2S.

Uses filter material in its housing to eliminate the impact of interference gases
2610 like alcohol, resulting in a highly selective reaction to LP gas.

Uses filter material in its housing to reduce the impact of interference gases like
2611 alcohol, resulting in a highly selective reaction to methane gas.

The sensor is appropriate for monitoring methane, propane, and butane in LNG
2612

and LPG.

It is very sensitive to organic solvents and other volatile vapors, making it
2620 excellent for use in organic vapor detectors and alarm systems.

The device is extremely sensitive to R-404a, and R-410a, and it employs filter
2630 material to remove interference gases.

The electronic nose detects sensor reactions using MOX
sensors, which measure the change in conductance during
a short response. The sensor conductance is represented
by the symbols U/UO or G/GO. The reading cycle is

repeated every 0.75 seconds, and the sensors experience
transitory situations such as gas composition changes and
heater voltage variations. 500 measurements were
performed using a rectangular voltage drop/rise of 0.3 V.
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Fig 2: Curve during a measurement cycle

3.2 Discrimination Techniques

Electronic noses, often known as the "brain,” are
extremely important in the field of detection. They use
visualization techniques and algorithms to achieve
discriminating and selectivity in sensor array responses.
The success of these systems is dependent on processing
and synthesizing responses from numerous sensors, such
as signal filtering, switching, and feature extraction. Data
matrices are optimized, and the signal passes through a
second round of pattern recognition analysis. The system
learns the properties of the examined scent through
training and predicts samples of unknown concentrations
using a predetermined model.

3.2.1. Principal Component Analysis

PCA is a popular approach in sensing for data reduction
in multivariate statistics. It turns the first N variables in a
dataset into a new N-dimensional coordinate system,
projecting the variable with the largest variance onto the
principal axis. Created for huge datasets, it is now widely
used in e-noses for qualitative categorization. The
visualization of tiny variables in two or three dimensions
facilitates qualitative categorization. However, because it
relies on human interpretation, PCA is arbitrary and
susceptible to bias. To promote impartiality, alternative
categorization approaches have been created, which apply
labels to fresh data points through algorithmic autonomy.

3.2.2. Linear Discriminant Analysis

That maximizes variance ratios across and within classes
using linear combinations of original variables. It intends

to project datasets into lower-dimensional spaces to
decrease computational complexity and overfitting
problems while enhancing class distinguishability. LDA,
like PCA, is a linear transformation approach for
dimensionality reduction, and it is equivalent in terms of
dimensionality reduction, visualizations, and
classification reliability. It improves differentiation by
increasing inter-class separation and variance, making it
simpler to split space into sections associated with certain
classes. LDA is a supervised approach that creates models
from a training dataset and compares them to fresh data,
assuring accurate classification while eliminating
subjective interpretation.

3.2.3. Partial Least Squares Regression

PLSR is a method that combines the best aspects of MLR
and PCA to analyze or predict dependent variables using
independent variables. It eliminates orthogonal elements
from latent variables, resulting in the most powerful
prediction insights. PLSR is especially beneficial for
predicting dependent variables from a variety of
independent variables, controlling multicollinearity, and
understanding underlying patterns and connections.

3.2.4. Support Vector Machines

Its goal is to maximize the separation of distinct
categories by projecting labeled data points onto an N-
dimensional space and assigning each new data point a
category based on its position.

SVM handles two classes at once and determines the
optimum hyper plane to partition them. If a basic hyper
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plane is insufficient, SVM computes the greatest distance
between data points. If a separate hyper plane is not
possible, SVM employs nonlinear transformations via
kernels to enhance data dimensionality, allowing effective
classification without data modification.

SVM, a machine learning algorithm, tries to minimize
mistakes by generating a hyper plane with N — 1
dimensions, maximizing the margin, and considering
error tolerance. It can generate remarkable results in both
classification and quantification problems by combining
its classifier and regressor capabilities.

3.2.5. Artificial Neural Networks

ANNs mimic data processing and problem-solving
capabilities of the brain. ANNs, which are made up of
interconnected processing elements, are very good at
handling nonlinear, complex data. They have three layers:
input, hidden, and output. Nodes in them send signals that
help in decision-making. The 1943 concept by McCulloch
and Pitts served as the inspiration for ANNs, which were
later used in electronic noses.

ANNSs process input in backward-pass and forward-pass
stages, modifying synaptic weights to minimize mistakes.
They excel at supervised learning when trained on labeled
data using methods such as the vanishing gradient
approach.

ANNSs in electronic noses use labeled data to identify
patterns and generate precise predictions. Their ability to
effectively capture and analyze intricate, multi-
dimensional data is what makes them so effective in the
varied and variable environments in which electronic
noses are used.

KNN-based regression beat other current models,
including ANN, RF, Decision Tree, and Linear
Regression. The study sought to enhance the KNN's
effectiveness in predicting gas concentrations in mixtures
by selecting ideal parameters. The most successful
alternatives for each dataset were distance weighting, the
Euclidean distance measure, and the five nearest
neighbors. Analyzing the algorithm's performance using
these optimal parameter settings vyielded promising
findings. The model had one neuron on the output layer,
six hidden layers, and a linear activation function in that
layer. The analysis discovered that the best parameter
combinations each gas mixture lowered the mean square
error while increasing the coefficient of determination.

Linear regression describes the connection between
dependent and independent variables, whereas decision
tree regression employs a tree-like model to predict
outcomes. However, these models may require greater
accuracy and are susceptible to overfitting. Random
forests combine decision trees to improve performance
while reducing overfitting. Each tree is resistant to noise

and outliers, can manage missing data, and offers a feature
significance rating. However, they are computationally
expensive for huge datasets and perform badly on
imbalanced ones.

4. Discussion

Using machine-learning methods, the researchers
attempted to recreate greenhouse gas concentrations and
variability from low-cost sensors. Each substance was
tested over three days, with setup periods lasting more
than two hours. The electronic nose gathered sensor data
and sent it to a computer for real-time visualization. The
researchers studied field calibration strategies for low-cost
sensors such as metal oxide, electrochemical, and tiny
infrared sensors. They determined that artificial neural
networks (ANN) were the most effective calibration
approach and that employing a range of sensor types
might aid in the resolution of cross-sensitivity concerns.
However, due to the high cross-sensitivity to water vapor,
the signal could not be correctly reconstructed using
simply Figaro® TGS sensors.

In research comparing FFNN and DNN for calibrating
trace gases, DNN was shown to be more accurate at
recreating significant concentration fluctuations. The
study also discovered that changing the temperature of
a MOS sensor improves electronic nose evaluation
characteristics, such as sensitivity, selectivity, noise
reduction, and range. The sensor's resistance to
temperature is inversely proportional and linear, and
temperature varies exponentially with heating voltage.
The study investigated four unique TM patterns and used
them to a personalized electronic nose for lung cancer
patients.

The study examined three analyses at varying
concentrations: methane, CO2, and butanone. The results
indicated that unique TM patterns increased selectivity
and concentration distinction. Combining square and
triangular patterns with k-NN data clustering produced the
best results. The TGS2600 sensor class demonstrated
superior  discrimination in  both analyses and
concentrations, demonstrating the advantages of square-
granular architecture.

The pre-heating phase time was consistent with the
datasheet recommendation, although drifts were seen in
the AS-MLV-P2, whilst the four TGS2600 and two
TGS822 achieved a steady baseline. This might explain
the inconsistent results from the S-7 and S-8 sensors. The
BME260 sensor measured temperature, humidity, and
pressure. Following the wash-out phase, the humidity
levelled off at 10% to 13%. Manufacturers give sensor
resistance changes dependent on temperature and
humidity, however they are beyond the practical range.
Future studies will look at humidity's influence and build
compensatory methods. The current study's findings are
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consistent with earlier studies demonstrating the benefits
of temperature modulation in MOS sensors.

A sensor (SP3-AQ2) was used to detect 12 airborne
analyses that had different TM patterns. The amounts
tested were higher than the usual VOC concentrations in
exhaled breath. Accurate temperature modulation,
wavelet transforms, and machine learning-based
categorization improved gas identification accuracy. One
study reported 92% compound discrimination accuracy
for analyses such as methanol, ethanol, and butanone.
Recent tests with commercial MOS gas sensors
demonstrated the feasibility of complex data processing
based on support vector machines, as well as simultaneous
gas categorization and concentration prediction using
TGS2620 and TGS2602 sensor types.

5. Conclusion

The development of tin oxide represents a significant
advancement in the detection and analysis of both single-
target gases and complex multi-component gas mixtures
in ambient atmospheres. By integrating advanced
discrimination techniques such as Artificial Neural
Networks (ANN) with sensor arrays, these sensors can
effectively process and interpret complex data to identify
and quantify various gases, including toxic and residue
components. The use of commercially available sensors,
like the TGS class from FIGARO, USA, Inc., has further
enhanced the reliability and accuracy of these systems.
Comparative  analysis of various discrimination
techniques, including PCA, LDA, PLSR, SVM, and
ANN, has shown that KNN regression provides superior
performance in estimating gas concentrations. These
findings suggest that with continued refinement, SnO2-
based sensor technology, coupled with sophisticated data
analysis methods, holds great promise for advanced gas
detection and identification, establishing it as a robust and
sophisticated tool in the field of gas analysis. Future
research should focus on addressing environmental
factors such as humidity to further improve the accuracy
and reliability of these sensors.
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