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Abstract: Tin oxide-based gas sensors have been widely used to detect single-target and multi-component gas mixtures in ambient 

atmospheres, utilizing sophisticated classification techniques such as Artificial Neural Networks (ANN). These techniques optimize pattern 

recognition, using sensor arrays formed by multiple commercially available sensors, like the TGS class from FIGARO, and Inc. The 

integration of ANN with these sensor arrays allows for the effective use of odor sensors, capable of processing data and extracting hidden 

information regarding the nature and concentrations of various gases, including toxic and residue components. The development and 

refinement of these discrimination techniques hold significant promise for advanced detection and identification of complex gas mixtures, 

potentially establishing SnO2-based sensor technology as a reliable and sophisticated method for gas analysis. Comparative analysis of 

discrimination techniques, including PCA, LDA, PLSR, SVM, and ANN, reveals that KNN regression outperforms gas concentration 

estimation. 
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1. INTRODUCTION  

As automation and worldwide connection grow, sensors 

will become more common, with gas sensors playing an 

important role in a variety of applications. [1]. 

Semiconducting metal oxide-based sensors are tiny, 

sensitive, long-lasting, and inexpensive [2], making them 

a popular choice for a variety of applications. Figaro 

Engineering Inc. developed the first commercially viable 

gas sensor in the 1960s, which used SnO2 [3]. SnO2 is 

frequently utilized in gas sensors, solar cells, photovoltaic 

devices, biological applications, and electrochemical 

processes [4]. Tin oxide is often employed in gas sensor 

applications because of its great sensitivity to reducing 

and oxidizing gases [5]. Nanostructured SnO2, with a 

particle size of less than 20 nm and a specific surface area 

of 100-200 m2/g, is especially promising for gas sensing 

and catalysis. The high surface-to-volume ratio of 

nanoparticles affects chemical behavior and increases 

their efficacy in heterogeneous processes [6]. The high 

adsorption and reactivity of nanostructured tin dioxide are 

related to the structure and concentration of surface active 

sites, notably oxygen vacancies and coordinately 

unsaturated tin cations [7]. 

Tin dioxide (SnO2), because of its high sensitivity, ease 

of use, and chemical and thermal stability, is a commonly 

used n-type metal oxide semiconductor (MOS) in gas 

sensing [8].  The gadget suffers from gas detection at 

ambient temperature, necessitating additional power and 

integration at higher working temperatures. Its usefulness 

in real-world applications is restricted by its inability to 

detect explosive gases at high temperatures, and its main 

flaw is a lack of selectivity [9].  Several tactics have been 

explored to overcome this, including functionalization, 

additives, particle size management, and chemical or 

physical filtration. It has been established that noble metal 

additions such as palladium, platinum, gold, and silver 

increase the sensitivity of SnO2-based gas sensors [10, 

11]. MOS's capacity to detect single gases such as CO or 

NO2 has greatly increased, but its ability to discriminate 

between multiple gas species and recognize mixtures has 

not kept pace [12]. The MOS sensor's cross-sensitivity to 

different gases severely hampered its development. 

Nevertheless, distinct gases in a mixture cannot be 

identified separately by a single gas sensor device [13]. 

 Research has indicated the possibility for 

qualitative analysis of gases; however, recommendations 

for analytical chemistry are frequently disregarded in 

these methods [14]. Consistencies in the variance of the 

training sample and an absence of a common boundary 

with clean air arise from the authors' frequent inability to 

combine points corresponding to different concentrations 
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of analytics in a single area corresponding to the analyzed 

gas [15]. With successful adaptation, this procedure can 

be used to analyze data from multi-sensor electronic nose 

systems. Its original application was the problem of 

qualitative analysis of a gas mixture, and it aims to 

formalize that process [16]. Because typical scientific 

research is not focused on practical problems, despite the 

many publications on selective gas analysis using metal 

oxide sensors, these approaches remain far from 

commercial implementation [17]. This approach makes 

calibration devices for qualitative analysis of one-

component systems challenging because it restricts the 

study to a discrete set of gas concentrations [18]. 

E-nose has been created using feature extraction and 

pattern recognition to address cross-sensitivity and 

discrimination across gas mixes [19]. In the past, sensor 

arrays were primarily concerned with gathering response 

values, which led to high costs and power consumption 

[20]. E-nose systems extract more characteristics from 

dynamic curves, which results in smaller sensor arrays 

and lower power usage [21]. This can help with gas 

identification by combining response and recovery time 

features [22]. Researchers employ dimensional reduction 

techniques such as principal component analysis, discrete 

wavelet transform, and Fourier transform to convert n-

dimensional space into two- or three-dimensional 

projections [23, 24]. Data dimension reduction and gas 

classification are also achieved using artificial neural 

networks and unsupervised approaches such as KNN and 

linear discriminant analysis [25, 26]. Supervised 

algorithms, such as SVM and BPNNs, have been 

developed to improve gas identification accuracy [27]. 

Traditional data preparation for tin oxide gas sensors is 

complicated, necessitating initial feature extraction before 

pattern detection. Furthermore, SnO2 sensors frequently 

exhibit cross-sensitivity to multiple gases, reducing 

accuracy. Variations in humidity and temperature have an 

impact on performance as well. 

The main contribution of the work is enumerated as  

• High sensitivity and selectivity SnO2-based 

sensors have greatly enhanced the detection capabilities 

for both single gases and multi-component mixtures. For 

accurate and trustworthy gas analysis in a variety of 

industrial and environmental applications, this 

development is essential. 

• The use of complicated algorithms such as ANN, 

PCA, LDA, SVM, and PLSR in sensor arrays improves 

gas detection and classification accuracy and usability. 

• SnO2-based sensors are essential for gas analysis 

and detection in a variety of applications, including 

industrial safety, healthcare diagnostics, and 

environmental monitoring, due to their versatility and 

dependability. 

The remainder of the paper is organized as follows: 

Section 1 provides an overview of tin oxide, Section 2 

examines previous work, Section 3 details the technique 

analysis, Section 4 presents the work discussion, and 

Section 5 closes the study. 

2. RELATED WORKS 

Lee et.al [28] the work demonstrated Au-coated SnO2 NR 

gas sensors, which are very sensitive to VOC gases, 

notably BTXF. Heat treatment of SnO2 NRs increased 

their crystallinity, resulting in Au clusters on the sidewalls 

that serve as catalytically active sites for VOC oxidation 

processes. These highly organized arrays have a large 

surface area, are easily reducible, and have good 

mechanical strength, making them excellent for 

heterogeneous catalysts. The sensors demonstrated 

excellent sensing capability, with a high reaction time and 

a short response time of less than 2.5 seconds for detecting 

10 ppm of each gas. The sensor was integrated into a mini-

GC system to investigate the selective detection of each 

gaseous constituent in a BTXF mixture. However, due to 

the intricacy of the heat treatment technique and the usage 

of gold, au-coated SnO2 NR fuel sensors can be costly. 

Kim et.al [29] the researchers used gas-flow thermal 

evaporation and atomic layer deposition to build a 

controlled porous structure for photoactive gas sensors. 

AR was introduced into the chamber during thermal 

evaporation to adjust the porosity of the SnO2 matrix. 

Atomic layer deposition was employed to manufacture 

nano-scale TiO2 layers on the surface of porous SnO2, 

which resulted in great sensitivity and rapid reaction. 

When exposed to CO at a concentration of 50 parts per 

million, the 0.2 Torr sensor demonstrated great sensitivity 

and reaction rate, as well as a low detection limit of 1 part 

per million. The inclusion of a TiO2 layer allowed for a 

20% selectivity in response to HCHO. When exposed to 

CO, the SnO2 and SnO2@TiO2 heterostructure gas 

sensors had a moderate selective response to HCHO at 

20%, showing decreased selectivity for particular gases. 

Their practical utility may be restricted due to their 

dependency on exact deposition pressures and UV light. 

Li et.al [30] a cooperative strategy based on machine 

learning techniques and sensor integration provided for 

accurate NO2 and NH3 gas detection in mining 

environments. A wearable sensor array made of graphene 

and polyaniline composite has been created to increase 

sensitivity and selectivity in mixed gas settings. The 

partial least squares and backpropagation neural network 

methods show promise for real-world mining detection, 

with over 99% theoretical prediction accuracy on NH3 

and NO2 values throughout a large relative humidity 

range. A wireless wearable wristband is designed to 

provide real-time warning of dangerous gases in mines 

under varying humidity circumstances. In practice, 
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however, voltage acquisition resolution and Bluetooth 

transmission bit count may have an impact on calculation 

precision. 

Verma et.al [31] the sensing behavior of Pd-doped SnO2 

thick film sensors for LPG detection on alumina substrates 

was explored utilizing nonlinear ANN approaches. The 

sensors were made from a 1" x 1" alumina substrate and 

subjected to LPG gas. When exposed to 0.5% LPG, the 

sensors responded at their maximum rate of 72.08%. The 

sensors' sensitivity was evaluated using an ANN 

algorithm and two training techniques. However, because 

they are primarily optimized for single-gas detection, they 

may be unable to distinguish or detect additional gases in 

mixed-gas settings. Furthermore, their use in dynamic 

real-world contexts may be hampered by their 

dependency on precise operating temperatures and doping 

levels. 

Tombel et.al [32] the study sought to develop effective 

approaches for extracting characteristics for machine 

learning algorithms that predict VOC categorization. Five 

supervised machine learning methods were used for a 

preliminary dataset, and 10 feature extraction approaches 

were utilized to classify three types of gases based on 

sensor response variations. The findings demonstrated 

that it is possible to categorize VOC chemicals based on 

sensor responses, despite gas sensor constraints such as 

limited sensitivity, selectivity, and signal noise. 

Zang et.al [33] discussed SnO2, CuO, In2O3, and ZnO, 

distinct MOS Nano fiber, which were created using an 

easy-to-use single-needle electrospinning technique. The 

array exhibits high sensitivity to a variety of target 

analytic gases due to its smooth surface and constant 

nanofiber diameter (average of 150 nm). Four MOS 

nanofiber sensors yielded distinct response patterns, and a 

fabricated E-nose was used to measure five VOC gases 

related to human health. To decrease the dimension of the 

feature matrix, a PCA algorithm was used in conjunction 

with feature extraction from the response curves. As a 

result, the constructed E-nose system was able to 

distinguish between five distinct VOC gases. The main 

disadvantages of utilizing SnO2 in conjunction with other 

MOS nanofiber sensor arrays are potential problems with 

selectivity and cross-sensitivity in mixed gas 

environments, despite the high sensitivity and capacity to 

distinguish between different VOC gases. Furthermore, 

the system's computational requirements and complexity 

may increase if feature extraction and dimensionality 

reduction depend on sophisticated data processing 

methods like PCA. 

As a result, Because of their intricacy and use of gold, au-

coated SnO2 NR petrol sensors may be costly. Although 

highly sensitive, they require refinement in practical 

scenarios involving various gases. In mixed gas 

environments, SnO2 and SnO2@TiO2 gas sensors may 

not be able to distinguish between other gases despite 

having a moderately selective response to HCHO. Precise 

doping levels and operating temperatures may complicate 

their application. Selectivity and cross-sensitivity 

problems in mixed gas environments may arise when 

SnO2 is used in conjunction with other MOS nanofiber 

sensor arrays. 

3. Advanced Gas Detection Using SnO2 Sensor 

Arrays: Discrimination Techniques Analysis 

3.1 E-Nose Device 

Hartman created the first scent analysis equipment in 

1954, which consisted of a microelectrode and a 

mechanical sensor. Persaud and Dodd introduced the first 

intelligent artificial nose model in 1982, capable of 

recognizing up to 20 unique scents. Ikegami and 

Kaneyasu later created an integrated sensor with six metal 

oxide semiconductors. 

Gardner and Bartlett invented the term "electronic nose" 

in 1988 at a pivotal moment, linking it to the biological 

sense of smell. Since then, this phrase has spread 

worldwide, emphasising the principles of technology. 

Notably, the electronic nose (e-nose) system is made up 

of several critical components, including a sensor array to 

record signals resulting from the interaction of sensing 

materials with volatile compounds, a sampling system to 

handle and store samples during analysis, and a computer 

to store, pre-process, and process data, as illustrated in 

Figure 1. 

 

Fig 1:  biological olfactory system (A) and e-nose technology (B) 
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Electronic noses were first presented in the 1990s by 

businesses like AlphaMOS, Neotronics, and Aromascan, 

and have since been commercially accessible. Because of 

its potential uses, the market for these systems has risen 

fast, resulting in the development of a wide range of 

devices utilizing diverse sensor technologies. Some e-

nose systems that were formerly commonly used in books 

are no longer manufactured. Research and development 

have continued to create equipment that mimics human 

taste buds, such as Otto and Thomas' 1985 liquid sample 

analysis system. This novel device represents a shift in 

taste-sensing technology. E-nose technology has also 

been investigated for uses other than odor analysis, 

including respiration analysis for illness diagnosis, food 

quality assessment, environmental tracking, and security 

and defense. This diversification highlights e-nose 

technology's versatility and effectiveness in numerous 

situations, paving the way for its widespread usage in a 

variety of sectors. 

The gas sensor chamber's adjustable shutter enabled 

simple exposure to volatiles. A pneumatic system was 

employed to keep the sensors clean in between readings. 

The nose was made up of 2 primary parts: the sensor probe 

and the main electrical device that linked to the computer. 

Figaro Co. of Japan produces a variety of metal oxide 

sensors. The primary device, an AT mega 328P-PU 

microcontroller, controlled the communication between 

the sensors and the computer. 

MOX sensors demand temperatures in the hundreds of 

degrees Celsius, which necessitates inbuilt heaters that 

require 5 volts of electrical power. These sensors rely 

largely on heater voltage settings, which may be regulated 

by an electrical circuit to modify the sensor's heating 

voltage and maintain it at the required level. These 

changes can be performed during each sensor reading 

cycle. 

Table 1: List of sensor models used in our electronic nose device and target odors and gases. 

Sensors Target Gas Detection 

TGS  The sensor is extremely sensitive to tiny amounts of air pollutants such as 

hydrogen and CO2 in cigarette smoke, detecting hydrogen at levels of just a few 

ppm. 

 

2600 

2600 

The sensor is extremely sensitive to minute amounts of gaseous air pollutants, 

such as and can detect hydrogen at levels of a few ppm. 

 

2602 

The sensor is very sensitive to low quantities of odorous gases and VOCs, such 

as ammonia and H2S, from waste items at the workplace and at home. 

 

2603 
The sensor is extremely sensitive to trace amounts of odorous gases and VOCs, 

such as ammonia and H2S. 

2610 

Uses filter material in its housing to eliminate the impact of interference gases 

like alcohol, resulting in a highly selective reaction to LP gas. 

 

2611 

Uses filter material in its housing to reduce the impact of interference gases like 

alcohol, resulting in a highly selective reaction to methane gas. 

 

2612 
The sensor is appropriate for monitoring methane, propane, and butane in LNG 

and LPG. 

2620 

It is very sensitive to organic solvents and other volatile vapors, making it 

excellent for use in organic vapor detectors and alarm systems. 

 

2630 

The device is extremely sensitive to R-404a, and R-410a, and it employs filter 

material to remove interference gases. 

 

 

The electronic nose detects sensor reactions using MOX 

sensors, which measure the change in conductance during 

a short response. The sensor conductance is represented 

by the symbols 𝑈/𝑈0 or 𝐺/𝐺0. The reading cycle is 

repeated every 0.75 seconds, and the sensors experience 

transitory situations such as gas composition changes and 

heater voltage variations. 500 measurements were 

performed using a rectangular voltage drop/rise of 0.3 V. 
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Fig 2: Curve during a measurement cycle 

3.2 Discrimination Techniques 

Electronic noses, often known as the "brain," are 

extremely important in the field of detection. They use 

visualization techniques and algorithms to achieve 

discriminating and selectivity in sensor array responses. 

The success of these systems is dependent on processing 

and synthesizing responses from numerous sensors, such 

as signal filtering, switching, and feature extraction. Data 

matrices are optimized, and the signal passes through a 

second round of pattern recognition analysis. The system 

learns the properties of the examined scent through 

training and predicts samples of unknown concentrations 

using a predetermined model. 

3.2.1. Principal Component Analysis 

PCA is a popular approach in sensing for data reduction 

in multivariate statistics. It turns the first N variables in a 

dataset into a new N-dimensional coordinate system, 

projecting the variable with the largest variance onto the 

principal axis. Created for huge datasets, it is now widely 

used in e-noses for qualitative categorization. The 

visualization of tiny variables in two or three dimensions 

facilitates qualitative categorization. However, because it 

relies on human interpretation, PCA is arbitrary and 

susceptible to bias. To promote impartiality, alternative 

categorization approaches have been created, which apply 

labels to fresh data points through algorithmic autonomy. 

3.2.2. Linear Discriminant Analysis 

That maximizes variance ratios across and within classes 

using linear combinations of original variables. It intends 

to project datasets into lower-dimensional spaces to 

decrease computational complexity and overfitting 

problems while enhancing class distinguishability. LDA, 

like PCA, is a linear transformation approach for 

dimensionality reduction, and it is equivalent in terms of 

dimensionality reduction, visualizations, and 

classification reliability. It improves differentiation by 

increasing inter-class separation and variance, making it 

simpler to split space into sections associated with certain 

classes. LDA is a supervised approach that creates models 

from a training dataset and compares them to fresh data, 

assuring accurate classification while eliminating 

subjective interpretation. 

3.2.3. Partial Least Squares Regression 

PLSR is a method that combines the best aspects of MLR 

and PCA to analyze or predict dependent variables using 

independent variables. It eliminates orthogonal elements 

from latent variables, resulting in the most powerful 

prediction insights. PLSR is especially beneficial for 

predicting dependent variables from a variety of 

independent variables, controlling multicollinearity, and 

understanding underlying patterns and connections. 

3.2.4. Support Vector Machines 

Its goal is to maximize the separation of distinct 

categories by projecting labeled data points onto an N-

dimensional space and assigning each new data point a 

category based on its position. 

SVM handles two classes at once and determines the 

optimum hyper plane to partition them. If a basic hyper 
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plane is insufficient, SVM computes the greatest distance 

between data points. If a separate hyper plane is not 

possible, SVM employs nonlinear transformations via 

kernels to enhance data dimensionality, allowing effective 

classification without data modification. 

SVM, a machine learning algorithm, tries to minimize 

mistakes by generating a hyper plane with N − 1 

dimensions, maximizing the margin, and considering 

error tolerance. It can generate remarkable results in both 

classification and quantification problems by combining 

its classifier and regressor capabilities. 

3.2.5. Artificial Neural Networks 

ANNs mimic data processing and problem-solving 

capabilities of the brain. ANNs, which are made up of 

interconnected processing elements, are very good at 

handling nonlinear, complex data. They have three layers: 

input, hidden, and output. Nodes in them send signals that 

help in decision-making. The 1943 concept by McCulloch 

and Pitts served as the inspiration for ANNs, which were 

later used in electronic noses. 

ANNs process input in backward-pass and forward-pass 

stages, modifying synaptic weights to minimize mistakes. 

They excel at supervised learning when trained on labeled 

data using methods such as the vanishing gradient 

approach. 

ANNs in electronic noses use labeled data to identify 

patterns and generate precise predictions. Their ability to 

effectively capture and analyze intricate, multi-

dimensional data is what makes them so effective in the 

varied and variable environments in which electronic 

noses are used.  

KNN-based regression beat other current models, 

including ANN, RF, Decision Tree, and Linear 

Regression. The study sought to enhance the KNN's 

effectiveness in predicting gas concentrations in mixtures 

by selecting ideal parameters. The most successful 

alternatives for each dataset were distance weighting, the 

Euclidean distance measure, and the five nearest 

neighbors. Analyzing the algorithm's performance using 

these optimal parameter settings yielded promising 

findings. The model had one neuron on the output layer, 

six hidden layers, and a linear activation function in that 

layer. The analysis discovered that the best parameter 

combinations each gas mixture lowered the mean square 

error while increasing the coefficient of determination. 

Linear regression describes the connection between 

dependent and independent variables, whereas decision 

tree regression employs a tree-like model to predict 

outcomes. However, these models may require greater 

accuracy and are susceptible to overfitting. Random 

forests combine decision trees to improve performance 

while reducing overfitting. Each tree is resistant to noise 

and outliers, can manage missing data, and offers a feature 

significance rating. However, they are computationally 

expensive for huge datasets and perform badly on 

imbalanced ones. 

4. Discussion  

Using machine-learning methods, the researchers 

attempted to recreate greenhouse gas concentrations and 

variability from low-cost sensors. Each substance was 

tested over three days, with setup periods lasting more 

than two hours. The electronic nose gathered sensor data 

and sent it to a computer for real-time visualization. The 

researchers studied field calibration strategies for low-cost 

sensors such as metal oxide, electrochemical, and tiny 

infrared sensors. They determined that artificial neural 

networks (ANN) were the most effective calibration 

approach and that employing a range of sensor types 

might aid in the resolution of cross-sensitivity concerns. 

However, due to the high cross-sensitivity to water vapor, 

the signal could not be correctly reconstructed using 

simply Figaro® TGS sensors. 

In research comparing FFNN and DNN for calibrating 

trace gases, DNN was shown to be more accurate at 

recreating significant concentration fluctuations. The 

study also discovered that changing the temperature of 

a MOS sensor improves electronic nose evaluation 

characteristics, such as sensitivity, selectivity, noise 

reduction, and range. The sensor's resistance to 

temperature is inversely proportional and linear, and 

temperature varies exponentially with heating voltage. 

The study investigated four unique TM patterns and used 

them to a personalized electronic nose for lung cancer 

patients. 

The study examined three analyses at varying 

concentrations: methane, CO2, and butanone. The results 

indicated that unique TM patterns increased selectivity 

and concentration distinction. Combining square and 

triangular patterns with k-NN data clustering produced the 

best results. The TGS2600 sensor class demonstrated 

superior discrimination in both analyses and 

concentrations, demonstrating the advantages of square-

granular architecture. 

The pre-heating phase time was consistent with the 

datasheet recommendation, although drifts were seen in 

the AS-MLV-P2, whilst the four TGS2600 and two 

TGS822 achieved a steady baseline. This might explain 

the inconsistent results from the S-7 and S-8 sensors. The 

BME260 sensor measured temperature, humidity, and 

pressure. Following the wash-out phase, the humidity 

levelled off at 10% to 13%. Manufacturers give sensor 

resistance changes dependent on temperature and 

humidity, however they are beyond the practical range. 

Future studies will look at humidity's influence and build 

compensatory methods. The current study's findings are 
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consistent with earlier studies demonstrating the benefits 

of temperature modulation in MOS sensors. 

A sensor (SP3-AQ2) was used to detect 12 airborne 

analyses that had different TM patterns. The amounts 

tested were higher than the usual VOC concentrations in 

exhaled breath. Accurate temperature modulation, 

wavelet transforms, and machine learning-based 

categorization improved gas identification accuracy. One 

study reported 92% compound discrimination accuracy 

for analyses such as methanol, ethanol, and butanone. 

Recent tests with commercial MOS gas sensors 

demonstrated the feasibility of complex data processing 

based on support vector machines, as well as simultaneous 

gas categorization and concentration prediction using 

TGS2620 and TGS2602 sensor types. 

5. Conclusion 

The development of tin oxide represents a significant 

advancement in the detection and analysis of both single-

target gases and complex multi-component gas mixtures 

in ambient atmospheres. By integrating advanced 

discrimination techniques such as Artificial Neural 

Networks (ANN) with sensor arrays, these sensors can 

effectively process and interpret complex data to identify 

and quantify various gases, including toxic and residue 

components. The use of commercially available sensors, 

like the TGS class from FIGARO, USA, Inc., has further 

enhanced the reliability and accuracy of these systems. 

Comparative analysis of various discrimination 

techniques, including PCA, LDA, PLSR, SVM, and 

ANN, has shown that KNN regression provides superior 

performance in estimating gas concentrations. These 

findings suggest that with continued refinement, SnO2-

based sensor technology, coupled with sophisticated data 

analysis methods, holds great promise for advanced gas 

detection and identification, establishing it as a robust and 

sophisticated tool in the field of gas analysis. Future 

research should focus on addressing environmental 

factors such as humidity to further improve the accuracy 

and reliability of these sensors. 
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