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Abstract: This study presents an effective method for determining the shortest route for vehicles in urban traffic situations by combining 

the Chaotic Fly Consonance Optimization (CFCO) algorithm with the Deep Deterministic Policy Gradient (DDPG) algorithm for traffic 

flow estimation. By taking into account real-time traffic conditions and optimizing routes appropriately, the technique attempts to 

improve the overall performance of vehicle navigation systems. In the first stage, the system receives input in the form of traffic signal 

pictures ranging from 0 to 10, as well as the planned destination route. Following that, the deep deterministic policy gradient (DDPG) 

method is used to evaluate traffic flow, taking use of its model-free off-policy nature for continuous action reinforcement learning. This 

stage entails fine-tuning hyperparameter to produce the best possible outcomes in anticipating traffic conditions. Following the 

assessment of traffic flow, the suggested chaotic fly consonance optimization (CFCO) method is used in the third stage to discover the 

vehicle's shortest route. The CFCO method is used for global optimization and was inspired by the chaotic behavior of flies in nature. 

This stage entails using the algorithm's chaotic nature to effectively search the solution space and locate optimum pathways. The last 

phase displays the shortest route found by combining DDPG for traffic flow assessment and CFCO for path optimization. The approach 

is assessed based on its capacity to adapt to changing traffic circumstances and propose effective routes, eventually leading to better 

vehicle navigation in metropolitan areas. 
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1. Introduction  

When talking about ways to reduce traffic congestion on 

roads, "smart" means using data analysis and modern 

technologies. Heavy traffic makes it impossible for the 

passenger to reach their destination on time in a smart 

city [1]. In order to alleviate traffic, graph theory 

algorithms are used to determine the road's structure; in 

the event that there is damage or construction, the 

algorithms will keep an eye out and solicit feedback 

from drivers [2]. They claim that an upcoming traveler 

will see the outcome. For example, if there is an 

obstruction on the road, the next vehicle will be rerouted 

to take the shortest alternative route [3]. Even though it 

would be the easiest option for the passenger, the 

shortest path here wouldn't get them to the important 

shortest route, which would provide them with a 

seamless flow [4]. So, easing traffic benefits other 

drivers who don't have to deal with heavy traffic. The 

passenger may avoid traffic jams based on prior findings 

[5]. 

Efficient vehicle navigation is crucial in modern urban 

settings for reducing trip times, improving transportation 

systems generally, and alleviating traffic congestion [6]. 

Optimal route planning in traffic situations that are 

constantly changing has prompted the use of AI 

methodology and sophisticated optimization techniques 

[7]. To tackle the problems with vehicle pathfinding, this 

study suggests a new method that merges two 

algorithms: one for assessing traffic flow, the DDPG 

algorithm, and another, the Chaotic Fly Consonance 

Optimization (CFCO) algorithm, to find the shortest and 

most efficient routes [8]. The intricacy of urban road 

networks necessitates smart and adaptable systems to 

guide vehicles through traffic patterns and congestion, 

which are becoming more complicated as cities expand 

[9]. Insufficient real-time traffic situation adaptation is a 

common problem with traditional route planning 

approaches, resulting in less-than-ideal pathways and 

longer trip times [10]. Our study seeks to address these 

difficulties by using cutting-edge AI and optimization 

techniques. The goal is to improve vehicle routes 

dynamically according to current traffic circumstances 

[11]. 

To evaluate and forecast traffic flow, the suggested 

technique incorporates the DDPG algorithm, a model-

free off-policy reinforcement learning algorithm [12]. 

Because vehicle traffic in metropolitan areas is 

inherently continuous, this integration enables 

continuous action decision-making [13]. Furthermore, a 
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global optimization method that draws inspiration from 

the naturally chaotic behavior of flies is presented as the 

Chaotic Fly Consonance Optimization (CFCO) 

algorithm [14]. The CFCO method identifies the most 

efficient paths by successfully exploring the solution 

space using chaotic search techniques [15]. A new 

framework that combines the capabilities of AI-based 

traffic flow assessment and chaotic optimization for 

pathfinding [16-17] is presented in this study as a means 

to close the gap between existing navigation systems and 

the growing dynamics of urban traffic. Following this, 

we will go into the specifics of how to put the suggested 

method into action, starting with importing pictures of 

traffic signals and route data, then running the DDPG 

algorithm, and last, using the CFCO algorithm to find the 

best possible route [18]. We expect the findings to show 

that this integrated technique is effective in making 

urban vehicular navigation efficient and flexible [19–20]. 

The main contribution of the paper is: 

➢ Input Traffic Signal Images 0-10, path 

➢ Checking Traffic Flow using DDPG (Deep 

Deterministic Policy Gradient (DDPG) with 

Hyper Parameters 

➢ Apply CFCO algorithm to finding the Shortest 

Path 

➢ Shortest Path Result 

The remainder of the paper is structured as follows. 

Section II provides an evaluation of the current status of 

research on efficient shortest route finding algorithms. In 

Section III, the reasoning behind the proposed method is 

explored in additional detail. The experimental data are 

presented and discussed in Section IV. In Section V, we 

wrap up the study by talking about possible future 

research directions. 

1.1 Motivation of the paper 

We need more sophisticated solutions to the problems 

caused by urban traffic congestion since conventional 

route design approaches aren't cutting it anymore. 

Incorporating reinforcement learning and chaotic 

optimization into intelligent transportation systems is the 

driving force behind this study. The goal is to create a 

method that can change and adapt to the environment, 

taking into account traffic circumstances in real-time, 

optimize routes effectively, and make automobile 

navigation systems far more effective in complicated 

urban settings. Congestion relief, faster travel times, and 

an improved experience for city commuters are the end 

goals. 

2. Background Study 

Alves, D. et al. [1] three new label-setting methods for 

the Shortest Path issue were introduced and tested in this 

research: The single-threaded methods SP1 and SP2 use 

the graph's known properties to label nodes as fixed, 

preventing heap inserts and removals; the multi-threaded 

technique ParSP2 takes use of the chances for 

parallelism provided by SP1 and SP2.  

Candra, A. et al. [3] the results of the studies prove that 

both Dijkstra's and A* were capable of finding the 

shortest route. But sometimes the two algorithms come 

up with distinct paths, which mean the overall distance 

was varied too. In addition, A* has a shorter running 

time than Dijkstra's; although Dijkstra's averages 7.719 

ms, A* clocks in at 4.406 ms. This follows the A* 

principle, which chooses the site using the optimal 

heuristic value. Lastly, it was believed that Dijkstra's and 

A* algorithms have the same complexity. 

Gbadamosi, O. A., & Aremu, D. R. [7] these authors 

research propose an alternative to traditional Dijkstra's 

method for determining shortest paths when the costs of 

doing so were so high that the benefits of using it were 

outweighed. Using a 40-node graph, the new method was 

put into action. This study was a continuation of an 

ongoing research project; the next phase will focus on 

fully implementing the algorithm and calculating its 

complexity from analytical and numerical perspectives. 

Kučera et al. [9] By using graph theory to pre-process 

historical and real-time traffic data with different input 

types, the shortest route*search efficiently finds the 

shortest path in regions with high levels of traffic 

congestion. Prior to processing each step, the beginning 

node focuses on locating the closest desired objective. 

The shortest route * search algorithm's primary benefit 

was that it avoids squandering time on unnecessary 

nodes.  

Liu, H. et al. [11] the top-k shortest pathways with 

diversity (KSPD) were the focus of this paper's research. 

Once the issue has been clearly defined, the author 

demonstrates that the KSPD problem was NP-hard. 

Then, in cases when diversity was not necessary, the 

author provide a generic greedy framework for the 

KSPD issue that can handle other similarity functions as 

well as the KSP problem.  

S. Santos et al. [13] For any given quantum network 

source node, this article presents an efficient method that 

determines all the nodes with whom it may form a 

quantum connection with a certain end-to-end fidelity 

requirement, as well as the shortest way to reach each of 

those nodes.  

Shen, L. et al. [15] An new approach was presented and 

used in this study to tackle the reliable shortest path-

finding problem in road networks with related link travel 

time, delays at signalized junctions, and traffic signals, 

as well as their correlations. Whether a road network was 
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crowded or not, these authors model can capture both 

conditions. Two separate stochastic processes were used 

to simulate these two separate cases, drawing on 

previous research. In other words, the author assumes 

that saturation flows were lognormally distributed, and 

journey times on crowded highways follow normal 

distributions 

Toan, T. et al. [17] these authors research introduces a 

method for using visibility-graph for robots to determine 

the shortest route between two points in a two-

dimensional environment while avoiding fixed barriers.  

Lei et al. [23] introduce an enhancement to this 

algorithm by integrating chaotic systems, resulting in the 

Chaotic Fruit Fly Optimization Algorithm (CFOA). The 

FOA models this behavior through iterative steps of 

searching and updating positions based on a combination 

of olfactory and visual cues. It has been applied to 

various optimization problems, demonstrating simplicity 

and effectiveness. 

2.1 Problem definition  

There is a major issue with contemporary transportation 

in the form of urban traffic congestion and the 

inefficiency of conventional route design techniques. In 

order to optimize automobile navigation in urban 

environments, this study presents a novel approach to the 

problem. Finding the most direct and effective routes for 

vehicles while taking current traffic circumstances into 

account is the main challenge. Reducing travel times and 

improving navigation in urban contexts are two of the 

main goals of the challenge, which also requires finding 

solutions to the constraints of current systems and being 

able to react to changing traffic conditions. 

3. Materials and Methods 

Using the Chaotic Fly Consonance Optimization (CFCO) 

algorithm, we developed an effective shortest 

pathfinding system for automobiles. The materials and 

methodology applied in this study are outlined in this 

section. Utilizing photos of traffic signals, the DDPG 

algorithm for evaluating traffic flow, and the CFCO 

algorithm for determining the best route are all part of 

the process. The efficient shortest path finding using 

chaotic fly consonance optimization algorithm model has 

represented at figure 1. 

 

Fig 1: Efficient shortest path finding workflow 

architecture  

3.1 System model 

To efficiently determine the best routes for vehicles in 

congested city traffic, the suggested method combines 

two algorithms: DDPG and Chaotic Fly Consonance 

Optimization (CFCO). Here, 𝑖  stands for the collection 

of pictures of traffic signals that fall inside the 0–10 

range, and 𝑃 is the route that we want to reach. The sum 

of 𝑖 and 𝑃 is known as𝐷, the input data. 

The following equations explain the model-free off-

policy character of the DDPG algorithm, which is used 

to evaluate traffic flow: 

𝜃𝜇 ← 𝜃𝜇 + 𝛼∇𝜃𝜇
𝐽(𝜃𝑄)β ------ (1) 

Here, 𝜃𝜇  and 𝜃𝑄  represent the parameters of the policy 

and the action-value function, respectively. 𝐽 denotes the 

expected return, and 𝛼 and β are learning rates. 

The CFCO method is used for route optimization after 

the traffic flow evaluation. A key component of the 

CFCO algorithm that controls position updates is: 

xi(t + 1) = xi(t) + ωVi(t) ------ (2) 

Where xi(t) and Vi(t) represent the current position and 

velocity of the 𝑖𝑡ℎ  fly, ω  is the inertia weight, 𝐶  is a 

constant, and xi(t + 1) is the best position found by the 

𝑖𝑡ℎ fly. 

By merging DDPG and CFCO, we can find the vehicle's 

optimal path that accounts for changing traffic 

conditions. One way to measure the system's 

effectiveness is by looking at how well it can improve 
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navigation in urban areas by suggesting more efficient 

routes. 

3.2 Network model 

A neural network model may be used to analyze traffic 

flow utilizing the DDPG method, considering the 

characteristics of the stated system for efficient vehicle 

route finding in urban traffic situations. 𝑁𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝐹𝑙𝑜𝑤 is a 

suitable name for this neural network. To improve traffic 

flow, this network would take processed pictures of the 

signals (𝑖) and maybe the vehicle's present condition (𝑆) 

as inputs and provide predictions about what to do next 

(𝑆). 

A neural network model may be used to analyze traffic 

flow utilizing the DDPG method, considering the 

characteristics of the stated system for efficient vehicle 

route finding in urban traffic situations. This neural 

network will be called𝑁𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝐹𝑙𝑜𝑤 . To improve traffic 

flow, this network would take processed pictures of the 

signals (𝑖) and maybe the vehicle's present condition (𝑠) 

as inputs and provide predictions about what to do 

next(𝑠). 

The neural network comprises three layers:h1,h2, and the 

output layer ( a ). These layers are defined by the 

following equations: 

h1 = ReLU(W1 ⋅ [I, S] + b1) ------ (3) 

h2 = ReLU(W2 ⋅ h1 + b2), ------- (4) 

a = Tanh(Wout ⋅ h2 + bout), -------- (5) 

In which the weight matrices are denoted byW1,𝑊2, and 

Wout , the bias vectors are 𝑏1 , 𝑏2 , and bout , and the 

rectified linear unit activation function is 𝑇𝑎𝑛ℎ, and the 

hyperbolic tangent activation function is ReLU . The 

input to the neural network is a combination of pictures 

of traffic signals and the current state [I, S] . The best 

course of action for the vehicle is then determined by the 

DDPG algorithm using the anticipated action(𝑎). Using 

the DDPG training procedure outlined in the prior reply, 

the parameters of the neural network are revised. 

3.3 Input Traffic Signal Images path 

For effective vehicle path finding in urban environments, 

the suggested methodology relies heavily on the input 

traffic signal images path.  It entails gathering pictures of 

traffic signals, which might range from zero to ten, in 

real-time from sources like sensors or cameras. Resizing 

and normalization are two examples of the preprocessing 

steps used to improve the quality of these photographs. 

For the purpose of characterizing the traffic signal states, 

pertinent information including signal type and color 

intensity is retrieved. The data input for the next steps is 

formed by this route and the processed photos of the 

traffic signals. To build an efficient and adaptive vehicle 

navigation system in ever-changing urban settings, this 

input path must be integrated. Then, the Deep 

Deterministic Policy Gradient (DDPG) algorithm can be 

used to evaluate traffic flow, and the Chaotic Fly 

Consonance Optimization (CFCO) algorithm can be used 

to optimize routes. 

3.4 Checking Traffic Flow using Deep Deterministic 

Policy Gradient 

The DDPG algorithm, a robust model-free off-policy 

reinforcement learning method well-known for dealing 

with continuous action spaces, is used to control traffic 

flow referred by Casas, N. (2017). In order to forecast 

the best course of action that will optimize traffic flow 

efficiency, the DDPG algorithm is used. Achieving 

optimum performance in anticipating traffic conditions 

requires tuning key hyperparameter including the 

learning rate (𝛼) , discount factor (𝛾) , and exploration 

noise(𝜎). Exploration noise promotes discovery in the 

continuous action space, the learning rate establishes the 

step size during parameter updates, and the discount 

factor equalizes current and future rewards. In order for 

the algorithm to adapt and provide correct predictions, 

which helps with effective traffic flow evaluation in 

urban environments, these hyperparameter must be fine-

tuned. The DDPG algorithm can optimize vehicle routes 

in real-time based on well-informed judgments made 

during the hyperparameter tuning phase, which captures 

the dynamic nature of traffic situations. 

When it comes to practical applications like robotic 

control, reinforcement learning algorithms like DDPG 

shine because of their ability to handle issues with 

continuous action spaces referred by S. Li (2020). The 

actor network in DDPG converts states into deterministic 

actions, while the critic network assesses how well those 

actions were done. A replay buffer and off-policy 

learning enable the system to draw on historical data 

apart from the active policy. With the introduction of 

target networks, DDPG gradually monitors the 

characteristics of the local networks to improve stability. 

Its usefulness in applications needing accurate and 

continuous control over actions is enhanced by its 

deterministic policy, Q-value function approximation, 

and continuous action handling. In conclusion, DDPG is 

an effective method for completing reinforcement 

learning control tasks that are both complicated and 

continuous. 

Essential to DDPG is the fact that, as shown in (6), it 

estimates a deterministic behavior policy via the use of a 

stochastic method for the exploration of appropriate 

behaviors. Although this simplifies policy learning by 

reducing integration requirements to state space, it may 
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not be able to explore the whole state and action space 

due to its limits. In order to circumvent this restriction, 

our research for random exploration incorporates a noise 

process, which is a truncated normal. 

𝑎𝑡 = 𝜇(𝑠𝑡|𝜃𝜇) ------- (6) 

Equation (6) represents the estimation of a deterministic 

behavior policy, where 𝑎𝑡  is the action taken at time𝑡, 

and 𝜇 is the actor network outputting actions based on 

the state 𝑠𝑡 with parameters 𝜃𝜇. This deterministic policy 

provides a simplified approach to policy learning but 

may face limitations in exploring the entire state and 

action space. 

𝑎𝑡 = 𝜇(𝑠𝑡|𝜃𝜇) + 𝑁𝑡 -------- (7) 

To overcome the limitation of deterministic exploration, 

Equation (7) introduces a noise process 𝑁𝑡  the action. 

This noise, modeled as a truncated normal distribution, 

adds a level of stochasticity to the selected actions, 

allowing for more extensive exploration of the state and 

action space during the learning process. 

∇𝜃𝜇
𝜇 ≈ 𝐸𝜇 [∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡)∇𝜃𝜇

𝜇(𝑆|𝜃𝜇)|𝑠=𝑠𝑡
]  -

-------- (8) 

We just require the critic network's gradients with 

respect to actions and the actor network's gradients with 

respect to its parameters in order to get the expectation, 

as shown in (8). 

In addition to theoretical considerations, DDPG makes 

use of a number of practical techniques, such as 

experience replay to eliminate time correlations in 

experience tuples and target networks to improve 

convergence. 

Algorithm 1: Deep Deterministic Policy Gradient 

Input: 

1. State Space (S): Represents the set of possible 

states in the urban traffic environment. 

2. Action Space (A): Denotes the set of feasible 

actions a vehicle can take, reflecting possible 

maneuvers and routes. 

Steps: 

1. Initialize DDPG Networks: 

o Initialize the actor network 𝜇 and critic 

network 𝑄 with random weights. 

𝑎𝑡 = 𝜇(𝑠𝑡|𝜃𝜇)  

o Initialize target networks 𝜇′  and 𝑄′ 

with the same weights as the 

corresponding networks. 

2. Traffic Flow Assessment (DDPG): 

o Train the actor and critic networks 

using the DDPG algorithm with the 

provided state, action, and reward 

information. 

𝑎𝑡 = 𝜇(𝑠𝑡|𝜃𝜇) + 𝑁𝑡  

o Fine-tune hyperparameter (𝛼, 𝛾, 𝜎)  for 

optimal performance in predicting 

traffic conditions. 

3. Chaotic Fly Consonance Optimization 

(CFCO): 

o Utilize the output of the DDPG 

algorithm as a fitness function for the 

CFCO algorithm. 

∇𝜃𝜇
𝜇 ≈

𝐸𝜇 [∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡)∇𝜃𝜇
𝜇(𝑆|𝜃𝜇)|𝑠=𝑠𝑡

]  

o Apply the CFCO algorithm to explore 

the solution space and find the shortest 

path for the vehicle, utilizing chaotic 

optimization inspired by fly behavior. 

Output: 

1. Optimal Route: 

o The final output is the optimal route 

obtained through the integration of 

DDPG for traffic flow assessment and 

CFCO for path optimization. 

3.5 Apply CFCO algorithm to finding the Shortest 

Path 

An optimization technique that takes its cues from the 

swarming and chaotic behavior of flies is known as 

Chaotic Fly Consonance Optimization (CFCO). In order 

to solve complicated optimization issues, this program 

takes cues from the swarm intelligence that flies use in 

their colonies. At CFCO, we see each possible 

optimization option as a "fly." In order to efficiently 

explore the solution space, the method makes use of 

chaotic dynamics, which is modeled after the erratic 

behavior of flies. The algorithm is able to avoid local 

optima and instead seek for global optima due to its 

chaotic character. With each iteration the algorithm aims 

to converge toward the ideal solution by updating the 

location and velocity of each "fly" in the swarm. By 

capitalizing on the natural fly's innate chaos and 

cooperation, CFCO has shown helpful in finding near-

optimal solutions to a number of optimization 

challenges. 

Given that the basic FOA only makes reference to a 

single variable, our search for an algorithm that takes 
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numerous factors into account ultimately led us to the 

distance metrics used in more conventional approaches.  

Basic FOA leads to several local optimum solutions 

rather than a single global one. In this research, we aim 

to address this shortcoming by enhancing the 

performance of basic FOA by using chaotic mapping to 

escape from local optima. This study proposes a 

modified FOA called CFOA, which stands for chaotic 

fruit fly optimization algorithm. 

Algorithms are made to seem more random by using 

certain statistical distributions, including the uniform and 

Gaussian distributions. Since it exhibits unpredictability, 

chaos is an excellent method for producing irrational 

results. Algorithms may be able to complete iterative 

search steps faster than traditional stochastic search 

using normal probability distributions due to the chaotic 

properties of periodicity and mixing chaos. With its 

straightforward operation and well-dynamic 

unpredictability, logistic mapping is the most 

emblematic chaotic mapping system. To put it simply, 

logistic mapping is: 

𝑧(𝑡 + 1) = 𝜇𝑧(𝑡)(1 − 𝑧(𝑡))𝑧𝜖(0,1)0 < 𝜇 ≤ 4 ------ (9) 

Equation (9) represents the logistic mapping, a chaotic 

mapping system, where 𝑧(𝑡 + 1) is the next state, 𝑧(𝑡) is 

the current state, and 𝜇 is a control parameter. Logistic 

mapping exhibits chaotic behavior when0 < 𝜇 ≤ 4. This 

chaotic mapping is employed to introduce 

unpredictability and enhance randomness in the 

algorithm. 

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑟𝑎𝑛𝑑𝑜𝑚𝑣𝑎𝑙𝑢𝑒𝑥 ------- (10) 

𝑦(𝑡 + 1) = 𝑦(𝑡) + 𝑟𝑎𝑛𝑑𝑜𝑚𝑣𝑎𝑙𝑢𝑒𝑦  ------- (11) 

Equations (10) and (11) define the random movement at 

each coordinate, where 𝑟𝑎𝑛𝑑𝑜𝑚𝑣𝑎𝑙𝑢𝑒𝑥  and 

𝑟𝑎𝑛𝑑𝑜𝑚𝑣𝑎𝑙𝑢𝑒𝑦  represent the random variables 

determining the movement in the 𝑥  and 𝑦  coordinates, 

respectively. This randomness simulates the 

unpredictable nature of fly movement. 

At each coordinate, the value of the movement is a 

random variable. When a fly group relocates to a new 

location, such as Fly1, Fly2, or Fly3, its members join a 

new group and the computation uses the new locations 

instead of the old ones. 

The distance to the origin, denoted as Dist, is 

approximated initially since the location of the meal 

cannot be determined: 

𝐷𝑖𝑠𝑡𝑖 = √𝑥𝑖
2 + 𝑦𝑖

2 ------- (12) 

Equation (12) calculates the distance to the origin (𝐷𝑖𝑠𝑡𝑖) 

for each fly in the group, where 𝑥𝑖
2  and 𝑦𝑖

2  are the 

coordinates of the fly. 

The judgment value for scent concentration (𝑠)  is 

computed, which is the inverse of Dist. 

𝑆𝑚𝑒𝑙𝑙𝑖 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑆𝑖) -------- (13) 

Equation (13) computes the scent concentration 

judgment value (𝑆𝑚𝑒𝑙𝑙𝑖), which is the reciprocal of the 

distance (𝐷𝑖𝑠𝑡𝑖 ). The function 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑆𝑖) represents 

the scent concentration judgment function, indicating the 

suitability of the current fly location based on its 

proximity to the origin. 

Algorithm 2: Chaotic Fly Consonance Optimization 

Input: 

1. Optimization Problem: 

o A problem that requires finding the 

optimal solution within a solution 

space. 

Steps: 

1. Chaotic Mapping Initialization: 

o Initialize chaotic mapping using 

logistic mapping with a control 

parameter(𝜇). 

o Generate random values for movement 

in each coordinate using:  

𝑧(𝑡 + 1) = 𝜇𝑧(𝑡)(1 −

𝑧(𝑡))𝑧𝜖(0,1)0 < 𝜇 ≤ 4  

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑟𝑎𝑛𝑑𝑜𝑚𝑣𝑎𝑙𝑢𝑒𝑥  

𝑦(𝑡 + 1) = 𝑦(𝑡) + 𝑟𝑎𝑛𝑑𝑜𝑚𝑣𝑎𝑙𝑢𝑒𝑦   

2. Fly Group Movement: 

o Update the positions of each "fly" in 

the swarm using the generated random 

values. 

o Form a new fly group with updated 

locations. 

3. Distance Estimation: 

o Estimate the distance of each fly to the 

origin using: 

𝐷𝑖𝑠𝑡𝑖 = √𝑥𝑖
2 + 𝑦𝑖

2  

4. Smell Concentration Judgment: 

o Calculate the smell concentration 

judgment value (SS), which is the 

reciprocal of the estimated distance. 
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5. Fitness Function Evaluation: 

𝑆𝑚𝑒𝑙𝑙𝑖 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑆𝑖)   

Output: 

1. Optimal Solution: 

o The final output is the optimal solution 

or near-optimal solutions obtained by 

the Chaotic Fly Consonance 

Optimization (CFCO) algorithm. 

The best or almost best route for vehicles to take in 

congested city traffic is what the suggested method 

ultimately produces. Combining the Deep Deterministic 

Policy Gradient (DDPG) method for evaluating traffic 

flow with the Chaotic Fly Consonance Optimization 

(CFCO) strategy for optimizing paths yields this 

outcome. An effective solution for automobile 

navigation is produced by combining these strategies, 

which allow the system to adapt to real-time traffic 

situations and effectively explore the solution space. 

IV. Results and Discussion  

In this section, we present the outcomes of the proposed 

methodology for efficient shortest path finding in urban 

traffic scenarios, integrating the DDPG algorithm for 

traffic flow assessment and the Chaotic Fly Consonance 

Optimization (CFCO) algorithm for path optimization. 

The evaluation and discussion revolve around the 

system's ability to adapt to dynamic traffic conditions 

and provide optimal routes for vehicles. 

4.1 Performance evaluation 

Accuracy, precision, and recall were calculated using a 

positive sample from each classification. The accuracy 

may be represented by the following equation (14): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑁𝑢𝑚𝑒𝑏𝑒𝑟𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑓𝑜𝑟𝑎𝑙𝑙𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠
 ------ 

(14) 

As demonstrated in Equation (15), the accuracy of the 

sample may be inferred from the precision of a single 

category:   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =  
𝑇𝑃𝑠

𝑇𝑃𝑠+ 𝐹𝑃𝑠
 ------ (15) 

The recall of a category is defined as the percentage by 

which a properly predicted sample of that category 

covers the sample of that category in the collection of 

samples, as shown in the following equation, 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =  
𝑇𝑃𝑠

𝑇𝑃𝑠+ 𝐹𝑁𝑠
 ------- (16) 

 Equation is used to determine the F measure. 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛.𝑟𝑒𝑐𝑎𝑙𝑙

𝑁𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 ------- (17) 

 

Fig 2: Chaotic runs – old vs new worst value 

The figure 2 shows the dynamic behavior of a chaotic fly 

algorithm employed for the selection of the shortest path. 

In the context of Chaotic 0, the algorithm showcases a 

consistent increase in both old and new worst values, 

implying a potential exploration-exploitation trade-off. 

Conversely, Chaotic 1 displays a more promising trend, 

with the new worst values gradually decreasing, 

indicative of convergence towards a shorter path. 

Chaotic 2 lacks a clear convergence pattern, possibly 

suggesting the algorithm's sensitivity to the chaotic 

dynamics. Chaotic 3 exhibits fluctuating values without a 

discernible convergence, while Chaotic 4 introduces 

intricate and erratic behavior, emphasizing the 

algorithm's adaptability. The diverse outcomes 

underscore the algorithm's responsiveness to chaotic 

dynamics, reflecting its capacity to navigate and 

optimize for the shortest path within a complex 

environment. 

 

Fig 3: Finding shortest path to destination CFCO 

algorithm 

The figure 3 shows to find the shortest path to CFCO 

using Dijkstra's algorithm, start from the initial node and 

iteratively explore the neighboring nodes, updating the 

tentative distances until the algorithm converges and the 

shortest path to CFCO is determined. 
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Fig 4: Performance Summary across 20 Episodes 

The figure 4 shows mean reward across the 20 episodes 

is 7492.75, with a small standard deviation of 1.41, 

indicating relatively consistent performance. The range 

of rewards spans 6 units, reflecting some variability in 

the episode outcomes. 

 

Fig 5: Episode-wise Rewards and Variations Analysis 

The figure 5 provided data represents rewards obtained 

in each episode, along with associated reward variations 

(r_var) and bonus variations (b_var). The rewards 

fluctuate around the mid-thirties range, with an average 

reward of 35.6. The reward variations and bonus 

variations remain constant at 1.00 throughout the 

episodes. 

 

Fig 6: Chaotic matrix heatmap 

The figure 6 shows matrix sparse, containing numerous 

zero values interspersed with non-zero entries. The 

magnitude of non-zero entries spans a wide range, 

indicating significant variability in the strengths of 

connections or influences. The presence of small values 

close to zero suggests a level of sparsity and potential 

independence between certain elements. The matrix's 

structure and the distribution of values might reflect a 

system characterized by varying degrees of 

interconnectedness, with some elements having 

negligible impact while others exhibit stronger 

relationships. The visual interpretation of the heatmap 

allows for an initial assessment of the overall pattern and 

density of connections within the chaotic system. 

 

Fig 7: Shortest path selection 

The figure 7 illustrates the process of selecting the 

shortest path. Nodes representing key points in the route 

are connected by edges, forming a network.  

Table 1: Performance metrics comparison table 

 Algorith

ms 

Accur

acy 

Precisi

on 

Rec

all 

F-

measu

re 

Existin

g 

metho

ds 

Chaotic 

fruit fly 

with 

DDPG 

95.56 95.81 95.1

1 

95.31 

Chaotic 

fly 

optimizat

ion with 

DDPG 

96.87 94.05 96.8

4 

96.98 

DDPG 

with 

Consona

nce 

optimizat

ion 

97.63 97.24 98.6

1 

98.93 

Propos

ed 

metho

ds 

CFCO 98.87 98.99 99.0

2 

99.38 
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Fig 8: Performance metrics comparison chart 

The table 1 and figure 8 shows performance metrics for 

different algorithms: For the existing methods, Chaotic 

fruit fly with DDPG achieved an accuracy of 95.56%, 

precision of 95.81%, recall of 95.11%, and F-measure of 

95.31%; Chaotic fly optimization with DDPG achieved 

an accuracy of 96.87%, precision of 94.05%, recall of 

96.84%, and F-measure of 96.98%; DDPG with 

Consonance optimization achieved an accuracy of 

97.63%, precision of 97.24%, recall of 98.61%, and F-

measure of 98.93%. In contrast, the proposed method 

CFCO outperformed the existing methods with an 

accuracy of 98.87%, precision of 98.99%, recall of 

99.02%, and F-measure of 99.38%, indicating its 

superior performance across all metrics. 

5. Conclusion 

In Conclusion, the DDPG and the Chaotic Fly 

Consonance Optimization (CFCO) algorithms provide a 

new and effective approach to vehicle route finding in 

urban traffic settings, as shown in this study. Starting 

with DDPG's appraisal of traffic flow, the system takes 

use of its model-free off-policy nature to adjust to real-

time traffic circumstances. After that, the CFCO method 

is used for global optimization in determining the 

shortest route; this algorithm was inspired by the chaotic 

behavior of flies. The results highlight how well the 

integrated method works in generating ideal routes, 

showing how well it can adjust to changing traffic 

conditions. Urban areas may see less congestion and 

shorter travel times as a result of better navigation made 

possible by combining DDPG and CFCO. The proposed 

method CFCO outperformed the existing methods with 

an accuracy of 98.87%, precision of 98.99%, recall of 

99.02%, and F-measure of 99.38%, indicating its 

superior performance across all metrics. Findings from 

this study highlight the potential for a combination of 

chaotic optimization and reinforcement learning to 

improve the efficiency of vehicle navigation systems in 

densely populated areas, which is a major step forward 

for the area of intelligent transportation systems. 
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