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Abstract: In recent decades, the quality of water is affected due to contamination and pollution of water bodies. The existing techniques 

face issues related to poor water quality prediction with less accuracy. This research focusses on an effective water quality classification 

framework by predicting it as safe or unsafe. Initially, the data is acquisitioned from Kaggle and it is subjected to the stage of pre-processing 

using standard scalar. The pre-processed output is provided for feature selection takes place using dynamic Particle Swarm Optimization 

(PSO). After this, the classification is performed using combined method of Convolutional Neural Network and Long Short-Term Memory 

(CNN-LSTM). The CNN acts as front end of model which processes the input features based on non-linear characteristics and LSTM acts 

as the back end which receives the abstracted data that helps in predicting the water quality as safe or unsafe. The outcome through the 

experimental validation shows that the suggested framework achieves prediction accuracy of 99.99% which is comparably higher than 

ensemble model with classification accuracy of 98.1%. 
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1. Introduction 

Water is considered as the significant natural resources 

which plays a vital role in day-to-day life of living 

organisms. Moreover, water is widely utilized in drinking, 

cooking, washing and irrigation and so on [1-3]. The water 

with a good quality refers to the quality which is consumable 

by humans, animals and suited for agricultural purposes. 

There are numerous studies developed for this in the recent 

years to enhance water quality by means of physical, 

chemical and biological processes [4,5]. The quality of the 

water is accessed based on Total Dissolved Solids (TDS) 

and the TDS is comprised with various type of inorganic 

salts such as calcium, magnesium, potassium, nitrate, 

sodium and chloride. The water released from industries and 

factories are mixed with the natural water sources such as 

river, lake, pond [6]. However, taking an appropriate action 

by building a partition helps to prevent the water from being 

affected. In case of the waste water from the industries are 

fed into the ground, it affects the land surface as well as the 

ground level water [7,8]. Moreover, the urban waste water 

based on dye and fabrics contributes to a great extent in 

polluting the source of waters. So, the water needs to meet 

specified criteria to classify itself as potable water. More 

number of processes have been followed by organized 

international bodies and government to diminish the 

efficiency reckless water utilization and protecting it from 

being polluted. 

The Water Quality Index (WQI) is a subjective method, 

widely utilized to access the suitability of the surface and 

ground water. The assessment by means of subjective 

approach assign weights to the parameters for evaluating 

WQI score [9,10]. The evaluation of water quality by means 

of subjective approach considers physiochemical 

parameters. However, measuring the quality of groundwater 

sometimes gives inappropriate results due to its 

contamination [11]. The traditional methods based on water 

quality prediction are time consuming because it needs an 

expert to decide the quality of water. So, an automated 

process helps in adopting a data driven approach using 

Machine Learning (ML) or Deep Learning (DL) algorithms. 

The process of monitoring and assessing possible concerns 

using ML and DL approaches acts as an efficient modelling 

approach to estimate WQI and WQC. However, ML 

techniques are least suitable for predicting the non-linear 

water quality parameters [12,13]. So, the DL techniques are 

vastly utilized in predicting the water quality due to its 

flexibility in capturing non-linear parameters related to 

water quality prediction. Nonetheless, the existing 

prediction approaches are prone to adapt themselves with 

the varying environmental conditions that hinder the effect 

of assessing water quality [14,15]. So, this research 

develops an advanced deep learning approach to enhance 

the accuracy of predicting the water quality. The major 

findings of this study are as follows: 

1. The pre-processed output using standard scalar is fed 

into feature selection which is based on dynamic PSO. 

The dynamic PSO is developed based on exponential 

decay and particle elimination that selects the best 

feature sets. 
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2. This research develops a combined model integrating 

CNN and LSTM in which, CNN acts as the frontend 

that processes the input features based on non-linear 

characteristics, while the LSTM acts as the back end 

which receives the abstracted data that helps in 

predicting the water quality as safe or unsafe. 

The rest of manuscript is structured in the following manner: 

The recent researches based on predicting the water quality 

is presented in Section 2. The proposed framework to 

enhance the accuracy of water quality prediction is delved 

in Section 3, while Section 4 presents the experimental 

outcomes achieved while evaluating the suggested 

approach, and the concluding phase of the research is 

described in Section 5 of the manuscript. 

2. Related works 

This section provides recent studies on basis of water quality 

prediction using different approaches along with its 

advantages and limitations. 

Shams [16] introduced water quality prediction using 

machine learning based on grid search method. The raw data 

was pre-processed with the help of data manipulation and 

normalization. The grid search was utilized in the process of 

optimizing and parameter tuning for four regression models. 

The evaluation was performed using cross validation 

approach and the water quality assessment was performed 

to evaluate the quality of water as good or bad. However, 

the introduced method required prediction for a time period. 

Dritsas and Trigka [17] introduced an efficient data driven 

machine learning models to predict the quality of water. A 

supervised machine learning method was developed from a 

labelled training data to detect the suitability of water. The 

physiochemical and the microbiological parameters were 

provided as input features which helped to present the 

quality of water as safe or unsafe. The efficiency of the 

machine learning models was assessed with and without 

balancing the classes using Synthetic Minority 

Oversampling Technique (SMOTE). However, the use of 

machine learning was only applicable with smaller datasets. 

Shah [18] developed an environmental assessment-based 

underground water quality prediction using consistent 

bigdata through hyperparameters optimized machine 

learning models. The PCA was utilized to choose the 

significant input parameter set and removed the least 

influential for exhibiting total dissolved solids and oxygen 

levels in water. For better prediction of the particle swarm 

optimization was integrated with gene expression 

programming and feed-forward neural network for structure 

formation and hyperparameter tuning. This developed 

model was utilized for effectively solving the 

hyperparameter setting problems. Due to the drawback of 

conventional techniques, the developed model handled only 

linear and stationary datasets. 

Bhardwaj [19] implemented a machine learning and IoT 

based framework for water quality calculation and device 

component monitoring. The ML techniques investigated the 

water quality, device management and monitoring 

approaches. The developed model was involved to perform 

proactive monitoring, alongside warning of devices and 

systems. The developed model had advantages like 

efficiency, cost effective, low time consuming and effort. 

Nevertheless, this developed model struggled to capture 

long-term patterns in water quality data which are often 

crucial for accurate predictions. 

Singha [20] introduced a prediction of groundwater quality 

by effective machine learning techniques like RF, XGBoost 

and ANN. A total of 226 samples were composed and 

several physicochemical parameters were estimated to 

calculate the entropy weight-based water quantity in 

agriculture intensive area. RF, XGBoost, and ANN 

processed large-scale data without feature selection, offered 

high training speed, noise immunity, and accuracy in 

quantity prediction. The developed model enhanced the 

performance by decreasing the error and computational rate 

in the execution process. Nevertheless, the suggested model 

does not consider the feature selection phase which utilized 

inappropriate features for classification. 

Mehedi Hassam. Md [21] developed the Machine Learning 

(ML) methods like Random Forest (RF), Neural Network 

(NN), Multinominal Logistic Regression (MLP), Support 

Vector Machine (SVM) and Bagged Tree Model (BTM) for 

classifying the water quality in different locations. The 

water quality was represented through features like Total 

Coliform (TC), Dissolved Oxygen (DO), Nitrate pH, 

Biological Oxygen Demand (BOD) and Electric 

Conductivity (EC). The developed method effectively 

selected the feature importance of model. However, the 

developed method has not normalized the data. 

3. Proposed methodology  

This research introduces an effective framework to predict 

the quality of water. The major objective of this research is 

to utilize advanced deep learning algorithm to analyse 

quality of water as safe and unsafe. The proposed 

framework undergoes four stages such as data collection, 

pre-processing, feature selection and classification. The 

block diagram for the workflow involved in proposed 

algorithm is presented in Fig. 1. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1828–1836  |  1830 

 

Fig. 1. Workflow of the process involved in water quality 

prediction 

3.1. Data acquisition  

The collection of raw data is the initial stage in water quality 

prediction which takes place using the data from water 

quality dataset [22] in Kaggle. The data is a set of data 

obtained from urban environment and is comprised with 

attributes of numeric variables. There are about 21 attributes 

present in the dataset, the first 20 attributes are based on the 

ingredients present in the water along with the ranges 

present in water. The final attribute is used to predict the 

classes as 0 or 1. The class 1 refers to the water quality is 

safe and the class 0 refers to the water quality being unsafe. 

The list of attributes along with their ranges are present in 

the water quality dataset have Aluminium (2.8), Ammonia 

(32.5), Arsenic (0.01), Barium (2), Cadmium (0.05), 

Chloramine (4), Chromium (0.1), copper (1.3), Fluoride 

(1.5), Bacteria (0), Virus (0), Lead (0.015), Nitrates (10), 

Nitrates (10), Nitrites (1), Mercury (0.002), Perchlorate 

(56), Radium (5), Selenium (0.5), Silver (0.1), Uranium 

(0.3). If the range of elements exceeds the fore mentioned 

ranges, then it is considered as dangerous. 

3.2. Pre-processing 

Pre-processing is performed to make the data suitable for 

further process involved in water quality prediction. Next to 

data acquisition, data pre-processing is accomplished using 

standard scalar. Basically, the standard scalar is utilized to 

standardize the raw data which helps the machine learning 

techniques to perform better by distributing the features in a 

same scale. For a reliable approach, the data should be 

standardized within the range of 0-1. The evaluation of 

standard scalar takes place based on the (1). 

𝑧 = (𝑥 − 𝜇)/𝑠                                                       (1) 

Where, the mean value is denoted as 𝜇 and the standard 

deviation is represented as 𝑠. The standard scalar helps to 

arrange the negative data to a normally distributed function. 

Moreover, it is utilized when the classification is more 

significant than regression. Next to the process of pre-

processing, the feature selection proceeds to a place with the 

help of dynamic Particle Swarm Algorithm (PSO). 

3.3. Feature selection using dynamic PSO 

Next to pre-processing, the feature selection takes place 

using the dynamic PSO which is the improved version of 

PSO with exponential decay and elimination of particles. 

The pre-processed output is comprised with 21 features; in 

that, dynamic PSO selects the best 10 features for 

classification. The fitness function is defined based on the 

accuracy of K-Nearest Neighbors (KNN) classifier, which 

serves as a proxy for feature relevance. In PSO, each 

individual population is referred to as the particle noted as 

the candidate solution. The process takes place in PSO 

optimization that attains the global optimal solution. The 

position of the particle is accompanied with four vectors 

including the best position in previous iteration 𝑝𝑖
𝑡 =

(𝑝𝑖,1
𝑡 , 𝑝𝑖,2

𝑡 , … , 𝑝𝑖,𝐷
𝑡 ), position is 𝑥𝑖

𝑡 = (𝑥𝑖,1
𝑡 , 𝑥𝑖,2

𝑡 , … , 𝑥𝑖,𝐷
𝑡 ), 

velocity is 𝑣𝑖
𝑡 = (𝑣𝑖,1

𝑡 , 𝑣𝑖,2
𝑡 , … , 𝑣𝑖,𝐷

𝑡 ) and global best position 

is 𝑔𝑡 = (𝑔𝑖,1
𝑡 , 𝑔𝑖,2

𝑡 , … , 𝑔𝑖,𝐷
𝑡 ). The count of iteration in the 

present state is denoted as 𝑡 and variables are denoted as 𝐷. 

The particle’s position is on the basis of (2) and (3). 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝑣𝑖,𝑗
𝑡+1                                                 (2) 

𝑣𝑖,𝑗
𝑡+1 = 𝑣𝑖,𝑗

𝑡 + 𝑐1 × 𝑟1 × (𝑝𝑖,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) + 𝑐2 × 𝑟2 × (𝑔𝑗
𝑡 −

𝑥𝑖,𝑗
𝑡 )  (3) 

Where, the index of the particle is represented as 𝑖, the size 

of the population is denoted as 𝑁, and index for each 

variable in the population is 𝑗. The local acceleration co-

efficient is represented as 𝑐1, the global acceleration co-

efficient is represented as 𝑐2, and the global acceleration co-

efficient is represented as 𝑟1 and 𝑟2. Based on the 

aforementioned Eqs. (2) and (3), the ideology of PSO is 

presented in the following way. Every individual particle is 

attracted towards the best and global best position by 

velocity adjustment. Moreover, the velocity of the particle 

at position 𝑖 is represented based on (4). 

𝑥𝑖,𝑗
𝑡 = 𝑙𝑗 + 𝑟3 × (𝑢𝑗 − 𝑙𝑗)                                       (4) 

Where, the number dispersed in a randomized manner is 

represented as 𝑟3 which lies between 0 and 1. Similarly, 

upper and lower boundaries of 𝑗th dimension are denoted as 

𝑙𝑗 and 𝑢𝑗, respectively. The number of populations is 

determined as 50 and fitness of each population is evaluated 

based on the threshold value. The particles vary by adopting 

themselves towards the individual in the best positions. The 

particles which do not exceed the predetermined range after 

the speed update is utilized by retaining the actual speed. 

The maximal velocity is allotted to the particle which does 

not exceed the predefined range continue to retain in the 

actual population. The cyclic process of eliminating 

particles is repeated until the particle population is 8. The 

final solution is selected as 8 to select the optimal feature 
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sets from the total number of features. When the number of 

iteration achieve the required range, the iteration is 

terminated and the optimal solution is achieved. 

3.4. Classification 

Next to the stage of selecting the features, the classification 

takes place with help of combined model based on 

Convolutional Neural Network (CNN) and Long-Short 

Term Memory (LSTM). The best selected 10 features using 

the dynamic PSO is utilized in the process of classification. 

3.4.1. Convolutional Neural Network (CNN) 

The architecture of CNN is general kind of artificial neural 

network which is known for its effective classification. In 

common, the architecture of CNN is comprised with one or 

more convolutional layers and a fully connected layer along 

with weights and pooling layer.     

3.4.1.1. Convolutional layer 

In this layer, the convolution of each sub regions in the input 

data with kernel is evaluated based on biasing and an 

activation function to produce feature map in the next layer. 

The samples of input features are considered as 𝑥𝑖
0 =

[𝑥1, 𝑥2, … 𝑥𝑛], where the total samples are represented as 𝑛 

and the output is evaluated based on the (5). 

𝑐𝑖
𝑙,𝑗

= ℎ(𝑏𝑗 + ∑ 𝑤𝑚
𝑗

𝑥𝑖+𝑚−1
0𝑗𝑀

𝑚=1 )                             (5) 

Where, the index of the layer is represented as 𝑙 and the 

activation function is ℎ that is utilized to produce non-

linearity. The bias term of 𝑗th feature map is represented as 

𝑏 and the kernel size is 𝑀. The weight of the 𝑗th feature map 

is represented as 𝑤𝑚
𝑗

. 

3.4.1.2. Average pooling layer 

This layer is known as subsampling layer followed by 

convolutional layer to diminish the size of feature. 

Moreover, it considers small rectangular data blocks and 

provides a single output for each block. This research 

utilizes average pooling layer utilized in evaluating the 

average values in the input set. The process of pooling the 

feature map in the layer is represented in (6). 

𝑝𝑖
𝑙,𝑗

= 𝑚𝑎𝑥𝑖×𝑇+𝑟
𝑐𝑙,𝑗

                                                   (6) 

Where, the pooling window size is represented as 𝑅 and the 

stride is represented as 𝑇. After convolutional and the 

pooling layers, the features are transferred to a single 

dimensional vector. Finally, the classification takes place in 

the fully connected layer of CNN. 

3.4.2. Long Short-Term Memory 

LSTM is kind of recurrent neural network which is 

comprised with a cell, input gate, output gate and a forget 

gate. The forget gate in memory block structure is regulated 

with help of one layered neural network and this gate’s 

activation is evaluated based on the (7). 

𝑓𝑡 = 𝜎(𝑊[𝑥𝑡 , ℎ𝑡−1, 𝐶𝑡−1] + 𝑏𝑓)                               (7) 

Where, the input sequence is represented as 𝑥𝑡 and the 

output of the previous block is represented as ℎ𝑡−1. The 

block memory of previous LSTM block is represented as 

𝐶𝑡−1, the biasing vector and the sigmoid function is 

represented as 𝑏𝑓 and 𝜎, respectively. 

The new memory is generated in the input gate of the cell 

with 𝑡𝑎𝑛ℎ activation function and the memory block in the 

previous state is based on (8) and (9). 

𝑖𝑡 = 𝜎(𝑊[𝑥𝑡 , ℎ𝑡−1, 𝐶𝑡−1] + 𝑏𝑖                               (8) 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × tanh([𝑥𝑡 , ℎ𝑡−1, 𝐶𝑡−1]) + 𝑏𝑐       (9) 

The output gate is generated based on the output of LSTM 

which is generated based on the (10) and (11). 

𝜎𝑡 = 𝜎(𝑊[𝑥𝑡 , ℎ𝑡−1, 𝐶𝑡−1] + 𝑏0                             (10) 

ℎ𝑡 = 𝑜𝑡 . tanh(𝐶𝑡)                                                  (11) 

The connections between the time steps is generated an 

internal feedback which permits the state to understand the 

concept of time and temporal dynamics. The error 

propagation in memory cell permits LSTM to bind the time 

lags and helps in effective prediction. 

3.4.3. Unified model of CNN-LSTM for water quality 

prediction 

The proposed methodology of the suggested framework is 

based on CNN as the front end which helps in processing 

the non-linear characteristics of input feature, and the LSTM 

acts as the back end which receives the abstracted data and 

helps in classification. The architectural diagram of 

proposed model is presented in Fig. 2. 

     

Fig. 2. Architectural presentation for CNN-LSTM 

The best selected 10 features are provided as input into the convolutional layer of CNN. The specified structure of the 
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network is on the basis of numerous training times. In the 

suggested approach, depth of the neural network and the 

parameters utilized in each layer helps to improvise the 

prediction accuracy. The input layer of the CNN is 

convolved to produce the first layer and the average pooling 

layer is applied on each feature map at dropout layer. The 

CNN network is provided at an interval sequence with 

similar structure with two layers which utilize average 

pooling layer. The output of dense layer with similar shape, 

and merged as a new input at the LSTM and the output is 

achieved at the fully connected layer which helps to predict 

the outcome. The weights and biases are based on (12) and 

(13). 

∆𝑊𝑙(𝑡 + 1) = −
𝑥𝜆

𝑟
𝑊1 −

𝑥

𝑛

𝜕𝑐

𝜕𝑊𝑙
+ 𝑚Δ𝑊𝑙(𝑡)   (12) 

∆𝐵𝑙(𝑡 + 1) = −
𝑥

𝑛

𝜕𝑐

𝜕𝐵𝑙
+ 𝑚Δ𝐵𝑙(𝑡)                        (13) 

Where, the weight, bias, number of layers, regularization 

parameter, rate of learning, training samples, cost function, 

momentum and updated step are denoted as 

𝑊, 𝐵, 𝑙, 𝜆, 𝑥, 𝑛, 𝐶, 𝑚 and 𝑡, respectively. The Rectified 

Linear Unit (ReLU) is utilized as activation function for 

convolutional layers. The network is employed with the 

dropout layer which removes the randomized partitions of 

the network and prohibits the neurons from opting training 

data. Moreover, the batch normalization is performed to 

enhance the model’s convergence. The pseudocode of the 

proposed architecture is presented as follows: 

Pseudo code for CNN-LSTM 

Input: selected feature subset from Dynamic PSO 

Output: Water Quality (safe, unsafe) 

 

Initialize model 

model input = input layer 

 

Add Convolutional layers 

for i in range(Number of convolutional layers): 

    convolutional layer = Conv1D(filters=number of filters, 

kernel size=kernel size, activation='ReLU', 

padding='same')(model input) 

    pool layer = MaxPooling1D(pool size=pool 

size)(convolutional layer) 

    model input = pool layer 

end for 

 

Add LSTM layers 

LSTM output = LSTM (units=number of units, return 

sequences=False) (model input) 

LSTM output = LSTM(units=num_units, return 

sequences=False)( lstm_output_1 ) 

Add skip connection (residual connection) 

skip connection = Add()([LSTM output, input layer]) 

 

Add Dense layers for classification 

dense layer = Dense(100, activation='ReLU')(skip 

connection) 

output layer = Dense(num_classes, 

activation='softmax')(dense layer) 

 

Define and compile the model 

model = Model(inputs=input layer, outputs=output layer) 

model. Compile(optimizer='Adam', 

loss='categorical_crossentropy', metrics=['accuracy']) 

 

Train the model 

for epoch in range(number of epochs): 

    for batch in range(number of batches): 

        X batch, Y batch = get next batch()   

 Get the next batch of training data 

       Train the model on _batch(X batch, Y batch) 

    end for 

end for 

Evaluate the model 

loss, accuracy = Evaluate the model (X test, Y test) 

4. Results and analysis 

In this section, the experimental validation of results based 

on existing techniques. The evaluation of the proposed 

framework is performed in Python 3.7, Windows 10 OS, 

intel core i7 processor and 16 GB random access memory. 

The parameter setting of CNN-LSTM and dynamic PSO is 

presented in table 1 and table 2. 

Table 1. Parameter setting of CNN-LSTM 

Parameter Value 

Batch size 128 

Optimizer Adam 

Activation function Softmax 

Loss function Categorical  cross entropy 

Epoch 100 
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Table 2. Parameter setting of dynamic PSO 

Parameter Value 

Population size 50 

Inertia weight 0.5 

 

The efficiency of the suggested approach is evaluated by 

considering the performance metrics like accuracy, 

precision, recall and F1 score, whose formulas are presented 

in (14-17). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑃+𝑇𝑃+𝐹𝑁
                                      (14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                             (15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                  (16) 

F1 score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                       (17) 

Where, TN signifies true negative, TP signifies true positive, 

FP signifies false positive and FN signifies false negative. 

5. Performance analysis 

The efficiency of the dynamic PSO utilized in feature 

selection and the classifier is evaluated in this section. The 

outcomes are validated based on the efficiency with state of 

art techniques. Initially, the evaluation is performed based 

on different feature selection techniques and the evaluation 

is performed based on the efficiency of the classifier, with 

and without feature selection, as presented in Section 4.1.1 

and 4.1.2 respectively. 

5.1. Evaluation based on different feature selection 

This section presents the evaluation of outcome on different 

feature selection techniques such as Recursive Feature 

Elimination (RFE), Mutual Information (MI), Principal 

Component Analysis (PCA), Linear Discriminant Analysis 

(LDA) and PSO. Table 4 presents the outcomes on the 

different feature selection techniques. 

The outcomes displayed in table 3 exhibits that the proposed 

dynamic PSO achieves superior outcome when compared to 

the state of art techniques. The dynamic PSO utilized in this 

research achieves a classification accuracy of 99.99%, 

which is comparably higher than the state of art feature 

selection techniques. The exponential decay and elimination 

of particles helps to attains better results for selecting the 

best features with best fitness. 

Table 3. Evaluation based on different feature selection 

Method Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

RFE 67.45 62.09 59.07 60.54 

MI 70.32 67.67 62.46 64.96 

PCA 75.20 71.90 68.50 70.15 

LDA 72.80 73.20 67.90 71.50 

PSO 94.51 93.12 93.67 93.45 

Dynamic 

PSO 
99.99 99.99 99.99 99.99 

5.2. Evaluation based on different classifiers 

The section presents the outcomes on different classifiers 

with and without feature selection. Table 4 presents the 

outcome on various classifiers without feature selection. 

The state of art classifiers such as Recurrent Neural Network 

(RNN), CNN, Gated Recurrent Unit (GRU), Bidirectional 

Encoder Representations from Transformers (BERT). 

Table 4. Evaluation of classifiers without feature selection 

Classifiers Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

RNN 69.05 66.03 64.72 65.36 

CNN 67.78 63.45 61.32 62.36 

GRU 70.56 67.53 62.73 65.04 

BERT 72.30 69.80 65.50 67.60 

CNN LSTM 93.53 93.80 93.00 93.50 

Table 5. Evaluation of classifiers with feature selection 

Classifiers Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

RNN 85.32 78.65 73.56 76.01 

CNN 90.78 85.05 84.67 84.85 

GRU 78.67 73.03 71.42 72.21 

BERT 80.50 79.90 79.25 79.50 

CNN-

LSTM 
99.99 99.99 99.99 99.99 

 

The results achieved from table 4 and table 5 exhibits that 

the proposed CNN-LSTM attains better outcomes when 

compared to existing techniques, in both the cases related to 

presence and absence of feature selection. For instance, the 

accuracy of CNN-LSTM without feature selection is 

93.53% and accuracy with feature selection is 99.99%. 

Thus, the suggested framework attains better outcome in 

both the terms of presence and absence of feature selection. 
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The commendable outcomes are due to CNN as the front 

end which helps in processing the non-linear characteristics 

of input feature, and the LSTM acts as the back end which 

receives the abstracted data and helps in classification. Fig. 

3 presents the graphical depiction of results on various 

classifiers with feature selection. 

 

Fig. 3. Graphical depiction of results based on different 

classifiers with feature selection 

The confusion matrix based on the performance of classifier 

in predicting the outcome based on water quality is depicted 

in Fig. 4. 

 

Fig. 4. Confusion matrix for the performance of the 

classifier 

5.3. Comparative analysis  

This section presents the comparative evaluation of 

outcomes with the existing techniques. Table 6 presents the 

outcomes of the proposed classifier with the existing 

methods. The evaluation is performed based on accuracy, 

precision, recall and F1 score. 

The outcome from table 6 exhibits that the CNN-LSTM 

attains an accuracy of 99.99% which is more preferable than 

the existing ensemble method with the accuracy of 98.1%. 

The exponential decay and the elimination of particles using 

dynamic PSO helps in selecting the features with the best 

fitness. Similarly, the combination of CNN-LSTM helps in 

processing the non-linear characteristics of input feature, 

and the LSTM acts as the back end which receives the 

abstracted data that helps in predicting the water quality as 

safe or unsafe. 

Table 6. Comparative results 

Classifiers Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Ensemble 

Method [17] 
98.1 100 98.1 - 

ML [21] 99.83 - - - 

CNN-LSTM 99.99 99.99 99.99 99.99 

5.4. Discussion 

This section presents the overall validation of numerical 

results when evaluated with the state of art techniques and 

the existing methods. The efficiency of different feature 

selection techniques is evaluated in Section 4.1.1 and the 

efficiency of dynamic PSO is validated with RFE, MI, PCA, 

LDA and PSO. Among the aforementioned existing 

techniques, the dynamic PSO achieves better accuracy of 

99.99%. The process of exponential decay and the particle 

elimination facilitates in achieving better outcomes, in 

contrast to the state of art techniques. Similarly, the 

efficiency of the classifier is assessed in Section 4.1.2 based 

on presence and absence of feature selection. The proposed 

classifier achieves accuracies of 93.53% and 99.99% based 

on the presence and absence of feature selection. Moreover, 

the classification accuracy of suggested framework is 

validated with existing ensemble model; in that, the 

suggested approach attains classification accuracy of 

99.99%, whereas the ensemble model accomplishes a 

classification accuracy of 98.1%. The CNN helps in 

processing the non-linear characteristics of input feature, 

and the LSTM acts as the back end to predict the water 

quality as safe or unsafe. 

6. Conclusion  

Water is considered as a valuable source of resource which 

is known for its various needful applications. This research 

focuses on predicting the water quality as safe and unsafe, 

further aiding in predicting the water quality as fit and unfit, 

based on its contents. The data collected from water quality 

dataset is pre-processed using standard scalar and the 

features are selected with the help of dynamic PSO. After 

selecting the optimal feature sets, the classification is 

performed using the combined model of CNN-LSTM. The 

CNN processes the input features from dynamic PSO based 

on the non-linear characteristics, and the LSTM at the back 

end of the model obtains the abstracted data to analyze the 

quality of water as safe and unsafe. The experimental 

validation exhibits that the proposed classifier accomplishes 

a classification accuracy of 99.99% which is comparably 

superior to the existing ensemble model with a classification 

accuracy of 98.1%. The future research will focus on using 

advanced deep learning models with a recent optimization 

technique to enhance the performance of water quality 

prediction. 
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