

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1996 - 2004 | 1996

Optimized HPC Workload Division Strategy on Heterogeneity

Computing Platform

Chandrashekhar B N*1, Kantharaju V2, Harish Kumar N3, Suresh H 4, Geetha V5

Submitted:13/03/2024 Revised: 28/04/2024 Accepted: 05/05/2024

Abstract: Over the past ten years, an incredible expansion in the computation intensity and applications of graphics processing units. The

key difficulty for CPU+GPU heterogeneous clusters is effectively allocating the HPC load among the CPU and GPUs while minimizing

intra- and inter-node communication costs. To address these difficulties, in this work a systematic workload division technique was

developed. The analytic load allocation model divides the HPC workload amongst CPU and GPUs efficiently by considering a number of

factors. We have taken into consideration the pinned memory mechanism sole MPI process on corresponding nodes to reduce the overhead

of communication between and within nodes. The proposed work used the MPI+OpenMP+CUDA to efficiently utilize CPU and GPU

resources. We have evaluated our method on a random dataset using well-known compute-intensive programs like LINPACK. The findings

of the experiment show that, in contrast to Adaptive partitioning technique intended analytic HPC workload partition approach worked

better

Keywords: CPU, GPU, Heterogeneous, HPC, LINPAC, workload

1. Introduction

GPU clusters are popular since they convey extraordinary

execution and high-power proficiency for different sorts of

scientific applications [4]. Recent GPUs are not general-

purpose because they are not standalone. GPUs are thus

dependent on general-purpose CPUs. In the case of

compute-intensive applications CPU-free cluster is not

advisable since only GPUs are not appropriate. So,

CPU+GPU heterogeneous clusters [1,2] are important

platforms for compute-intensive applications. In the case of

compute -intensive applications, few programming

frameworks, such as OpenMP, MPI, and CUDA are

consolidated to abuse the powers of CPU and GPU to

acquire high performance. In any case, two complications

arise when the move from homogeneous to heterogeneous

CPU+GPU computations.

Firstly, an additional effort of isolating load among multi-

core CPUs and Many-Core GPUs. Which requires a division

proportion that is corresponding to the in respect to

computing speed of the two processors? Second, inter and

intra-node data communications containing both the multi-

core CPUs and Many-core GPUs, must be precisely

programmed with a specific end goal to accomplish high

communication effectiveness. To direct the first problem,

we have embraced a realistic optimal dynamic HPC load

division on CPU-GPUs of each registered node. Similarly,

to focus the second complication used an individual MPI

activity to control in cooperation of Multi-Core and Many-

Core. To overlay computations with the diverse intra and

inter-node communications, we adopt different parallel

program design models that involve MPI, OpenMP, and

CUDA. To illustrate the workload allocation strategy using

MPI, OpenMP, and CUDA models, we have chosen

compute-intensive applications such as LINPACK [5, 13,

14] to calculate the execution of heterogeneous computing

systems. GPUs aid the research community to enhance the

high-performance LINPACK (HPL).

In this piece of work, we make the following contributions

for the following scenarios,

• create a novel dynamic load allocation approach utilizing

the OpenMP+MPI+CUDA on CPU+GPUs cluster to boost

the execution of compute-intensive applications on

heterogeneous clusters:

• Case 1: Intra-nodes heterogeneity in this case CPU-GPUs

cluster which has QUADRO K2000 and QUADRO 2000

graphics cards every node.

• Case 2: Inter-nodes heterogeneity in this case CPU-GPUs

cluster which has NVIDIA QUADRO K2000 on one node

and QUADRO 2000 graphics cards on other node

Comparison compute intensive applications LINPACK

performance using our HPC workload division strategy

against adaptive partitioning technique [15].

2. Related Work

Workload distribution inspires attention of researcher in

__

_

1 Amity University, Bengaluru – 562110, INDIA.

ORCID ID : 0000-0001-6847-8957
2 BMS Institute of Technology and Management.– 10,INDIA

ORCID ID 0009-0009-4415-0530
3BMS Institute of Technology and Management Bengaluru – 560064, INDIA

ORCID ID : 0000-0002-1003-3274
4KNSIT, Bengaluru 560064-INDIA
5 Reva University, Bengaluru – 64,India

ORCID ID : 0000-0001-6069-5471

* Corresponding Author Email: cnaikodi@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1996 - 2004 | 1997

recent years. Several research has been showed on workload

distribution to improve overall performance of compute

intensive applications

Rong Shi et. al. [7], advances an inventive two-level jobs

segmentation approach for HPL workload on hybrid cluster

hubs on a different bunch. In their manner creators

disseminate the responsibility considering the figure force of

computer processor/GPU hubs across the group.

Additionally handles multi-GPU setups they utilized

procedures, for example, process network reorganization to

diminish MPI correspondence while guaranteeing load

balance across hubs. Creators Present point by point

examination of execution, proficiency, and adaptability of

their half and half HPL plan across various bunches with

various designs. Because of memory-figure unevenness loss

of effectiveness on computer chip hubs, isn't considered in

this paper.

SimpliceDonfack et.al [6] the creators present viable cross

breed CPU+GPU approach that is convenient, progressively

and effectively balances the responsibility between the

computer chips and the GPU. Indeed, even the creator

considered information to move bottleneck among

computer processor and GPU. In the proposed approach

how much, starting work allocated to the central processor

before not entirely set in stone by the hypothetical model.

Then, at that point, vivaciously settle the heap during

execution for example moving a fragment of work

progressively moved from GPUs to computer processors to

keep load balance creator proposed model self-embrace on

any design. Show their strategy on LU factorization.

Takuro Udagawa et.al. [9] Creator proposed another

technique to adjust the responsibility between computer

chips &GPUs. The proposed technique is based on figuring

out and noticing responsibilities and statically disperses the

work. Creator prevailed with regards to using processors

more productively and speeding up reproduction utilizing

NAMD. It gives 20.7% improvement contrasted with GPU

ideal code. Proposed technique is shown utilizing on MD

(sub-atomic elements) recreation. Writer not tended to when

the quantity of cycles builds, computer processor centers

must be relegated to correspondence strings. That lessens

computer processor speed.

Chakkour et.al. [10] and Liu, et.al. [11] The proposed

demonstrates the Indigo3 labeled benchmark suite [46],

which consists of 41,790 graph analytics scripts written in

parallel C, OpenMP, and CUDA. There is no limit to how

many inputs can be used to run a program. They are

predicated on 15 different categories of typical issues and

13 sets of alternate parallelization/implementation

techniques.

Joselli et.al [12] to improve performance, authors proposed

an automatic spreading of HPC load between Multi and

Many core by using physics engine. In their work physics

engines compute an approximate load and dynamically

distribute among CPUs and GPUs. Their method used a

distributor virtual base class to derive customized heuristics.

To determine the user program scheduling adoption in their

framework they called C scripts. This work won’t talk about

partitions of workload based upon processors capabilities

and even they did not formulate any analytical model.

Other works of workload balancing included Becker et.al

[18] describes the system that uses the ParFUM framework

with that handles numerous simulations on clusters that

effectively utilizes both CPU-GPU processors. Author used

the similar code for GPU and CPU functions; it allows the

users to have programs that stabilize the HPC workload

among CPU and GPU. The problem with their approach is

not developed any analytical model for Units

Use either SI (MKS) or CGS as primary units. (SI units are

strongly encouraged.) English units may be used as

secondary units (in parentheses). This applies to papers in

data storage. For example, write “15 Gb/cm2 (100 Gb/in2).”

An exception is when English units are used as identifiers in

trade, such as “3½-in disk drive.” Avoid combining SI and

CGS units, such as current in amperes and magnetic field in

oersteds. This often leads to confusion because equations do

not balance dimensionally. If you must use mixed units,

clearly state the units for each quantity in an equation.

The SI unit for magnetic field strength H is A/m. However,

if you wish to use units of T, either refer to magnetic flux

density B or magnetic field strength symbolized as µ0H. Use

the center dot to separate compound units, e.g., “A·m2.”

3. Proposed workload distribution framework

Proposed HPC load distribution framework for HPC

application on CPU-GPUs hybrid platform [25].

3.1. CPU-GPUs Based Intra-nodes and Inter-nodes

Heterogeneity Computing Platform:

Case: 1 Intra-nodes heterogeneity:

Fig. 1. Architecture of hybrid [CPU+GPU] cluster

environment on evry node having two different computing

capabilities GPUs.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1996 - 2004 | 1998

Case: 2 Inter-nodes heterogeneity:

Fig. 2. Architecture of hybrid [CPU+GPU] cluster

environment with each node having one CPU and varying

capability of one GPU.

In the intra-nodes heterogeneity case, Figure 1 shows an

outline of mix architecture, where each node consists of 1

CPU and 2 GPUs having unique processing potential

endorsed on the PCI-E. We must map the suitable workload

to them. The execution of GPUs changes under different

workloads, while CPU performance is moderate [22],

separate storage is maintained with many-core and multi-

core. Many-core CPU has few numbers of cores, and each

core has independent cache. The huge number Streaming

Multiprocessors and streaming processors [SPs] are

available on multi-core GPU.

A heterogeneous cluster architecture with several

heterogeneous compute nodes is depicted in Figure 2. where

a single CPU processor and a solitary GPU chip are present

in each heterogeneous computing node. We have taken into

consideration the pinned memory approach in each

scenario, where a distinct MPI activity is used to direct and

transfer the appropriate amount of work to each node in the

varied cluster. This allows us to resolve the problem of

resources being underutilized after the compute intensive

application launches to the cluster. When compared to

numerous MPI processes per node, we can improve

internodes transmission overhead and memory-bandwidth

by employing the pinned memory technique and a solitary

MPI process, which will result in restricted data

transmission [22].

 The MPI activity first distributes the computed HPC load

to the appropriate nodes within a diverse cluster.

Subsequently, it distributes the workload dynamically on

each respective node among multiple many- cores and

multi-core GPUs, taking into account their individual

processing power, speed, and hardware specifications.

3.2 Hybrid [MPI+OpenMP+CUDA] model

Figure 3 illustrates the hybrid [MPI+OpenMP+CUDA]

parallel computing paradigm [19,20] that has been chosen

in order to enhance the effectiveness of compute-intensive

applications. NVIDIA developed the parallel programming

language known as CUDA (Compute Unified Device

Architecture), which offers a wealth of useful guidelines to

help designers create high-performance computing systems

that leverage the potent processing capabilities of GPUs.

Within the domain of academia engineers have been

utilizing CUDA a lot. to improve performance and speed up

numerous applications.

OpenMP (Open Multiprocessing) in figure 3 is

implemented to exploit Multicore CPU computation

intensity and concurrency platform for multi-threaded,

shared-memory parallel processing multi-core architecture.

By using OpenMP, no need to generate the threads nor

assign jobs to every thread, compiling program commands

help the compiling program to generate threads data

management, thread synchronization, etc. for the parallel

processor platform. OpenMP even has runtime library

functions to switch the parallel execution environment,

control and monitor threads, control and monitor processors.

Even OpenMP has environment variables to adjust the

execution of OpenMP applications. The most significant

benefit of the OpenMP framework is that is not required to

restructure the sequential source code. The method of

creating a parallel version is only insertion of appropriate

compiler directives to reorganize the serial program to a

parallel one.

Figure 3: Hybrid prallel programming

model[OpenMP+MPI+CUDA]

3.3 Optimized Workload division strategy

Allocation of the HPC load between many-core CPUs

and multi-core GPUs is completed in accordance with their

computational capacity [21]. While assigning the workload

we should be careful with latency issues, because if we allot

insignificant volume of HPC load to the many-core CPU,

Maintaining CPU engagement during data allocation and

kernel launch on multi-core GPUs is challenging. In

contrast, if we allocate more volume of HPC load to the

many-core then, the multi-core kernel has to delay for the

many-core to achieve the assigned workload before

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1996 - 2004 | 1999

producing the result. we have taken care while assigning the

workload optimally to many-core and multi-core [22].

In the projected strategy following parameters are adopted.

Parameters

HPC Workload size

Number of available nodes

Speeds of process

Transmission rate

Memory bandwidth

No. of CPU cores

No. of GPU cores

CPU FLOPS

GPU FLOPS

Utilizing these specifications in proposed frameworks

optimal HPC load partition approach decides best load for

the compute nodes of many-core and multi-core according

to the strength of their computing ability

𝑪𝑪𝒏𝒐𝒅𝒆𝒊 = ∑
𝑪𝑷𝒇𝒍𝒐𝒑𝒔𝒊 + 𝑮𝒑𝒇𝒍𝒐𝒑𝒔𝒊

(𝑪𝑷𝒃𝒘𝒊 + 𝑮𝑷𝒃𝒘𝒊)

𝒊=𝒏

𝒊=𝟏
 (𝟏)

Where,

 CCnodei - nodei computing capacity

 CP flopsi - CPU processor FLOPS

 GP flopsi - GPU processor FLOPS

 Cpbw - CPU memory bandwidth

 Gpbw - GPU's memory bandwidth

 n- number of nodes

After computing the computation power of the nodes using

equation 1,

Each node's HPC load is processed using equation 2

𝐿𝑛𝑜𝑑𝑒𝑖 =
𝑊

∑ 𝐶𝐶𝑛𝑜𝑑𝑒𝑗
𝑗=𝑛
𝑗=1

× 𝐶𝐶𝑛𝑜𝑑𝑒𝑖 (2)

Where,

 W- Total work load

 Lnodei - Nodei Work load

 n- number of nodes

load on the CPUj of the node Equation 3 can be used to

calculate

𝐿𝐶𝑃𝑖 = 𝐿𝑛𝑜𝑑𝑒𝑖 ×
𝐶𝑃𝑓𝑙𝑜𝑝𝑠𝑖

(𝐶𝑃𝑓𝑙𝑜𝑝𝑠𝑖+𝐺𝑃𝑓𝑙𝑜𝑝𝑠𝑖)
 (3)

Where,

 LCPi - CPU i load on CPU

 CPflopsi - - CPU processor FLOPS

 GPflopsi - GPU processor FLOPS

 Lnodei - Nodei workload

After computing a chunk of the task to the many-core

CPU,each core's load many-core CPU is computed using

equation 4

𝐿𝐶𝑃𝑖/𝐶𝑗 =
𝐿𝐶𝑃𝑖

𝑁𝑐𝑖
 (4)

Where,

 LCPi/cj load on every core of every CPU

 Nci - number available core

Load on multi-core GPUs is processed for different inter-

node and intra-node cases

Case 1: In this case CPU+ GPUs cluster has different

capabilities graphics cards on all node. So, workload

distribution for each GPUs is calculated in a cluster using eq

(5).

𝐿𝐺𝑃𝑖 = 𝐿𝑛𝑜𝑑𝑒𝑖 ×
𝐺𝑃𝑓𝑙𝑜𝑝𝑠𝑖

(𝐶𝑃𝑓𝑙𝑜𝑝𝑠𝑖+𝐺𝑃𝑓𝑙𝑜𝑝𝑠𝑖)
 (5)

 Where,

 LGPi - Load for GPU i present in node i

 CPflopsi - FLOPS of CPU processor

 GPflopsi - FLOPS of GPU processor

 Lnodei - Work load for Nodei

Case 2: In this case, heterogeneous cluster has different

capabilities graphics cards. Each node having only one

graphics card. So, workload distribution for individual

multi-core GPU in a cluster is computed using equation 6.

𝐿𝐺𝑃𝑖 = (𝐿𝑛𝑜𝑑𝑒𝑖 − 𝐿𝐶𝑃𝑖) (6)

Where,

 LGPi - Load for GPU i present in node i

 Lnodei - Work load for Nodei

 LCPi - CPU i load on CPU

With equation 3 we compute portion of workload on

available many-core CPU and by using equation 5 and 6 we

calculated the multi core-GPU workload. By using proposed

Workload division strategy we can distribute workload

optimally.

3.4. Performance evaluation

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1996 - 2004 | 2000

As per above section, once the division of workload among

CPU-GPUs in fusion cluster is calculated with a random

input of data volumes. The speedup of HPC load on

CPUs+GPUs against only CPU platform is determined

using equation 7 and by equation 8 the speedup of HPC load

on CPUs+GPUs against only GPU .

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(ℎ𝑦𝑏𝑟𝑖𝑑 ×𝑐𝑝𝑢) =
[𝑇𝑐𝑝𝑢]

𝑇(𝑐𝑝𝑢+𝑔𝑝𝑢)
 (7)

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(ℎ𝑦𝑏𝑟𝑖𝑑 ×𝐺𝑝𝑢) =
[𝑇𝑔𝑝𝑢]

𝑇(𝑐𝑝𝑢+𝑔𝑝𝑢)
 (8)

Where,

Tcpu is Elapsed _Time of parallel computation

TGpu is Elapsed _Time of parallel computation

Speedup (hybrid X CPU) is speedup of compute

applications of heterogeneous v/s Cpu

Performance (hybrid X Gpu) is speeedup of compute

applications of heterogeneous v/s Gpu

T (cpu+gpu) is Total Elapsed _Time of hybrid computation

 Elapsed Time=[Execution TIME]x10-6 (9)

We attempted to assemble the formula for both muti-core

CPU and many-core GPU, which have different

configurations, by utilizing the same formula to assess the

execution of LINPACK Benchmark apps on CPU-GPU. We

then took the readings and displayed the comparison

through a graph.

4. Experimental setup and performance analysis

Testing were carried out to confirm the suggested workload

allocation strategy for Compute Intensive Applications on

Hybrid Platform [MPI+OpenMP+CUDA] the trials were

showed on 2 different cases of clusters:

Case 1: In this case CPU+ GPUs cluster has NVIDIA

QUADRO K2000 and QUADRO 2000 graphics cards on

each nodes. So workload distribution for each GPUs in a

cluster is computed using equation 5. By using the above

equation 3, we compute CPU workload and by using

equation 5 we compute the GPUs benchmark load. With the

right workload split between CPU and GPU, a

heterogeneous system's processing resources may be able to

handle the burden and provide improved performance.

Case 2 Features two nodes with a 2.40 GHz six-core/socket

Intel Xeon CPU processor, 31 GB of RAM, and one CUDA-

enabled GPU (NVIDIA Quadro K2000). The other node has

a CUDA-enabled GPU (NVIDIA Quadro 2000) that serves

as a device accelerator. The configuration includes a Dell

Precision R5500 system with 227 and 192 cores,

respectively, connected by a 100 Mbps switched Ethernet

[19].

In various cluster scenarios, every node is set up with

MPICH2-1.2 for the MPI library. With Fedora 24 operating

system, the compilers utilized are NVIDIA nvcc version 5.0

and GCC version 4.4.7. We ran tests on systems that we

have administrative authority over [19].

4.1 Experimental results on LINPACK benchmark

applications

The industry-standard benchmark program LINPACK is

used to measure how processing frameworks are exhibited.

Addressing the NXN arrangement of direct equation is

utilized.

Ax=b (10)

For case 1: In this case CPU+ GPUs cluster has NVIDIA

QUADRO K2000 and QUADRO 2000 graphics cards on

each nodes. So workload distribution for each GPUs is

calculated using equation 5 in a cluster. By consuming the

beyond equation 3, we compute CPU load and by using

equation 5 compute the GPU's load. In theory, HPC

workloads can be appropriately distributed throughout the

computational capabilities of a mixed system to improve

performance by appropriate workload distribution between

many and multi core. Performance comparison results of

novel division of load approach against an adoptive

partitioning technique [22]

4.1 Performance comparison results of novel workload

division strategy against an adoptive partitioning

technique

LINPACK for case 1:

Table 1 displays the comparison of performance. of

LINPACK in Gflops using adaptive partitioning technique

against our novel workload division strategy [23]. The

application was executed on our workload distribution

framework, having different capabilities based CPU and

NVIDIA Quadro K2000 and Quadro 2000 GPUs on an

intranode heterogeneity cluster with hybrid programming

models and to minimize communication overhead we used

pinned memory techniques to accelerate the performance

Table: 1 Performance comparison results of HPC load

division strategy against an adoptive partitioning technique

No of

data

points

Performance

in Gflops

Adaptive

partitioning

technique

Performance

in Gflops

novel

workload

division

strategy

% of

performance

improvement

2000 1.1364768 4.673553275 75.68281063

4000 1.469949107 6.138539305 76.05376402

6000 1.901270997 8.062744251 76.4190586

8000 2.45915412 10.59011625 76.77878069

10000 3.180734885 13.90972586 77.1330153

15000 4.114046504 18.26991026 77.48184614

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1996 - 2004 | 2001

20000 5.3212164 23.99685114 77.82535563

30000 6.882601825 31.51897609 78.16362497

40000 8.90213897 41.3990089 78.49673408

50000 11.51426165 54.37606642 78.82476169

60000 14.89285011 71.42095133 79.14778531

70000 19.26280565 93.808777 79.46588127

80000 24.91502156 123.2143577 79.77912474

90000 32.22574689 161.8374999 80.08758976

100000 41.68163211 212.5675681 80.39134921

150000 53.91212378 279.1996357 80.69047488

200000 69.73136472 366.7183911 80.98503745

250000 90.19238873 481.6710381 81.27510653

300000 116.6572176 632.6570867 81.56075068

Fig 4: Performance comparison results of HPC LINPACK

load partition scheme against an adoptive partioning

technique

Figure 4 compares the execution of a unique workload

division approach with an adoptive partitioning technique.

The y-axis displays GFLOPs, while the x-axis displays the

different data input sizes. When compared against adoptive

partitioning strategies, the performance (GFLOPs) of our

unique methodology exhibits modest average performance

improvement, i.e. 76.7%, throughout the initial stage of

LINPACK testing with varying input size up to assign

resources according to user priorities and workload factors.

Future workload distribution plans ought to include fault

tolerance techniques. workload division techniques should

be portable in terms of performance across various

computing platforms and scalable across a broad variety of

system sizes and architectures100,000. The performance of

our unique approach shown improved average performance

improvements, i.e. 80%, during later rounds of LINPACK

trials as started to change data input size. This was achieved

by lowering calculation and transfer overhead via using

pinned memory strategy on intranode heterogeneity In

contrast to o the adoptive partitioning techniques.

our unique workload division technique produced an overall

average performance (GFLOPs) of 78.74% in LINPACK

trials. Strategy an overall average performance (GFLOPs)

i.e.78.74% when compared against the adoptive partitioning

techniques.

LINPACK for case 2:

Table 2 shows the speed up comparison of LINPACK in

GFLOPs using adaptive partitioning technique against our

novel workload division strategy. The application was

executed on our workload distribution framework, having

different capabilities based CPU and NVIDIA Quadro

K2000 and Quadro 2000 GPUs on an internodes

heterogeneity cluster pinned memory and hybrid

programming models techniques to accelerate the

performance

Table: 2 Performance comparison results of HPC load

partition strategy against an adoptive partitioning technique

No of

data

points

Performance

in Gflops

Adaptive

partitioning

technique

Performance

in Gflops

novel

workload

division

strategy

% of

performance

improvement

2000 2.1364768 6.345355328 66.33006838

4000 3.000177671 9.666914063 68.96447355

6000 4.213041797 14.7271859 71.39275741

8000 5.916223347 22.43632281 73.63104731

10000 8.307940053 34.18090766 75.69420878

15000 11.66654196 52.07334813 77.59594422

20000 16.38290605 79.33181916 79.34888394

30000 23.00592682 120.8590912 80.96467002

40000 32.30639712 184.1243537 82.45403366

50000 45.36671367 280.5066402 83.8268664

60000 63.70684734 427.3414876 85.09228587

70000 89.46123865 651.0389448 86.25869629

80000 125.6272058 991.8337439 87.33384435

90000 176.4137751 1511.022011 88.3248706

100000 247.7315311 2301.986126 89.2383569

150000 347.8804955 3506.990689 90.08037014

200000 488.5160909 5342.770557 90.85650253

250000 686.0056088 8139.51326 91.5719087

300000 963.3330488 12400.24729 92.23134002

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1996 - 2004 | 2002

Fig 5: Performance comparison results of novel workload

division strategy against an adoptive partitioning technique

Figure 5 results of novel HPC load allocation policy against

an adoptive partitioning technique, where x-axis shows the

varying data input size and y-axis shows GFLOPs. During

initial stages of LINPACK experiment with data size up to

20000 on internodes heterogeneity, we observed that there

is nominal average performance (GFLOPs) of improvement

is 73.29% when compared against the adoptive partitioning

techniques. During later stages of LINPACK experiments

as started to vary input size up to 100000 the performance

(GFLOPs) of our novel approach showed better average

performance improvements i.e. 85.43% by minimizing

computation and communication overhead by using pinned

memory technique on internodes heterogeneity. observed

the GFLOPs improvement of our novel approach for the

data size 100000 to 300000 is 91.98%. As we observed from

LINPACK experiments size 2000 to 300000 with our novel

workload division strategy an overall average performance

(GFLOPs) i.e.82.16% when compared against the adoptive

partitioning techniques.

5. Conclusion and Future scope

The two primary challenges to improving the execution

(GFLOPs) on the intra and internodes heterogeneous

clusters are effectively distributing the HPC load concerning

the multi-core and many-core and overcoming the inter-

and intra-node communication overhead. To effectively

divide the HPC load on intra- and internodes heterogeneity

clusters, proposed a novel analytical technique in this paper,

which expresses our expertise resolving these two

challenges. We have also thought of using a

OpenMP+MPI+CUDA to efficiently use the powers of

multi and many cores. To decrease the volume of

communication overhead between and within nodes, pinned

memory with a solitary MPI process is managed to handle a

portion of the load on each node. We have also contrasted

our novel's performance (GFLOPs). a unique approach to

analytical workload management using the adoptive

partitioning technique with benchmark applications from

LINPACK. Based on experimental results, we can conclude

that our novel workload division outperforms adoptive

partitioning technique when compared to a random data

input size with different CPU and GPU capabilities based

intra-nodes heterogeneity (CASE-1) and internodes

heterogeneity (CASE-2) cluster by achieving overall

average performance (GFLOPs), i.e. 78.74% and 82.16%.

Future systems might have to dynamically.

6. References and Footnotes

Author contributions

Chandrashekhar B N: Conceptualization, Methodology,

Software, Field study Kantharaju V: Data curation,

Writing-Original draft preparation, Software, Validation

Harish Kumar N: Field study, Visualization, Suresh H:

Software, Validation Investigation, Geetha v Writing-

Reviewing and Editing.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Chandrashekhar, B.N., Kantharaju, V., Harish Kumar,

N. et.al. (2024) “Balancing of Web Applications

Workload Using Hybrid Computing (CPU-GPU)

Architecture”. SNCOMPUT.SCI. Journal 5,127

Springer https://doi.org/10.1007/s42979-023-02444-

2.

[2] J Zeng, L., Alawneh, S. G., & Arefifar, S. A. (2024).

Parallel multi-GPU implementation of fast decoupled

power flow solver with hybrid architecture. Cluster

Computing, 27(1), 1125-1136.

[3] B. N. Chandrashekar, Mohan M, and Geetha V,(2023)

"Forecast Model for Scheduling an HPC Application

on CPU and GPU Architecture," 3rd International

Conference on Intelligent Technologies (CONIT-

2023), pp. 1-5, DOI:

10.1109/CONIT59222.2023.10205724.) IEEE

[4] T. Shimokawabe, T. Aoki, T. Takaki, T. Endo, A.

Yamanaka,N. Maruyama, A. Nukada, and S.

Matsuoka, “Peta-scale phase-field simulation for

dendritic solidification on the TSUBAME 2.0

supercomputer,”in Proceedings of 2011 International

Conference for High Performance Computing,

Networking, Storage and Analysis, Nov. 2011,pp. 3:1–

3:11..

[5] Du, Dayou, Gu Gong, and Xiaowen Chu. "Model

Quantization and Hardware Acceleration for Vision

Transformers: A Comprehensive Survey." arXiv

preprint arXiv:2405.00314 (2024).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1996 - 2004 | 2003

[6] S Chalumeau, Felix, Bryan Lim, Raphael Boige,

Maxime Allard, Luca Grillotti, Manon Flageat,

Valentin Macé et al. "Qdax: A library for quality-

diversity and population-based algorithms with

hardware acceleration." Journal of Machine Learning

Research 25, no. 108 (2024): 1-16.

[7] Rong Shi, SreeramPotluri, Khaled Hamidouche,

Xiaoyi Lu, Karen Tomko, and Dhabaleswar K. (DK)

Panda Ohio State University “A Scalable and Portable

Approach to Accelerate Hybrid HPL on

Heterogeneous CPU-GPU Clusters” 978-1-4799-

0898-1/132013 IEEE

[8] SimpliceDonfack , StanimireTomovand Jack

Dongarra Innovative Computing Laboratory,

University of Tennessee, Knoxville,

USA“Dynamically balanced synchronization-

avoiding LU factorization with multicore and GPUs”

2014 IEEE 28th International Parallel & Distributed

Processing Symposium Workshops 978-1-4799-4116-

2/14 IEEE Computer society

[9] TakuroUdagawa, Masakazu Sekijima “GPU

Accelerated Molecular Dynamics with Method of

Heterogeneous Load Balancing” 2015 IEEE

International Parallel and Distributed Processing

Symposium Workshop 978-1-4673-7684-6/15 IEEE

Computer society.

[10] Chakkour, Tarik. "Parallel computation to

bidimensional heat equation using MPI/CUDA and

FFTW package." Frontiers in Computer Science 5

(2024): 1305800.

[11] Liu, Yiqian, et al. "Indigo3: A Parallel Graph

Analytics Benchmark Suite for Exploring

Implementation Styles and Common Bugs." ACM

Transactions on Parallel Computing (2024).

[12] Mark Joselli, Esteban Clua, Anselmo Montenegro,

Aura Conci, and Paulo Pagliosa. A new physics engine

with automatic process distribution between cpu-gpu.

In Sandbox ’08: Proceedings of the 2008 ACM

SIGGRAPH symposium on Video games, pages 149–

156, New York, NY, USA, 2008. ACM.

[13] Hong, Yuxi, et al. "High performance computing

seismic redatuming by inversion with algebraic

compression and multiple precisions." The

International Journal of High-Performance Computing

Applications (2024): 10943420231226190.

[14] Shane Cook. CUDA programming: a developer’s

guide to parallel computing with GPUs. Newnes, 2013

[15] Dongarra J J, Luszczek P, Petitet A. “The linpack

benchmark: Past, present and future”. Concurrency

and Computation: Practice and Experience, 2003,

15(9): 803-820.: http://dl.z-

thz.com/eBook/zomega_ebook_pdf_1206_sr.pdf.

Accessed on: May 19, 2014.

[16] .Massimiliano Fatica. Accelerating linpack with

CUDA on heterogeneous clusters. In David R. Kaeli

and Miriam Leeser, editors, GPGPU, volume 383 of

ACM International Conference Proceeding Series,

pages 46–51. ACM, 2009.

[17] Canqun Yang, Feng Wang, Yunfei Du, Juan Chen, Jie

Liu, Huizhan Yi and Kai Lu , “Adaptive Optimization

for Petascale Heterogeneous CPU/GPU Computing”

National High Technology Research and Development

Program of China 978-0-7695-4220-1/10 $26.00 ©

2010 IEEE DOI 10.1109/CLUSTER.2010.12.

[18] Aaron Becker, Isaac Dooley, and Laxmikant Kale.

Flexible hardware mapping for finite element

simulations on hybrid cpu / gpu clusters. In SAAHPC

: Symposium on Application Accelerators in HPC,

July 2009.

[19] B. N. Chandrashekar, Mohan M, and Geetha V,

"Forecast Model for Scheduling an HPC Application

on CPU and GPU Architecture," 2023 3rd

International Conference on Intelligent Technologies

(CONIT-2023), pp. 1-5, DOI:

10.1109/CONIT59222.2023.10205724.).

[20] . Chandrasekhar B N, Sanjay .H.A “Performance

Study of OpenMP and Hybrid Programming Models

on CPU-GPU Cluster” Fifth Scopus International

Conference on ‘Emerging Research in Computing,

Information, Communication and Applications’,

(ERCICA-2018) springer publisher

[21] Chandrashekhar B.N, Sanjay H. A “Dynamic

Workload Balancing for Compute Intensive

Application Using Parallel and Hybrid Programming

Models on CPU-GPU Cluster” Journal of

computational and theoretical Nanoscience American

scientific Publishers Volume 15, Numbers 6-7, June

2018,pp. 2336-2340(5),

DOI: https://doi.org/10.1166/jctn.2018.7464.

[22] B. N. Chandrashekhar and H. A. Sanjay “Performance

Framework for HPC Applications on Homogeneous

Computing Platform” International Journal of Image,

Graphics and Signal Processing (IJIGSP) MECS Press

Publishers Vol. 11, No. 8, pp,28-39,2019, DOI:

10.5815/ijigsp.2019.08.03.

[23] Chandrashekhar B. N, Sanjay H. A, Mohan Murthy.

Performance Driven Analytical Workload Division

Model for the HPC Applications on CPU-GPU

Heterogeneous Cluster, Springer Cluster computing

Journal 28 September 2022,

https://doi.org/10.21203/rs.3.rs-2096666.

 B. N. Chandrashekar, K. Aditya Shastry, B. A. Manjunath

https://www.ingentaconnect.com/search?option2=author&value2=Chandrashekhar,+B.+N
https://www.ingentaconnect.com/search?option2=author&value2=Sanjay,+H.+A
https://doi.org/10.1166/jctn.2018.7464
https://doi.org/10.21203/rs.3.rs-2096666

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 1996 - 2004 | 2004

and V. Geetha, "Performance Model of HPC

Application On CPU-GPU Platform," 2022 IEEE 2nd

Mysore Sub Section International Conference

(MysuruCon), 2022, pp. 1-6, DOI:

10.1109/MysuruCon55714.2022.9972737.

