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Abstract: Over the past ten years, an incredible expansion in the computation intensity and applications of graphics processing units. The 

key difficulty for CPU+GPU heterogeneous clusters is effectively allocating the HPC load among the CPU and GPUs while minimizing 

intra- and inter-node communication costs. To address these difficulties, in this work a systematic workload division technique was 

developed. The analytic load allocation model divides the HPC workload amongst CPU and GPUs efficiently by considering a number of 

factors. We have taken into consideration the pinned memory mechanism sole MPI process on corresponding nodes to reduce the overhead 

of communication between and within nodes. The proposed work used the MPI+OpenMP+CUDA to efficiently utilize CPU and GPU 

resources. We have evaluated our method on a random dataset using well-known compute-intensive programs like LINPACK. The findings 

of the experiment show that, in contrast to Adaptive partitioning technique intended analytic HPC workload partition approach worked 

better 
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1. Introduction 

GPU clusters are popular since they convey extraordinary 

execution and high-power proficiency for different sorts of 

scientific applications [4]. Recent GPUs are not general-

purpose because they are not standalone. GPUs are thus 

dependent on general-purpose CPUs. In the case of 

compute-intensive applications CPU-free cluster is not 

advisable since only GPUs are not appropriate. So, 

CPU+GPU heterogeneous clusters [1,2] are important 

platforms for compute-intensive applications. In the case of 

compute -intensive applications, few programming 

frameworks, such as OpenMP, MPI, and CUDA are 

consolidated to abuse the powers of CPU and GPU to 

acquire high performance. In any case, two complications 

arise when the move from homogeneous to heterogeneous 

CPU+GPU computations. 

Firstly, an additional effort of isolating load among multi-

core CPUs and Many-Core GPUs. Which requires a division 

proportion that is corresponding to the in respect to 

computing speed of the two processors? Second, inter and 

intra-node data communications containing both the multi-

core CPUs and Many-core GPUs, must be precisely 

programmed with a specific end goal to accomplish high 

communication effectiveness. To direct the first problem, 

we have embraced a realistic optimal dynamic HPC load 

division on CPU-GPUs of each registered node. Similarly, 

to focus the second complication used an individual MPI 

activity to control in cooperation of Multi-Core and Many-

Core. To overlay computations with the diverse intra and 

inter-node communications, we adopt different parallel 

program design models that involve MPI, OpenMP, and 

CUDA. To illustrate the workload allocation strategy using 

MPI, OpenMP, and CUDA models, we have chosen 

compute-intensive applications such as LINPACK [5, 13, 

14] to calculate the execution of heterogeneous computing 

systems. GPUs aid the research community to enhance the 

high-performance LINPACK (HPL). 

In this piece of work, we make the following contributions 

for the following scenarios,  

• create a novel dynamic load allocation approach utilizing 

the OpenMP+MPI+CUDA on CPU+GPUs cluster to boost 

the execution of compute-intensive applications on 

heterogeneous clusters: 

• Case 1: Intra-nodes heterogeneity in this case CPU-GPUs 

cluster which has QUADRO K2000 and QUADRO 2000 

graphics cards every node. 

• Case 2: Inter-nodes heterogeneity in this case CPU-GPUs 

cluster which has NVIDIA QUADRO K2000 on one node 

and QUADRO 2000 graphics cards on other node 

Comparison compute intensive applications LINPACK 

performance using our HPC workload division strategy 

against adaptive partitioning technique [15].   

2.  Related Work 

Workload distribution inspires attention of researcher in 
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recent years. Several research has been showed on workload 

distribution to improve overall performance of compute 

intensive applications 

Rong Shi et. al. [7], advances an inventive two-level jobs 

segmentation approach for HPL workload on hybrid cluster 

hubs on a different bunch. In their manner creators 

disseminate the responsibility considering the figure force of 

computer processor/GPU hubs across the group. 

Additionally handles multi-GPU setups they utilized 

procedures, for example, process network reorganization to 

diminish MPI correspondence while guaranteeing load 

balance across hubs. Creators Present point by point 

examination of execution, proficiency, and adaptability of 

their half and half HPL plan across various bunches with 

various designs. Because of memory-figure unevenness loss 

of effectiveness on computer chip hubs, isn't considered in 

this paper. 

SimpliceDonfack et.al [6] the creators present viable cross 

breed CPU+GPU approach that is convenient, progressively 

and effectively balances the responsibility between the 

computer chips and the GPU. Indeed, even the creator 

considered information to move bottleneck among 

computer processor and GPU. In the proposed approach 

how much, starting work allocated to the central processor 

before not entirely set in stone by the hypothetical model. 

Then, at that point, vivaciously settle the heap during 

execution for example moving a fragment of work 

progressively moved from GPUs to computer processors to 

keep load balance creator proposed model self-embrace on 

any design. Show their strategy on LU factorization. 

Takuro Udagawa et.al. [9] Creator proposed another 

technique to adjust the responsibility between computer 

chips &GPUs. The proposed technique is based on figuring 

out and noticing responsibilities and statically disperses the 

work. Creator prevailed with regards to using processors 

more productively and speeding up reproduction utilizing 

NAMD. It gives 20.7% improvement contrasted with GPU 

ideal code. Proposed technique is shown utilizing on MD 

(sub-atomic elements) recreation. Writer not tended to when 

the quantity of cycles builds, computer processor centers 

must be relegated to correspondence strings. That lessens 

computer processor speed. 

Chakkour et.al. [10] and Liu, et.al. [11] The proposed 

demonstrates the Indigo3 labeled benchmark suite [46], 

which consists of 41,790 graph analytics scripts written in 

parallel C, OpenMP, and CUDA. There is no limit to how 

many inputs can be used to run a program. They are 

predicated on 15 different categories of typical issues and 

13 sets of alternate parallelization/implementation 

techniques. 

Joselli et.al [12] to improve performance, authors proposed 

an automatic spreading of HPC load between Multi and 

Many core by using physics engine. In their work physics 

engines compute an approximate load and dynamically 

distribute among CPUs and GPUs. Their method used a 

distributor virtual base class to derive customized heuristics. 

To determine the user program scheduling adoption in their 

framework they called C scripts. This work won’t talk about 

partitions of workload based upon processors capabilities 

and even they did not formulate any analytical model.  

Other works of workload balancing included Becker et.al 

[18] describes the system that uses the ParFUM framework 

with that handles numerous simulations on clusters that 

effectively utilizes both CPU-GPU processors.  Author used 

the similar code for GPU and CPU functions; it allows the 

users to have programs that stabilize the HPC workload 

among CPU and GPU. The problem with their approach is 

not developed any analytical model for Units 

Use either SI (MKS) or CGS as primary units. (SI units are 

strongly encouraged.) English units may be used as 

secondary units (in parentheses). This applies to papers in 

data storage. For example, write “15 Gb/cm2 (100 Gb/in2).” 

An exception is when English units are used as identifiers in 

trade, such as “3½-in disk drive.” Avoid combining SI and 

CGS units, such as current in amperes and magnetic field in 

oersteds. This often leads to confusion because equations do 

not balance dimensionally. If you must use mixed units, 

clearly state the units for each quantity in an equation. 

The SI unit for magnetic field strength H is A/m. However, 

if you wish to use units of T, either refer to magnetic flux 

density B or magnetic field strength symbolized as µ0H. Use 

the center dot to separate compound units, e.g., “A·m2.” 

3. Proposed workload distribution framework 

Proposed HPC load distribution framework for HPC 

application on CPU-GPUs hybrid platform [25]. 

3.1. CPU-GPUs Based Intra-nodes and Inter-nodes 

Heterogeneity Computing Platform: 

Case: 1 Intra-nodes heterogeneity: 

 

Fig. 1. Architecture of hybrid [CPU+GPU] cluster 

environment on evry node having two different computing 

capabilities GPUs. 
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Case: 2 Inter-nodes heterogeneity: 

 

Fig. 2.  Architecture of hybrid [CPU+GPU] cluster 

environment with each node having one CPU and varying 

capability of one GPU. 

In the intra-nodes heterogeneity case, Figure 1 shows an 

outline of mix architecture, where each node consists of 1 

CPU and 2 GPUs having unique processing potential 

endorsed on the PCI-E. We must map the suitable workload 

to them. The execution of GPUs changes under different 

workloads, while CPU performance is moderate [22], 

separate storage is maintained with many-core and multi-

core. Many-core CPU has few numbers of cores, and each 

core has independent cache. The huge number Streaming 

Multiprocessors and streaming processors [SPs] are 

available on multi-core GPU.  

A heterogeneous cluster architecture with several 

heterogeneous compute nodes is depicted in Figure 2. where 

a single CPU processor and a solitary GPU chip are present 

in each heterogeneous computing node. We have taken into 

consideration the pinned memory approach in each 

scenario, where a distinct MPI activity is used to direct and 

transfer the appropriate amount of work to each node in the 

varied cluster. This allows us to resolve the problem of 

resources being underutilized after the compute intensive 

application launches to the cluster. When compared to 

numerous MPI processes per node, we can improve 

internodes transmission overhead and memory-bandwidth 

by employing the pinned memory technique and a solitary 

MPI process, which will result in restricted data 

transmission [22]. 

 The MPI activity first distributes the computed HPC load 

to the appropriate nodes within a diverse cluster. 

Subsequently, it distributes the workload dynamically on 

each respective node among multiple many- cores and 

multi-core GPUs, taking into account their individual 

processing power, speed, and hardware specifications. 

3.2 Hybrid [MPI+OpenMP+CUDA] model 

Figure 3 illustrates the hybrid [MPI+OpenMP+CUDA] 

parallel computing paradigm [19,20] that has been chosen 

in order to enhance the effectiveness of compute-intensive 

applications. NVIDIA developed the parallel programming 

language known as CUDA (Compute Unified Device 

Architecture), which offers a wealth of useful guidelines to 

help designers create high-performance computing systems 

that leverage the potent processing capabilities of GPUs. 

Within the domain of academia engineers have been 

utilizing CUDA a lot. to improve performance and speed up 

numerous applications. 

OpenMP (Open Multiprocessing) in figure 3 is 

implemented to exploit Multicore CPU computation 

intensity and concurrency platform for multi-threaded, 

shared-memory parallel processing multi-core architecture. 

By using OpenMP, no need to generate the threads nor 

assign jobs to every thread, compiling program commands 

help the compiling program to generate threads data 

management, thread synchronization, etc. for the parallel 

processor platform. OpenMP even has runtime library 

functions to switch the parallel execution environment, 

control and monitor threads, control and monitor processors. 

Even OpenMP has environment variables to adjust the 

execution of OpenMP applications. The most significant 

benefit of the OpenMP framework is that is not required to 

restructure the sequential source code. The method of 

creating a parallel version is only insertion of appropriate 

compiler directives to reorganize the serial program to a 

parallel one. 

 

Figure 3: Hybrid prallel programming 

model[OpenMP+MPI+CUDA]  

3.3 Optimized Workload division strategy 

Allocation of the HPC load between many-core CPUs 

and multi-core GPUs is completed in accordance with their 

computational capacity [21]. While assigning the workload 

we should be careful with latency issues, because if we allot 

insignificant volume of  HPC load to the many-core CPU, 

Maintaining CPU engagement during data allocation and 

kernel launch on multi-core GPUs is challenging. In 

contrast, if we allocate more volume of  HPC load to the 

many-core then, the multi-core kernel has to delay for the 

many-core to achieve the assigned workload before 
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producing the result. we have taken care while assigning the 

workload optimally to many-core and multi-core [22]. 

In the projected strategy following parameters are adopted. 

Parameters  

HPC Workload size 

Number of available nodes 

Speeds of process 

Transmission rate 

Memory bandwidth 

No. of CPU cores 

No. of GPU cores 

CPU FLOPS  

GPU FLOPS 

Utilizing these specifications in proposed frameworks 

optimal HPC load partition approach decides best load for 

the compute nodes of many-core and multi-core according 

to the strength of their computing ability 

𝑪𝑪𝒏𝒐𝒅𝒆𝒊  = ∑
𝑪𝑷𝒇𝒍𝒐𝒑𝒔𝒊 + 𝑮𝒑𝒇𝒍𝒐𝒑𝒔𝒊

(𝑪𝑷𝒃𝒘𝒊 + 𝑮𝑷𝒃𝒘𝒊)

𝒊=𝒏

𝒊=𝟏
   (𝟏) 

Where, 

                     CCnodei -  nodei computing capacity 

              CP flopsi - CPU processor FLOPS 

              GP flopsi - GPU processor FLOPS 

               Cpbw - CPU memory bandwidth 

                Gpbw - GPU's memory bandwidth 

                     n-  number of nodes 

After computing the computation power of the nodes using 

equation 1,  

Each node's HPC load is processed using equation 2 

𝐿𝑛𝑜𝑑𝑒𝑖 =
𝑊

∑ 𝐶𝐶𝑛𝑜𝑑𝑒𝑗
𝑗=𝑛
𝑗=1

× 𝐶𝐶𝑛𝑜𝑑𝑒𝑖          (2) 

Where, 

          W- Total work load 

      Lnodei  -  Nodei Work load 

         n- number of nodes 

load on the CPUj of the node Equation 3 can be used to 

calculate 

𝐿𝐶𝑃𝑖  = 𝐿𝑛𝑜𝑑𝑒𝑖  ×
𝐶𝑃𝑓𝑙𝑜𝑝𝑠𝑖

(𝐶𝑃𝑓𝑙𝑜𝑝𝑠𝑖+𝐺𝑃𝑓𝑙𝑜𝑝𝑠𝑖 )
       (3) 

Where, 

       LCPi - CPU i   load on CPU 

     CPflopsi - - CPU processor FLOPS 

     GPflopsi - GPU processor FLOPS 

      Lnodei   - Nodei workload 

 

After computing a chunk of the task to the many-core 

CPU,each core's load many-core CPU is computed using 

equation 4 

𝐿𝐶𝑃𝑖/𝐶𝑗 =
𝐿𝐶𝑃𝑖

𝑁𝑐𝑖
               (4) 

Where,     

   LCPi/cj  load on every core of every CPU 

 Nci  - number available core 

Load on multi-core GPUs is processed for different inter-

node and intra-node cases 

Case 1: In this case CPU+ GPUs cluster has different 

capabilities graphics cards on all node. So, workload 

distribution for each GPUs is calculated in a cluster using eq 

(5). 

𝐿𝐺𝑃𝑖  = 𝐿𝑛𝑜𝑑𝑒𝑖  ×
𝐺𝑃𝑓𝑙𝑜𝑝𝑠𝑖

(𝐶𝑃𝑓𝑙𝑜𝑝𝑠𝑖+𝐺𝑃𝑓𝑙𝑜𝑝𝑠𝑖 )
  (5) 

  Where, 

                            LGPi - Load for GPU i present in node i      

                           CPflopsi - FLOPS of CPU processor  

                           GPflopsi - FLOPS of GPU processor  

                           Lnodei   - Work load for Nodei 

Case 2: In this case, heterogeneous cluster has different 

capabilities graphics cards. Each node having only one 

graphics card. So, workload distribution for individual 

multi-core GPU in a cluster is computed using equation 6. 

𝐿𝐺𝑃𝑖  = (𝐿𝑛𝑜𝑑𝑒𝑖 − 𝐿𝐶𝑃𝑖  )       (6) 

Where, 

                            LGPi - Load for GPU i present in node i      

                           Lnodei   - Work load for Nodei 

                           LCPi - CPU i   load on CPU 

With equation 3 we compute portion of workload on 

available many-core CPU and by using equation 5 and 6 we 

calculated the multi core-GPU workload. By using proposed 

Workload division strategy we can distribute workload 

optimally.  

3.4. Performance evaluation 
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As per above section, once the division of workload among 

CPU-GPUs in fusion cluster is calculated with a random 

input of data volumes. The speedup of HPC load on 

CPUs+GPUs against only CPU platform is determined 

using equation 7 and by equation 8 the speedup of HPC load  

on CPUs+GPUs against only GPU .  

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(ℎ𝑦𝑏𝑟𝑖𝑑 ×𝑐𝑝𝑢)   =
[𝑇𝑐𝑝𝑢]

𝑇(𝑐𝑝𝑢+𝑔𝑝𝑢)
                       (7) 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(ℎ𝑦𝑏𝑟𝑖𝑑 ×𝐺𝑝𝑢)   =
[𝑇𝑔𝑝𝑢]

𝑇(𝑐𝑝𝑢+𝑔𝑝𝑢)
                          (8) 

Where,  

Tcpu is Elapsed _Time of parallel computation 

TGpu is Elapsed _Time of parallel computation 

Speedup (hybrid X CPU) is speedup of compute 

applications of heterogeneous v/s Cpu 

Performance (hybrid X Gpu) is speeedup of compute 

applications of heterogeneous v/s Gpu 

T (cpu+gpu) is Total Elapsed _Time of hybrid computation 

               Elapsed Time=[Execution TIME]x10-6         (9) 

We attempted to assemble the formula for both muti-core 

CPU and many-core GPU, which have different 

configurations, by utilizing the same formula to assess the 

execution of LINPACK Benchmark apps on CPU-GPU. We 

then took the readings and displayed the comparison 

through a graph. 

4. Experimental setup and performance analysis  

Testing were carried out to confirm the suggested workload 

allocation strategy for Compute Intensive Applications on 

Hybrid Platform [MPI+OpenMP+CUDA] the trials were 

showed on 2 different cases of clusters: 

Case 1: In this case  CPU+ GPUs cluster  has NVIDIA 

QUADRO K2000 and QUADRO 2000 graphics cards on 

each nodes. So workload distribution for each GPUs in a 

cluster is computed using equation 5. By using the above 

equation 3, we compute CPU workload and by using 

equation 5 we compute the GPUs benchmark load. With the 

right workload split between CPU and GPU, a 

heterogeneous system's processing resources may be able to 

handle the burden and provide improved performance. 

Case 2 Features two nodes with a 2.40 GHz six-core/socket 

Intel Xeon CPU processor, 31 GB of RAM, and one CUDA-

enabled GPU (NVIDIA Quadro K2000). The other node has 

a CUDA-enabled GPU (NVIDIA Quadro 2000) that serves 

as a device accelerator. The configuration includes a Dell 

Precision R5500 system with 227 and 192 cores, 

respectively, connected by a 100 Mbps switched Ethernet 

[19]. 

In various cluster scenarios, every node is set up with 

MPICH2-1.2 for the MPI library. With Fedora 24 operating 

system, the compilers utilized are NVIDIA nvcc version 5.0 

and GCC version 4.4.7. We ran tests on systems that we 

have administrative authority over [19]. 

4.1 Experimental results on LINPACK benchmark 

applications 

The industry-standard benchmark program LINPACK is 

used to measure how processing frameworks are exhibited. 

Addressing the NXN arrangement of direct equation is 

utilized. 

Ax=b                                    (10) 

For case 1: In this case CPU+ GPUs cluster has NVIDIA 

QUADRO K2000 and QUADRO 2000 graphics cards on 

each nodes. So workload distribution for each GPUs is 

calculated using equation 5 in a cluster. By consuming the 

beyond equation 3, we compute CPU load and by using 

equation 5 compute the GPU's load. In theory, HPC 

workloads can be appropriately distributed throughout the 

computational capabilities of a mixed system to improve 

performance by appropriate workload distribution between 

many and multi core. Performance comparison results of 

novel division of load  approach against an adoptive 

partitioning technique [22] 

4.1 Performance comparison results of novel workload 

division strategy against an adoptive partitioning 

technique 

LINPACK for case 1: 

Table 1 displays the comparison of performance. of 

LINPACK in Gflops using adaptive partitioning technique 

against our novel workload division strategy [23]. The 

application was executed on our workload distribution 

framework, having different capabilities based CPU and 

NVIDIA Quadro K2000 and Quadro 2000 GPUs on an 

intranode heterogeneity cluster with hybrid programming 

models and to minimize communication overhead we used 

pinned memory techniques to accelerate the performance 

Table: 1 Performance comparison results of HPC load 

division strategy against an adoptive partitioning technique 

No of 

data 

points 

Performance 

in Gflops 

Adaptive 

partitioning 

technique 

Performance 

in Gflops 

novel 

workload 

division 

strategy 

% of 

performance 

improvement 

2000 1.1364768 4.673553275 75.68281063 

4000 1.469949107 6.138539305 76.05376402 

6000 1.901270997 8.062744251 76.4190586 

8000 2.45915412 10.59011625 76.77878069 

10000 3.180734885 13.90972586 77.1330153 

15000 4.114046504 18.26991026 77.48184614 
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20000 5.3212164 23.99685114 77.82535563 

30000 6.882601825 31.51897609 78.16362497 

40000 8.90213897 41.3990089 78.49673408 

50000 11.51426165 54.37606642 78.82476169 

60000 14.89285011 71.42095133 79.14778531 

70000 19.26280565 93.808777 79.46588127 

80000 24.91502156 123.2143577 79.77912474 

90000 32.22574689 161.8374999 80.08758976 

100000 41.68163211 212.5675681 80.39134921 

150000 53.91212378 279.1996357 80.69047488 

200000 69.73136472 366.7183911 80.98503745 

250000 90.19238873 481.6710381 81.27510653 

300000 116.6572176 632.6570867 81.56075068 

 

 

Fig 4: Performance comparison results of  HPC LINPACK 

load partition scheme against an adoptive partioning 

technique 

Figure 4 compares the execution of a unique workload 

division approach with an adoptive partitioning technique. 

The y-axis displays GFLOPs, while the x-axis displays the 

different data input sizes. When compared against adoptive 

partitioning strategies, the performance (GFLOPs) of our 

unique methodology exhibits modest average performance 

improvement, i.e. 76.7%, throughout the initial stage of 

LINPACK testing with varying input size up to assign 

resources according to user priorities and workload factors. 

Future workload distribution plans ought to include fault 

tolerance techniques. workload division techniques should 

be portable in terms of performance across various 

computing platforms and scalable across a broad variety of 

system sizes and architectures100,000. The performance of 

our unique approach shown improved average performance 

improvements, i.e. 80%, during later rounds of LINPACK 

trials as started to change data input size. This was achieved 

by lowering calculation and transfer overhead via using 

pinned memory strategy on intranode heterogeneity In 

contrast to o the adoptive partitioning techniques. 

our unique workload division technique produced an overall 

average performance (GFLOPs) of 78.74% in LINPACK 

trials. Strategy an overall average performance (GFLOPs) 

i.e.78.74% when compared against the adoptive partitioning 

techniques. 

LINPACK for case 2: 

Table 2 shows the speed up comparison of LINPACK in 

GFLOPs using adaptive partitioning technique against our 

novel workload division strategy. The application was 

executed on our workload distribution framework, having 

different capabilities based CPU and NVIDIA Quadro 

K2000 and Quadro 2000 GPUs on an internodes 

heterogeneity cluster pinned memory and hybrid 

programming models techniques to accelerate the 

performance 

Table: 2 Performance comparison results of  HPC load 

partition strategy against an adoptive partitioning technique 

No of 

data 

points 

Performance 

in Gflops 

Adaptive 

partitioning 

technique 

Performance 

in Gflops 

novel 

workload 

division 

strategy 

% of 

performance 

improvement 

2000 2.1364768 6.345355328 66.33006838 

4000 3.000177671 9.666914063 68.96447355 

6000 4.213041797 14.7271859 71.39275741 

8000 5.916223347 22.43632281 73.63104731 

10000 8.307940053 34.18090766 75.69420878 

15000 11.66654196 52.07334813 77.59594422 

20000 16.38290605 79.33181916 79.34888394 

30000 23.00592682 120.8590912 80.96467002 

40000 32.30639712 184.1243537 82.45403366 

50000 45.36671367 280.5066402 83.8268664 

60000 63.70684734 427.3414876 85.09228587 

70000 89.46123865 651.0389448 86.25869629 

80000 125.6272058 991.8337439 87.33384435 

90000 176.4137751 1511.022011 88.3248706 

100000 247.7315311 2301.986126 89.2383569 

150000 347.8804955 3506.990689 90.08037014 

200000 488.5160909 5342.770557 90.85650253 

250000 686.0056088 8139.51326 91.5719087 

300000 963.3330488 12400.24729 92.23134002 
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Fig 5: Performance comparison results of novel workload 

division strategy against an adoptive partitioning technique 

Figure 5 results of novel HPC load allocation policy against 

an adoptive partitioning technique, where x-axis shows the 

varying data input size and y-axis shows GFLOPs. During 

initial stages of LINPACK experiment with data size up to 

20000 on internodes heterogeneity, we observed that there 

is nominal average performance (GFLOPs) of improvement 

is 73.29% when compared against the adoptive partitioning 

techniques. During later stages of LINPACK experiments 

as started to vary input size up to 100000 the performance 

(GFLOPs) of our novel approach showed better average 

performance improvements i.e. 85.43% by minimizing 

computation and communication overhead by using pinned 

memory technique on internodes heterogeneity. observed 

the GFLOPs improvement of our novel approach for the 

data size 100000 to 300000 is 91.98%. As we observed from 

LINPACK experiments size 2000 to 300000 with our novel 

workload division strategy an overall average performance 

(GFLOPs) i.e.82.16% when compared against the adoptive 

partitioning techniques.  

5. Conclusion and Future scope 

The two primary challenges to improving the execution 

(GFLOPs) on the intra and internodes heterogeneous 

clusters are effectively distributing the HPC load concerning 

the multi-core  and many-core and overcoming the inter- 

and intra-node communication overhead. To effectively 

divide the HPC load on intra- and internodes heterogeneity 

clusters, proposed a novel analytical technique in this paper, 

which expresses our expertise resolving these two 

challenges. We have also thought of using a 

OpenMP+MPI+CUDA to efficiently use the powers of 

multi and many cores. To decrease the volume of 

communication overhead between and within nodes, pinned 

memory with a solitary MPI process is managed to handle a 

portion of the load on each node. We have also contrasted 

our novel's performance (GFLOPs). a unique approach to 

analytical workload management using the adoptive 

partitioning technique with benchmark applications from 

LINPACK. Based on experimental results, we can conclude 

that our novel workload division outperforms adoptive 

partitioning technique when compared to a random data 

input size with different CPU and GPU capabilities based 

intra-nodes heterogeneity (CASE-1) and internodes 

heterogeneity (CASE-2) cluster by achieving overall 

average performance (GFLOPs), i.e. 78.74% and 82.16%. 

Future systems might have to dynamically. 
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