

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2005

Developing an Intrusion Detection System (IDS) For Network Security

Using Machine Learning

Ghousun Ayed Alsharari1, Ayman Mohamed Mostafa2,3

Submitted:12/03/2024 Revised: 27/04/2024 Accepted: 04/05/2024

Abstract: The Internet of Things (IoT) technologies have become so widespread that they are now the main cause of network security

management problems. With the ever-growing integration of IoT into both consumer and industrial applications, security plays a very

important role. The research in this paper is about the creation of a modern Intrusion Detection System (IDS) that can be applied to IoT

network security using Machine Learning (ML) and Deep Learning (DL). The very heart of this system is the use of ML to discover and

deal with possible threats in a quick and efficient way, though the focus here is on feature engineering that enhances detection accuracy.

Through the use of mRMR for feature selection and PCA for feature reduction, our system is able to optimize the processing and analysis

of network behaviors so that it can differentiate between normal operations and different types of attacks efficiently. This paper is about

the comparison of effectiveness between ML and DL models in detecting threats inside IoT environments, which are tested on the ToN-

IOT dataset. The findings show that our ML and DL-driven IDS not only have a high level of accuracy in threat detection but also

significantly reduces the computational demands, therefore enabling more efficient real-time applications in IoT security.

Keywords: Internet of Things (IoT); Intrusion Detection System (IDS); Machine Learning (ML); Deep Learning (DL); and Minimum

Redundancy Maximum Relevance (mRMR).

1. Introduction

The Internet of Things (IoT) is the network of physical

things — "things" — which are equipped with sensors,

software and other technologies that aim to connect and

exchange data with other devices and systems through the

Internet. These devices fall in the category from home

appliances to complex industrial machines. In the industrial

field, IoT technology is a basic element of the industrial

Internet of Things (IIoT), which makes it possible to achieve

extremely high levels of efficiency, productivity and

performance. It is widely applied in the manufacturing

processes to control machine operations, coordinate supply

chain management and perform predictive maintenance. In

the medical field, IoT has led to the Internet of Medical

Things (IoMT), thus changing healthcare by enabling the

remote monitoring of patients, which makes it possible for

doctors to intervene in time and improve clinical treatment

outcomes. The IoT devices in healthcare are wearable

fitness bands and advanced units like heart rate monitoring

cuffs [1].

The architecture of the Internet of Things (IoT) is formed by

three main layers, each playing an important role in the

operation of IoT systems. The Perception Layer, also known

as the physical layer, is made up of sensors and actuators

which collect all environmental parameters and interact with

the real world. Then the Network Layer becomes the

communication spine, which connects these sensors and

actuators to the internet through technologies such as Wi-Fi,

Bluetooth, and LTE; this is what enables the transmission

and processing of collected data. At the top is the

Application Layer, which uses the processed data to create

personalized services for users and it supports a range of

applications from business analytics to medical diagnostics,

thus enabling people to make decisions based on real-time

IoT data.

The IoT networks have many security issues because of the

large number of connected devices which create multiple

weaknesses and ways for cyberattacks. The risks are the

Data Breaches, where unauthorized people get into data

either in transit or at rest within the network, which can lead

to serious information leak. Man-in-the-Middle Attacks is

another threat in which attackers intercept and change the

communication between two people who have no idea about

it, thus they compromise the integrity of data exchange.

Besides, Denial of Service Attacks will make the system

collapse by an excess load of data so that legitimate users do

not get service and the operations in the network are

disrupted. These weaknesses force the IoT ecosystems to be

protected by strong security measures from such threats [3,

4].

To guard IoT networks against the above-mentioned

security hazards, the deployment of IDS that works well is

a must. IDS fall into three main categories: HIDS, which are

1 Department of Computer Science College of Computer and Information

Sciences Jouf University, Sakaka 72388, Saudi Arabia
 Email: 441205000@ju.edu.sa
2 Department of Information Systems College of Computer and

Information Sciences Jouf University, Sakaka 72388, Saudi Arabia

 Email: amhassane@ju.edu.sa
3 Department of Information Systems, College of Computers and

Informatics – Zagazig University - Egypt

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2006

installed on individual devices to monitor both the traffic

entering and exiting the device as well as system logs for

signs of malicious activity; NIDS, which check the entire

network's traffic to find unusual or suspicious behavior; and

Hybrid IDS that combine features of both HIDs and NIDS

to provide a more comprehensive coverage. This security

system has many layers that help in the identification and

reduction of potential threats at both the device and network

levels which increases the resistance level of IoT systems

against cyber-attacks [5]. Machine learning boosts IDS by

letting systems learn from data patterns and thus detect

anomalies more accurately. Feature engineering is the main

factor here that helps to identify which data characteristics

are most important for detecting threats [6].

This research deals with the security issues in IoT networks

that are innate by building a new Intrusion Detection System

(IDS) which exploits machine learning and deep learning.

The main objective is to develop a smart IDS system that

combines different ML models and compares their

performance with the DL model in detecting and dealing

with possible security threats. The gist of our method is the

feature engineering, which consists mainly of two parts:

feature selection and feature reduction. We evaluate the

effect of feature engineering on the IDS by measuring the

performance of various ML and DL models, both with and

without Minimum Redundancy Maximum Relevance

(mRMR) for feature selection and Principal Component

Analysis (PCA) for dimensionality reduction. The IDS's

efficiency is thus increased by these feature engineering

techniques and at the same time, the computational

resources and time required to analyze IoT network

behaviors are significantly decreased. This fast way lets our

system to precisely tell the difference between the usual

operations and possible security threats in both binary levels

(normal or attack) and multiple levels (normal and various

kinds of attacks).

2. RELATED WORK

IDS can be broadly categorized into two main types: The

Network Intrusion Detection Systems (NIDS) and Host

Intrusion Detection System (HIDS). NIDS are intended to

watch the communication between nodes in a network,

analyzing both incoming and outgoing traffic flow that

includes packet headers and payload content [7]. On the

contrary, HIDS concentrates on what is going inside every

node or system like operating system files and log files and

also can analyze encrypted network communication that

either comes from or goes to the host [8].

Besides, IDS can be divided into three types: signature-

based, anomaly-based and specification-based [9].

Signature-based IDS, also known as Misuse Detection, are

based on the predefined signatures of known intrusion

patterns. They are good at identifying the known attacks, but

they can also be deceived by new, undefined ones [9].

Anomaly-based IDS, or Behavior-based Detection,

determine the discrepancies from the normal behavior

patterns which are set. Those systems, usually based on AI

techniques like Machine Learning (ML) and Deep Learning

(DL), can both detect known and unknown attacks, but they

have a higher False Positive Rate (FPR) [9]. Specification-

based IDS is a combination of the advantages of both

signature-based and anomaly-based systems, which aims to

detect a wide range of attacks by using different AI

techniques [10].

The figure 1 in the paper is a kind of comparison between

signature-based and anomaly-based IDS, which makes it

clear that either stateless or stateful operational mode can be

employed by these systems, and what types of network

intrusions they are good at detecting.

Fig 1: Signature-based versus Anomaly-based IDS.

This classification of IDS is very important for the

comprehension of their use in healthcare cybersecurity

especially when it comes to IoT-based ICUs. Although IDS

are the ones that detect intrusions, it is necessary to separate

them from Intrusion Prevention Systems (IPS), which can

apply corrective and preventive measures [10]. The research

of IDS in the healthcare field, particularly with the growing

use of IoT technologies, is what our study is based on. We

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2007

are aiming at improving cybersecurity in critical healthcare

areas.

The research by Chandola et al. [11] is a detailed study of

the application of machine learning in anomaly detection,

mainly in intrusion detection systems (IDS). Machine

learning is applied in misuse detection, where classifiers are

trained with pre-labeled datasets to identify certain types of

intrusions. Anomaly detection is done through unsupervised

learning where the system learns from data without pre-

existing labels to identify deviations from the norm. Semi-

supervised learning is like a mixture of both, it uses some

labeled data to boost the learning process.

Yu Xue and his colleagues [12] introduced a highly

developed feature selection method for the Intrusion

Detection Systems (IDS) based on the self-adaptive

differential evolution (SaDE) algorithm and k-nearest

neighbors (k-NN) for evaluation. The KDDCUP99 dataset,

which is the standard in IDS research was divided into four

smaller subsets for feature selection and classification. The

k-NN's classification accuracy was checked by putting

together three of the four subsets to test if the feature

selection is stable in different parts of the data.

Akashdeep et al. in their study [13] deal with the application

of Artificial Neural Networks (ANNs) to Intrusion

Detection (ID), mainly showing that feature selection and

reduction are crucial for improving system performance.

The methodology is to rank the data features according to

their correlation and information gain, then combine them

properly and preprocess redundant and irrelevant data in

order to optimize the resource usage. Thus, time complexity

will be reduced. Nevertheless, the study's use of the KDD99

dataset makes us wonder about its relevance and reliability

in today's network security problems.

Simone A. Ludwig's [14] investigation on DNNs in the

ensemble methods for IDS is a great contribution to

cybersecurity. The NSL-KDD dataset, which is a better

version of the KDD'99 was used to test IDS models. The

research discovered that some attacks although were highly

performing, they also revealed the need for more studies and

development of new techniques to improve the detection

capabilities especially in U2R and R2L types which are

considered to be complex.

The research conducted by Chaopeng Li [15] on the

Intrusion Detection (ID) using Recurrent Neural Networks

(RNNs) and Restricted Boltzmann Machines (RBMs) is a

great step forward in cybersecurity methods. The approach

utilizes the network traffic data that includes potential

signatures of nefarious activities as input data. RBMs are

applied to the construction of network packet

representations, which take in the main features of data for

analysis. RNNs are good at processing the sequential data,

which is why they are perfect for analyzing the temporal

correlations between neighboring network packets.

Chuanlong Yin's [16] study on the use of Recurrent Neural

Networks (RNNs) for Intrusion Detection Systems (IDS)

shows the possibility of deep learning in cybersecurity. The

research works on the NSL-KDD dataset to transform non-

numeric data into a numeric one for better processing and

analysis of the data. The model shows good results in

detecting various attacks, however it has some limitations in

the detection of User to Root (U2R) and Remote to Local

(R2L) which are often complex and low-frequency.

Training time is another limitation, since RNNs can take a

long time to train, especially when the dataset is big like

NSL-KDD. Model complexity and overfitting are also the

problems. RNNs are inherently complex models that tend to

be overfitted if not properly regularized or trained on

datasets which do not represent the full spectrum of possible

intrusions. Real-time IDS deployment of RNNs could be

hard to do because their computation is very intensive which

might not be possible in all network environments.

Yihan Xiao's study [17] comes with an Intrusion Detection

System (IDS) using Convolutional Neural Network (CNN),

a major cybersecurity strategy. The model is evaluated

however it is outperformed by more than one other approach

in the field. Nevertheless, it has some drawbacks such as

computational complexity, the risk of overfitting, the

problem of generalization to unseen attacks, real-time

processing difficulties and compatibility with existing

systems.

Dimitrios Papamartzivanos's [18] "rule injection method"

for Intrusion Detection Systems (IDS) is a new way that

combines Decision Trees (DT) with Genetic Algorithms to

come up with an efficient IDS. The method is used to

improve the classification performance of Decision Trees in

IDS with GAs optimization power. The main results prove

that the IDS detection abilities can be improved by

generating a strong set of rules with the help of GAs.

Nevertheless, the issues related to computational

requirements, generalization abilities and practical

application in real-world situations are still the key areas

that need more research and improvement.

Kai Peng and his team [19] have come up with an IDS for

big data environments which is based on Decision Trees

(DT) as the core. The IDS is successfully dealing with and

categorizing the big datasets through a structured way,

which proves that machine learning techniques are really

flexible to handle complex, large-scale data. Nevertheless,

the method's scalability, adaptability to new threats,

computational efficiency, overfitting risks and model

complexity are all limitations.

Gisung Kim and the team [20] have built a hybrid intrusion

detection model which fuses together the concepts of misuse

detection and anomaly detection via Decision Trees (DT)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2008

and Support Vector Machines (SVM). The model initially

concentrates on misuse detection using the C4. 5 Decision

Tree algorithm, which is based on the segmentation of

normal training data into smaller subsets for certain misuse

detection cases. In the second phase, binary SVMs are used

on each subset formed by the DT model to add more

sensitivity of unknown or new intrusions.

Hassan I. Ahmed and his colleagues [21] have carried out

the full research on machine learning techniques in Intrusion

Detection Systems (IDS), analyzing Decision Trees (DT),

Artificial Neural Networks (ANN) and Random Forest. The

main datasets that were used are KDDCUP99, ISC2012, and

CICIDS2017. The comparative analysis was very useful as

it helped to understand how different machine learning

algorithms work in IDS, thus pointing out the strong and

weak sides of each method when dealing with various types

of intrusions. Nevertheless, the research had a number of

drawbacks, for instance dataset limitations, generalization

concerns, model complexity and scalability problems as

well as overfitting risks.

Wajdi Alhakami and his team have come up with a new way

for anomaly-based Intrusion Detection (ID) in the field of

Internet of Things (IoT) security. The model does both

feature selection and classification which is very important

for efficient ID, especially in complex environments like

IoT. The model's capability is tested with three different

datasets (KDDCUP99, Kyoto2006+, and ISC2012), which

prove that the model can be applied in any network

environment.

Abdulhammed and others [23] have proposed a technique to

improve the efficiency of Intrusion Detection Systems (IDS)

by means of feature reduction using autoencoders and

principal component analysis (PCA). The autoencoders and

PCA duo can boost the IDS performance by simplifying

data analysis and making classifiers more efficient in

detecting intrusions. Nevertheless, the way must cope with

issues associated with complexity, data loss, generalization

and adaptability in order to be widely applicable in various

IDS contexts.

Xiao et al. [24] created an IDS that is more advanced than

the previous ones by using a Bayesian Network Model

Averaging (BNMA) classifier which combines BMA and k-

best BN classifiers to improve classification accuracy.

Nevertheless, the decision of which feature subset to use is

crucial for the performance of the classifier and thus it

determines the accuracy. The model averaging is a complex

task and it can be computationally intensive, especially

when the datasets are large like in NSL-KDD. Another

problem is the overfitting risk which happens, when you

train and test on different subsets of the same dataset

multiple times. Discretization bias is caused by the human

factor in deciding how to group continuous variables.

Wenying Feng et al. [25] combined an ant colony

optimization (ACO) algorithm with a Support Vector

Machine (SVM) to come up with a new IDS. The integrated

apporach is better than using these methods one by one and

it works well in classfying different types of network

intrusions. Nevertheless, the drawbacks are related to

dependence on clustering quality, computational

complexity, dealing with evolving threats, generalization to

new data, parameter tuning and overfitting risk.

Table 1: Comparison between reference studies

REF
Approach

Method

Detailed

Summarize

Method

Machine

Learning

Method

Key Limitations

Chandola et al.

[11]

Anomaly

Detectors

Comprehensive

analysis of ML

techniques for

ID, covering

supervised,

unsupervised,

and semi-

supervised

learning,

focusing on

anomaly and

misuse

detection.

Supervised &

Unsupervised

Learning

Need for labeled

datasets,

generalization

issues, overfitting

Yu Xue et al. [12]
Feature

Selection

Utilization of

the SaDE

algorithm for

optimal feature

selection and k-

NN to evaluate

the quality of

SaDE

Algorithm &

k-NN

Lack of

generalizability to

entire dataset

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2009

these features in

IDS.

Akashdeep et al.

[13]

Feature

Selection &

Classification

Strategic

ranking and

combination of

data features

using ANNs to

build a

classification

system

optimized for

ID.

Artificial

Neural

Networks

(ANN)

Dependency on

KDD99 dataset,

overfitting risk

Simone A.

Ludwig [14]

Ensemble

Methods

Evaluation of

DNNs in

ensemble

methods

focusing on

backpropagation

neural networks

and assessing

false alarm and

detection rates.

Deep Neural

Networks

(DNNs)

Less effective in

U2R and R2L

attacks

Chaopeng Li [15]
Traffic Data

Analysis

Use of RNNs

and RBMs to

analyze network

traffic data,

capturing

temporal

correlations and

building packet

representations.

RNNs &

RBMs

Model complexity,

overfitting,

adaptability

Chuanlong Yin

[16]

Binary &

Multi-Class

Classification

RNNs applied to

IDS for binary

and multi-class

classification

tasks, assessing

performance on

accuracy,

detection rate,

and FP rate.

Recurrent

Neural

Networks

(RNNs)

Shortcomings in

U2R/R2L

detection, training

time

Yihan Xiao [17]

Data

Transformation

& Model

Training

Transformation

of symbolic data

to numeric and

training of CNN

model to

enhance

intrusion

detection

performance.

Convolutional

Neural

Network

(CNN)

Surpassed by other

methods

Dimitrios

Papamartzivanos

[18]

Rule Injection

Synergy of

Decision Trees

and Genetic

Algorithms to

create a rule-

based intrusion

detection model,

Decision

Trees &

Genetic

Algorithms

Complexity,

overfitting,

generalization

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2010

optimizing

detection rules.

Kai Peng et al.

[19]

Data

Preprocessing

&

Classification

Processing and

classifying big

data in IDS

using DT,

involving pre-

processing,

normalization,

and

classification

steps.

Decision

Trees (DT)

Scalability,

adaptability,

efficiency

Gisung Kim et al.

[20]

Misuse &

Anomaly

Detection

Hybrid model

using DT for

misuse detection

and binary

SVMs for

anomaly

detection,

focusing on

segmenting and

classifying

network data.

Decision

Trees & SVM

Complexity,

generalization,

detection

capabilities

Hassan I. Ahmed

[21]

Comparative

Analysis

Analysis of

various ML

techniques for

IDS, comparing

their

performance

across different

datasets.

DT, ANN,

Random

Forest

Dataset

limitations,

generalization,

adaptability

Wajdi Alhakami

[22]

Feature

Selection &

Classification

Bayesian

methods used

for both feature

selection and

classification,

tailoring the

model for IoT

ID systems.

Bayesian

Methods

Complexity,

scalability,

adaptability

Abdulhammed et

al. [23]

Feature

Reduction

Employing

autoencoders

and PCA for

dimensionality

reduction in

IDS, enhancing

classifier

efficiency.

Autoencoders

& PCA

Complexity, data

loss, adaptability

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2011

Xiao et al. [24]
Classifier

Development

Development of

BNMA

classifier

through BMA

and k-best BN

classifiers,

enhancing

classification

accuracy in IDS.

Bayesian

Network

Model

Averaging

(BNMA)

Feature selection,

model complexity

Wenying Feng et

al. [25]

Data

Clustering &

Classification

Combination of

ACO for

clustering and

SVM for

classification,

improving

intrusion

detection in

IDS.

Ant Colony &

SVM

Clustering quality,

computational

complexity

Enamul Kabir et

al. [26]

Sampling &

Detection

Two-stage

decision-

making using

sampling for

representative

data selection

and LS-SVM for

intrusion

detection.

Least Square

SVM (LS-

SVM)

Sample

representativeness,

initial subgrouping

Vijayanand et al.

[27]

Feature

Selection &

Classification

GA for feature

selection and

multiple SVM

classifiers for

sequential data

processing and

classification in

mesh IoT

networks.

SVM &

Genetic

Algorithm

Complexity,

specificity to mesh

IoT

Kuang et al. [28]

Feature

Reduction &

Optimization

SVM model

integration with

KPCA for

feature

reduction and

CPSO for

parameter

optimization in

IDS.

SVM, KPCA,

& CPSO

Optimization

complexity,

dataset limitations

Bamakan et al.

[29]

Feature

Selection &

Optimization

Focus on feature

selection and

SVM parameter

optimization in

IDS to

maximize

detection rate

and minimize

false alarms.

Feature

Selection &

SVM

Optimization

Limitations in R2L

and U2R detection

Enamul Kabir et al. [26] proposed a new method to IDS that

is based on the sampling technique and the Least Square

Support Vector Machine (LS-SVM). The two-stage

decision-making process begins by dividing the dataset into

subgroups, then selecting samples that are representative

and truly reflect the overall characteristics of the dataset.

The LS-SVM is then used to the samples to find intrusions.

The technique is tested on the KDDCUP99 dataset, which

is a well-known benchmark in intrusion detection.

Vijayanand et al. [27] invented the new way of IDS for mesh

IoT networks, which is a combination of SVM and GA. The

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2012

model is created for the mesh IoT networks, and it focuses

on its importance in the modern connected network

environment. Nevertheless, the model's real-world

application could be affected by factors like computational

complexity, the linear arrangement of classifiers and its

adaptability to changing network threats and environments.

SVM and KPCA were integrated by Kuang et al. [28] in

their novel method of IDS along with the improved CPSO

to make it more efficient. The model applies SVM together

with KPCA for the feature dimensionality reduction, which

is then fine-tuned to minimize computational time and

enhance accuracy. Nevertheless, the possible drawbacks of

this method are the difficult optimization process,

dependence on KPCA for feature reduction, data set

limitations, potential overfitting. Computational resource

requirements as well as adaptability to changing threats and

generalization across different network environments are

also among them.

The paper of Bamakan et al. [29] presents an Intrusion

Detection System (IDS) framework which merges the

feature selection and Support Vector Machine (SVM)

parameter optimization techniques. The framework tries to

have a high detection rate and at the same time avoid false

alarms as much as possible using the least features. Tested

on the NSL-KDD and KDDCUP99 datasets, the framework

showed significant reductions in false alarm rates and

reasonable detection rates, especially for Probe and Denial

of Service (DoS) attacks. However, it showed limitations in

detecting R2L and U2R attacks, which often involve more

sophisticated intrusion methods. The framework's

performance is evaluated on widely used datasets, which

may not fully represent the current network attack

landscape. Table 1 provides a comparison between previous

studies.

Our work seeks to address several key gaps in the field of

Intrusion Detection Systems (IDS) for the Internet of Things

(IoT) by leveraging advanced machine learning (ML) and

deep learning (DL) techniques:

− Comparative Analysis of ML and DL Models: we

are exploring how different ML models stack up

against DL models in terms of effectiveness in

detecting and responding to security threats within

IoT environments.

− Efficient Data Processing with Feature

Engineering: By implementing MrMr based

feature selection and PCA based feature reduction

for feature selection, our work significantly

reduces the dimensionality of data, enhancing the

IDS's performance and lowering the computational

demands, which is crucial for real-time

applications in IIoT.

− Multi-level Threat Detection: Unlike many

existing systems that only categorize activities as

normal or malicious, our IDS is designed to

identify various levels of threats, providing a

nuanced and effective security mechanism.

3. METHODOLOGY

The proposed system framework consists of a recorder, an

AI-based intrusion detection system, and a decision-making

module. The recorder records IoT network behavior, while

the AI-based system analyzes network properties to identify

patterns. The final component makes decisions based on the

assessed behavior, determining if the observed behavior is

normal or a potential attack. A visual representation of these

components is provided in Figure 2.

Fig 2: Components of the framework.

The proposed model for an intrusion detection system structured as sequential steps as depicted in Figure 3:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2013

Fig 3: Proposed model of our smart IDS.

Step 1: Choose the Dataset: In our work, we will use ToN-

IOT dataset of network traffic from an industrial IoT

application case. The ToN-IOT [30] are newer generations

of Internet of Things IoT and Industrial datasets to assess

the accuracy as well as efficiency of different cybersecurity

applications derived from Artificial Intelligence. The

dataset consists of 461,034 records with a total of 52

features which are used in the machine learning model and

work as functioning as an Intrusion Detection System (IDS).

It includes two labels: ’label’ indicating whether the record

represents normal behavior or an attack (0 for normal, 1 for

attack), and ‘Type’, classifying records to specific

categories of attacks such as DoS; DDoS; and backdoor

alongside normal data. The dataset had ten classes, where

nine of them presented distinct type attacks, as well as one

class, described the normal condition. This is a rich structure

to be used in developing a sufficiently strong IDS system

able of differentiating between various network activities

and identifying threats properly. The statistical descriptions

of Label and Type columns are depicted in Figure 4.

a

b

Fig 4: Details of (a) Label and (b) Type columns.

Step 2: Data Pre-processing: The preprocessing stage

includes the following steps:

a. Handle Missing Values: To ensure the dataset is

complete without gaps, which might lead to biased

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2014

or incorrect model predictions. Knowing that

Numeric columns with missing values are filled

using the mean value of the column, which

preserves the central tendency. Whereas,

categorical columns are filled using the mode

value, which is the most frequent category,

ensuring that the original distribution of categories

is maintained as closely as possible [31]. The

dataset contains 9476837 missing values in

different columns as shown in Table 2.

Table 2: number of missing values for each column.

Column Number of Missing

'service' 280216

'dns_query' 366019

'dns_AA' 365158

'dns_RD' 365158

'dns_RA' 365158

'dns_rejected' 365158

'ssl_version' 460737

'ssl_cipher' 460737

'ssl_resumed' 460352

'ssl_established' 460352

'ssl_subject' 461034

'ssl_issuer' 461034

'http_trans_depth' 460796

'http_method' 460809

'http_uri' 460809

'http_version' 460801

'http_user_agent' 460809

'http_orig_mime_types' 461029

'http_resp_mime_types' 460883

'weird_name' 459749

'weird_addl' 460290

'weird_notice' 459749

b. One-Hot Encoding: Machine learning models

generally work better with numerical input.

Categorical data are transformed into a numerical

format that models can interpret without

introducing ordinality [32].

c. Min-Max Normalization: To scale numerical

features in the dataset to a common scale without

distorting differences in the ranges of values [32].

This rescales the feature to a fixed range of 0 to 1,

using the equation (1):

Step 3: Feature Engineering is crucial for enhancing model

performance and efficiency. It utilizes two main techniques:

Principal Component Analysis (PCA) and Maximum

Relevance Minimum Redundancy (mRMR). PCA

minimizes the number of features, therefore simplifying the

dataset while mRMR chooses only those most impactful and

informative from this reduced set.

− PCA is used for feature reduction, where it changes

the original features into a new set of variables

which are called principal components. These

elements are made to get the most variance or

information from the data while being uncorrelated

with each other. The reduction of the data thus not

only simplifies it but also helps in getting rid of

noise and enhancing computational efficiency

[33].

− On the contrary, mRMR is applied to feature

selection which emphasizes on choosing features

that are most relevant to the predictive task and at

(1

)

(1)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2015

the same time ensuring that there is a minimum

redundancy in them. This procedure selects those

features that are the most informative about the

target variable and at the same time, they are not

related to each other. Thus, it prevents a model

from learning any redundant information. This

contributes to the increase of the predictive

accuracy and generalization capability of the

model [34].

Step 4: Split DS using Holdout: The dataset is split into

training (70%) and testing (30%) sets. The training set is

used to build and train the model, while the testing set is

used purely for evaluating its performance, simulating how

the model would perform on unseen data.

Step 5: Classification: In our work we use three levels of

classification:

− First Level - Normal or Attack: Determine whether

each instance in the dataset is a normal operation

or an anomalous attack.

− Second Level - Type of Attack: Further classify

each detected attack into types, for instance, DOS,

malware, or phishing, based on the characteristics

of the attack.

Regarding classifier, we used three types of classifiers:

− Ensemble Classifiers: Use methods like Bagging

Trees and AdaBoost, which combine the

predictions of several base estimators to improve

robustness and accuracy over a single estimator.

− Standard Classifiers: Use the algorithms like

Support Vector Machine, K Nearest Neighbor,

Naive Bayes and Decision Trees that have their

own strengths in dealing with different types of

data and classification problems.

− Deep Neural Networks: Use the complicated

models like LSTM which are good at processing

sequences and time-series data, thus they are

suitable for tasks such as anomaly detection in

time-dependent data.

Step 6: Assessment: The model is to be tested on the new,

unseen data which are practical and accurate for it. This is

achieved through the use of different indicators like

accuracy, precision, recall, F1-Measure and ROC curves to

assess the model's performance from various aspects so that

it meets the set standards for deployment.

A. Classification Algorithm

AdaBoost (Adaptive Boosting) [35] is a technique that

uses multiple weak learners to produce a strong classifier.

The ensemble, usually a single decision tree for each learner

is constructed sequentially and the next one focuses on those

instances which were not classified correctly by the

previous ones. The learners are given weights according to

their accuracy and each instance in the dataset is also

assigned a weight that increases if it is misclassified. As a

result, the ensemble becomes able to adjust itself to the

harder cases in the dataset. AdaBoost is specialized in

binary classification problems, and it is famous for its high

accuracy of classification.

Bagging Trees (BagTree) or Bootstrap Aggregating [36],

is a different ensemble technique in which multiple decision

trees are trained on the same training set but on its different

subsets. These subsets are produced by the random selection

of some training samples with replacement. Every tree is

trained separately, and their predictions are then combined

usually by the majority voting for classification or averaging

for regression. This technique minimizes the variance and

thus, the chance of overfitting which in turn makes the

ensemble more robust than individual decision trees.

Support Vector Machine (SVM) [37] is a very efficient

classification method that does it by finding the hyperplane

which best separates two classes of data with the maximum

margin. In a nutshell, it determines the broadest "street"

between classes. SVM is very good in high-dimensional

spaces, and it can be used for both linear and non-linear

boundaries by the kernel trick.

K-Nearest Neighbors (KNN) [38] is an easy, instance-

based learning algorithm. In KNN, the classification of a

new instance is determined by a plurality vote of its

neighbors, with the instance being assigned to the class most

common among its k nearest neighbors measured by a

distance function. KNN is easy to implement and

understand but can become computationally expensive as

the size of the data grows.

Decision Tree (DT) classifiers [39] are intuitive models

that split data by learning decision rules inferred from the

features. Trees are formed by nodes representing tests on

features and leaf nodes representing classes. Decision trees

are easy to interpret and can handle both numerical and

categorical data but are prone to overfitting, especially with

complex trees.

Naive Bayes (NB) classifiers [40] are probabilistic models

that apply Bayes’ Theorem, assuming strong (naive)

independence between the features. They are particularly

well-suited for classification tasks where high

dimensionality is present, such as text classification. Despite

their simplicity and the naive assumption, Naive Bayes

classifiers often perform very well under many complex

real-world situations.

Long Short-Term Memory (LSTM) [41] networks are a

type of recurrent neural network (RNN) suitable for

sequence prediction problems. Unlike standard feedforward

neural networks, LSTMs have feedback connections and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2016

can process data sequences irrespective of input sequence

length They are of great help in those cases where the

context from the input data is very important, for example,

speech recognition or anomaly detection in time series data.

LSTMs solve the problem of vanishing gradient that is

common to RNNs, so they can learn longer dependencies.

Our LSTM model configuration is designed to effectively

handle sequence classification tasks and consists of

following layers:

− Input Layer: The model processes sequences

where each sequence element has only one feature.

− LSTM Layer: The LSTM layer has 200 hidden

units, providing it with substantial capacity to learn

from the data by capturing complex temporal

dependencies within the sequence. It's configured

to output only the last hidden state, which is typical

for sequence-to-label tasks where the final state

represents the culmination of learned temporal

features relevant to the prediction task.

− Fully Connected Layer: This layer has as many

neurons as there are unique classes in the dataset,

ensuring each class can be predicted.

− Softmax Layer: Following the fully connected

layer, the softmax layer normalizes the output to a

probability distribution over the predicted classes,

making the model's output interpretable as class

probabilities.

− Classification Layer: The final layer computes the

cross-entropy loss during training, which helps in

optimizing the model by comparing the predicted

output with the true class labels.

The LSTM model utilizes the Adam optimizer with settings

optimized for GPU execution. Training is now set to 10

epochs at a learning rate of 0.001. Verbose output and

progress plots are enabled to monitor the training process.

This setup strikes a balance between achieving convergence

in a reasonable number of training cycles and providing

detailed insights into training progress through visual

feedback.

Each of these models has its strengths and particular

contexts where it excels as shown in Table 3, making them

suitable for various kinds of data and predictive modelling

challenges.

Table 3: Advantage and Disadvantage of each used model.

Classifier Advantages Disadvantages

AdaBoost

Enhances the accuracy of weak learners,

robust to overfitting, less prone to

overfitting than DT.

Sensitive to noisy data and outliers, performance

depends on data and weak learner.

Bagging Trees

Reduces variance, less prone to

overfitting, works well for high

dimensional data.

Computationally intensive, less interpretable, not the

best choice for very large datasets.

SVM

Effective in high-dimensional spaces,

works well with clear margin separation,

versatile (kernel methods).

Requires full data in memory, can be slow to train,

choosing a correct kernel can be challenging.

KNN
Simple and effective, no training period,

naturally handles multi-class cases.

Slow query time as dataset grows, sensitive to irrelevant

features, needs homogeneous features.

Decision Trees
Easy to interpret and explain, can handle

both numerical and categorical data.

Prone to overfitting, can be unstable, sensitive to small

changes in the data.

Naive Bayes

Fast and efficient, performs well with

large datasets, good baseline for text

classification.

Assumes feature independence, poor estimates of

probability can be a drawback.

LSTM

Excellent for sequential data, can model

time series data, capable of learning

long-term dependencies.

Computationally intensive, difficult to train, and can

suffer from overfitting without proper regularization.

4. PERFORMANCE MEASURES

Classification accuracy serves as an effective metric to

gauge learning performance of proposed models [42-44].

The evaluation utilizes a standard confusion matrix

technique, with the following metrics listed below:

Confusion Matrix: A confusion matrix provides a concise

summary of prediction outcomes in classification problems.

It offers insight into classification accuracy by

(2)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2017

distinguishing between correct and incorrect predictions as

well as errors made within each class, distinguishing

between true positives (true negatives) and

misclassifications (false positives and false negatives).

Diagonal elements indicate this information while off-

diagonal ones represent misclassification errors like false

positives/false negatives respectively.

Accuracy can be defined as the percentage of correctly

classified samples when measured values are compared with

known ones; expressed using equation (2):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Where true positive (TP), true negative (TN), false positive

(FP), and false negative (FN) represent key components of

confusion matrices.

Error Rate measures the proportion of misclassified

samples within the dataset as defined by equation (3).

Ultimately, lower error rates mean better model

performance.

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

Precision measures the model's ability to correctly classify

positive values as shown by equation (4):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall measures the proportion of true positives (instances

that correctly identify a particular class) among all positives,

both true positives and false positives combined. As shown

by equation (5):

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN

Specificity refers to a model's ability to predict negative

values accurately as indicated by equation (6):

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑁 + 𝐹𝑃

Area Under the Curve (AUC) serves as an evaluation

metric of binary classification models. It measures the area

beneath a Receiver Operating Characteristic curve which

illustrates true positive rates versus false positive rates at

various classification thresholds; an AUC value of one

denotes ideal classification while one or less indicates

random classification.

Receiver Operating Characteristic (ROC) curves are

visual illustrations depicting True Positive Rate versus False

Positive Rate in binary classification models. Their

proximity to the upper-left corner often correlates to better

model performance.

F Measure is an often-utilized performance metric in binary

classification tasks. It represents the harmonic average

between precision and recall - providing an assessment that

considers both aspects. Equation (7) illustrates this

calculation process of the F1 score:

F Measure = 2 × (
precision × recall

precision + recall
)

Training time is the duration required to train a model on a

specific dataset. Fast training times are desirable as they

facilitate rapid model development and deployment.

Testing time pertains to the duration taken to assess a

trained model on a new dataset. Efficient testing times are

advantageous as they enable prompt inference of model

predictions.

5. RESULTS AND DISCUSSIONS

In In this section, we conduct two experiments: the first

experiment focuses on classifying network behavior as

normal or attack, and the second experiment extends the

classification to distinguish between normal operations and

various types of attacks. For both experiments, we will

evaluate different models with and without the application

of feature engineering (PCA based feature engineering and

mRMR based feature selection).

A. First Experiment for First Level (Binary) Classification

In the initial experiment, the details of the full dataset along

with its training and testing splits using 70:30% is shown in

Figure 5. The metrics used for comparison will include

accuracy, error rate, precision, recall, specificity, and the F-

measure across both the training and testing phases. This

setup will allow us to assess the impact of PCA and mRMR

on model effectiveness comprehensively.

(3)

(3)

(5)

(6)

(7)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2018

Fig 4: Details of Full, Training and testing datasets for first level of classification.

When applying mRMR to the dataset, we can specify a

specific score threshold for dropping columns that score

below this threshold. Figure 5 illustrates the feature scores

for each column using mRMR, both in their original order

and ranked from highest to lowest importance. These visuals

provide valuable insights into which features are most

influential in the dataset when mRMR is applied.

Fig 5: The feature scores for each column using MRMR, both in their original order and ranked from highest to lowest

importance, for first level of classification.

Knowing that, setting a threshold value for feature scores in

MRMR can significantly influence model performance and

computational efficiency. Our choice of a threshold value of

0.01, which results in selecting the top 23 highest-scoring

features and dropping the other 20, appears to be a strategic

compromise between performance and efficiency.

Knowing that, choosing a higher threshold value will lead

to fewer features being selected. This can simplify the

model further and reduce training and testing times, but at

the risk of dropping potentially important features, which

might degrade the model's performance. It's crucial to

ensure that the selected features still capture the essence of

the data without sacrificing the ability to generalize well.

Whereas, a lower threshold value means more features will

be retained, which might maintain or even slightly enhance

performance due to the richer feature set. However, this

comes with increased computational costs, as more features

require more processing power and time during both

training and testing phases. This might not be desirable,

especially in scenarios where rapid decision-making is

critical. The columns that their score high or equal threshold

ranking from highest to lowest score are: src_ip,

http_method, ssl_subject, http_trans_depth, dns_rejected,

weird_name, proto, missed_bytes, ts, weird_addl,

ssl_resumed, dns_AA, dst_port, dst_ip_bytes, dst_ip,

src_ip_bytes, conn_state, dns_query, duration, dns_qtype,

http_request_body_len, dst_bytes, src_pkts.

Figure 6 demonstrates the cumulative variance explained by

each principal component in the dataset. Based on this, we

select the first 18 principal components, as they capture a

significant portion of the variance (99.99%).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2019

Fig 6: Cumulative Explained Variance by Principal

Components.

Principal Component Analysis (PCA) is a statistical

technique aimed at reducing the complexity in high-

dimensional data while preserving essential trends and

patterns. This reduction is achieved by transforming the

original variables into a new set of variables, known as

principal components, which are orthogonal and ordered by

the amount of variance they capture from the data. Since

PCA is an unsupervised method, it is applied to the feature

set without considering the label. This characteristic makes

PCA versatile across different types of classification tasks—

whether for binary classification (first level) or multiclass

classification (second level). The method does not

differentiate between these scenarios because it focuses

exclusively on the input features and their variance, not the

outcome variable. Thus, the application of PCA is consistent

regardless of the classification level, simplifying the feature

space and ensuring uniformity in how the data is processed

for model training.

The performance of various classification models without

feature engineering, with mRMR feature selection, and with

PCA feature reduction is shown in Table 3 (a)- (c)

respectively.

From Table 3, we can observe the following:

− Without Feature Engineering: Models such as Naïve

Bayes exhibit limited capability in this scenario,

managing only 65.07% accuracy with a high error rate

of 34.93%, underscoring its challenges with complex,

unprocessed datasets. Conversely, KNN achieves a

reasonable performance level at 86.83% accuracy,

indicating a better handling of the raw data. The

ensemble methods (Adaboost and BagTree) and other

robust models like Decision Trees, SVM, and DL-

LSTM demonstrate excellent performance, with

accuracies nearing or achieving 99.99%. This suggests

that more sophisticated or ensemble-based approaches

are well-suited to manage the dataset's complexity

effectively without prior feature engineering.

− With mRMR Feature Selection: The application of

mRMR significantly improves the performance of

Naïve Bayes, boosting its accuracy to 85.27%, which

highlights the benefits of selecting relevant and

minimally redundant features. KNN also sees an

enhancement in its performance to 91.06%, benefiting

from the streamlined feature set that enhances both

precision and recall. Ensemble methods such as

Adaboost and BagTree continue to perform at an

optimal level with accuracies close to 99.99%,

underscoring the complementarity of mRMR with

these algorithms. - The high performance is kept

intact with the Decision Trees, SVM and DL-LSTM

that all score around 99 across the board. The 99%

accuracy, therefore reinforcing the effectiveness of

mRMR in improving model accuracy while

maintaining the essential data integrity.

− With PCA Feature Reduction: Naïve Bayes illustrates a

slight increase to 84. PCA applied gave a 99%

accuracy which means it really reduced the feature

dimensionality though not as much as mRMR did.

KNN is a bit towards 90. 87% accuracy could be the

result of PCA's reduction that may have removed the

discriminative features which are important for its

classification strategy.

− A slight performance decrease is also observed in

ensemble methods, with Adaboost dropping to 99.68%

and BagTree to 99.80%, suggesting that the loss of

certain critical features can adversely affect their

performance. Decision Trees, SVM, and DL-LSTM,

although experiencing slight decreases in performance

to accuracies like 99.91% and 99.95%, still indicate

strong capabilities, albeit slightly hampered by the

PCA process.

The analysis underscores that mRMR feature selection

generally offers the most consistent performance

improvements across models, likely due to its effectiveness

in focusing on relevant and non-redundant features. PCA,

while beneficial for simplifying the data structure, may not

always be the best choice for all models, particularly those

that depend on specific feature interactions.

The analysis of training and testing times across various

classification models with and without using feature

engineering techniques are shown in figure 7.

PCA consistently reduces both training and testing times

more significantly across all models compared to mRMR.

This reduction is because PCA reduces the dataset size to

only 18 columns, which simplifies calculations by

decreasing the complexity of the data. mRMR also reduces

training and testing times in most cases, but not as

dramatically as PCA because it selects a dataset size of 23

columns only. This suggests that while mRMR helps by

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2020

selecting the most relevant features, it does not reduce the

computational load as much as PCA.

− Naïve Bayes and KNN: Both models show reduced

testing times with PCA, indicating faster performance

due to fewer and more compact features. However,

Naïve Bayes experiences a slight increase in training

time with mRMR.

− Ensemble Models (Adaboost and BagTree): These

models benefit greatly from both techniques, with

PCA yielding the most significant time reductions,

facilitating faster model training and testing.

− Decision Tree and SVM: Experience substantial

reductions in both training and testing times with PCA,

suggesting these models are highly sensitive to the

number of features, and benefit from the simplified

feature space.

− DL-LSTM: Shows a pronounced reduction in training

time with PCA, highlighting the advantage of reduced

feature dimensions in complex neural network

architectures.

Fig 7: Training and Testing times across various

classification models with and without feature engineering.

B. Second experiment for Second Level (MultiClass)

Classification

In the second experiment, the focus shifts to

classifying data into categories of 'normal' or various

'types of attack.' This experiment utilizes mRMR

with a threshold value of 0.1 to strategically select

the top 31 features for the classification task. For

PCA, the 3. (a) Results of the different model without

Feature Selection or reduction -First Level

Met

hod

s

Accu

racy

Preci

sion

Reca

ll

Speci

ficity

F

M

ea

sur

e

AU

C

Er

ror

Ra

te

Naï

ve

0.65

070
NaN

0.50

000

0.500

00

Na

N

0.75

2
0.

34

Bay

es

93

0

KN

N

0.86

831

0.85

261

0.86

406

0.864

06

0.8

57

58

0.94

760

0.

13

16

9

Ens

emb

le

Ada

boo

st

0.99

187

0.99

186

0.99

187

0.991

86

0.9

92

60

0.99

991

0.

99

87

4

Ens

emb

le

Bag

Tree

0.99

979

0.99

973

0.99

979

0.999

76

0.9

99

78

0.99

992

0.

99

99

2

Dec

isio

n

Tree

0.99

996

0.99

996

0.99

996

0.999

96

0.9

99

96

1

0.

00

00

4

SV

M

0.99

999

0.99

999

0.99

999

0.999

99

0.9

99

99

1

0.

00

00

1

DL-

LST

M

0.99

999

0.99

999

0.99

999

0.999

99

0.9

99

99

1

0.

00

00

1

3. (b) Results of the different model with MRMR

Feature Selection -First Level

Met

hod

s

Accu

racy

Preci

sion

Reca

ll

Speci

ficity

F

M

ea

sur

e

AU

C

Er

ror

Ra

te

Naï

ve

Bay

es

0.85

272

0.83

581

0.85

109

0.851

09

0.8

41

87

0.93

649

0.

14

72

8

KN

N

0.91

057

0.93

909

0.87

222

0.872

22

0.8

94

52

0.93

659

0.

08

94

3

Ens

emb

le

Ada

0.99

994

0.99

992

0.99

996

0.999

96

0.9

99

94

0.99

999

0.

00

00

6

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2021

boo

st

Ens

emb

le

Bag

Tree

0.99

998

0.99

998

0.99

997

0.999

97

0.9

99

98

1

0.

00

00

2

Dec

isio

n

Tree

0.99

996

0.99

996

0.99

995

0.999

95

0.9

99

95

1

0.

00

00

6

SV

M

0.99

999

0.99

999

0.99

999

0.999

99

0.9

99

99

1

0.

00

00

1

DL-

LST

M

0.99

999

0.99

999

0.99

999

0.999

99

0.9

99

99

1

0.

00

00

1

3. (c) Results of the different model with PCA Feature

Reduction -First Level

Met

hod

s

Accu

racy

Preci

sion

Reca

ll

Speci

ficity

F

M

ea

sur

e

AU

C

Er

ror

Ra

te

Naï

ve

Bay

es

0.84

987

0.83

281

0.84

670

0.846

70

0.8

38

46

0.91

978

0.

15

01

3

KN

N

0.90

873

0.93

793

0.86

961

0.869

61

0.8

92

17

0.93

308

0.

09

12

7

Ens

emb

le

Ada

boo

st

0.99

679

0.99

827

0.99

679

0.997

53

0.9

97

76

0.99

0

0.

99

99

9

Ens

emb

le

Bag

Tree

0.99

803

0.99

776

0.99

790

0.997

90

0.9

97

83

0.99

997

0.

00

19

7

Dec

isio

n

Tree

0.99

913

0.99

900

0.99

909

0.999

09

0.9

99

05

0.99

944

0.

00

08

7

SV

M

0.99

935

0.99

923

0.99

933

0.999

33

0.9

99

28

0.99

995

0.

00

06

5

DL-

LST

M

0.99

954

0.99

946

0.99

954

0.999

54

0.9

99

50

1.00

000

0.

00

04

6

4. (a) Results of the different models without Feature

Selection or reduction -Second Level

Metho

ds

Accu

racy

Preci

sion

Reca

ll

Sp

eci

fic

ity

F

M

ea

sur

e

A

U

C

Error

Rate

Naïve

Bayes

0.80

913

0.90

329

0.99

152

0.8

28

37

0.9

90

75

0.

94

9

0.99

319

KNN 0.89

539

0.76

736

0.91

962

0.9

45

32

0.7

50

87

0.

95

8

0.10

461

Ensem

ble

Adabo

ost

0.94

199

0.43

624

0.52

882

0.9

54

70

0.4

27

64

0.

96

45

0.05

801

Ensem

ble

BagTre

e

0.98

159

0.93

175

0.72

843

0.9

74

43

0.7

83

16

0.

99

21

0.01

841

Decisi

on

Tree

1 1 1 1 1 1 0

SVM 0.99

997

0.99

974

0.99

962

0.9

99

97

0.9

99

68

1 0.00

003

DL-

LSTM

1 1 1 1 1 1 0

4. (b) Results of the different models with MRMR

Feature Selection -second Level

Metho

ds

Accu

racy

Preci

sion

Reca

ll

Sp

eci

fic

ity

F

M

ea

sur

e

A

U

C

Error

Rate

Naïve

Bayes

0.93

014

NaN 0.10

000

0.9

00

00

Na

N

0.

95

2

0.06

986

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2022

KNN 0.95

277

0.52

897

0.60

451

0.9

64

58

0.5

26

71

0.

97

0.04

723

Ensem

ble

Adabo

ost

0.97

174

0.70

254

0.89

480

0.9

85

16

0.7

51

93

0.

98

38

9

0.02

826

Ensem

ble

BagTre

e

0.98

346

0.99

128

0.99

950

0.9

87

29

0.9

99

55

0.

99

9

0.99

995

Decisi

on

Tree

1 1 1 1 1 1 0

SVM 0.99

999

0.99

992

0.99

985

0.9

99

99

0.9

99

88

1 0.00

001

DL-

LSTM

1 1 1 1 1 1 0

4 (c) Results of the different models with PCA Feature

Reduction -Second Level

Metho

ds

Accu

racy

Preci

sion

Reca

ll

Sp

eci

fic

ity

F

M

ea

sur

e

A

U

C

Error

Rate

Naïve

Bayes

0.89

550

0.76

934

0.91

970

0.9

45

38

0.7

52

50

0.

94

2

0.10

450

KNN 0.90

389

0.94

481

0.99

715

0.9

17

16

0.9

94

98

0.

96

8

0.99

878

Ensem

ble

Adabo

ost

0.94

276

0.45

157

0.52

517

0.9

54

72

0.4

29

56

0.

97

5

0.05

724

Ensem

ble

BagTre

e

0.98

164

0.92

579

0.72

130

0.9

74

52

0.7

75

61

0.

99

8

0.01

836

Decisi

on

Tree

0.99

973

0.99

224

0.99

385

0.9

99

80

0.9

93

04

0.

99

74

2

0.00

027

SVM 0.99

272

0.96

698

0.84

340

0.9

91

72

0.8

76

01

0.

99

30

2

0.00

728

DL-

LSTM

0.99

990

0.99

925

0.99

640

0.9

99

92

0.9

97

80

0.

99

99

6

0.00

010

approach remains consistent with the first experiment,

selecting the first 18 principal components to capture

99.99% of the cumulative variance. Detailed distributions of

the full dataset, along with the training and testing splits set

at a 70:30 ratio, are outlined in Figure 8.

Fig 8: Details of Full, Training and testing datasets for

second level (Multiclass) of classification.

Figure 9 illustrates the feature scores for each column using

mRMR, both in their original order and ranked from highest

to lowest importance, when applied to the second level

(multiclass classification).

Fig 9: The feature scores for each column using MRMR,

both in their original order and ranked from highest to

lowest importance, for second level of classification.

The performance of various classification models without

feature engineering, with mRMR feature selection, and with

PCA feature reduction is shown in Table 4 (a)- (c)

respectively.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2023

− Without Feature Engineering: Naïve Bayes

achieves a moderate accuracy of 80.91% but

struggles with a high error rate of 99.32%,

indicating difficulties in handling unprocessed

datasets. KNN performs better with 89.54%

accuracy, suggesting it can manage the raw data

more effectively. Ensemble models like Adaboost

and BagTree show good results, achieving

accuracies of 94.20% and 98.16% respectively,

though Adaboost's precision at 43.62% points to

some classification challenges. Decision Trees,

SVM, and DL-LSTM excel, displaying nearly

perfect or perfect metrics, underscoring their

robustness in complex scenarios.

− With mRMR Feature Selection: Naïve Bayes

significantly improves to 93.01% accuracy but

shows unstable metrics, such as NaN for precision

and a low recall of 10.00%, likely indicating issues

with outlier sensitivity or feature selection. KNN

sees enhanced performance at 95.28% accuracy,

benefiting from the more targeted feature set. Both

Adaboost and BagTree perform robustly, with

BagTree nearly achieving perfect precision and

recall. Decision Trees, SVM, and DL-LSTM

maintain their high performance, demonstrating

mRMR's effectiveness in enhancing accuracy

while preserving data integrity.

− With PCA Feature Reduction: Naïve Bayes shows

an improved accuracy of 89.55%, benefiting from

the reduced complexity of the dataset. KNN also

improves, with accuracy at 90.39% and high

precision of 94.48%. However, Ensemble

Adaboost and BagTree, while still performing

well, exhibit slight variations in their metrics.

Decision Trees, SVM, and DL-LSTM perform

exceptionally, albeit with some minor reductions in

certain metrics, suggesting a slight loss of critical

information due to the dimensionality reduction.

Finally, we conclude that the results highlight that PCA

generally aids in simplifying model computations, but

mRMR consistently delivers the most robust performance

improvements by effectively selecting relevant and minimal

redundant features.

The analysis of training and testing times across various

classification models with and without using feature

engineering techniques are shown in figure 10.

− Naïve Bayes experiences a significant reduction in

training time with mRMR, dropping from 2.5

seconds to 0.59 seconds, though it increases to 1.95

seconds with PCA. This suggests that while

mRMR significantly reduces the complexity, PCA

slightly increases the processing time compared to

mRMR. In testing, both methods reduce times,

with PCA showing a more considerable reduction

to 0.44 seconds from 0.6 seconds, indicating faster

performance due to a more compact feature set.

− KNN sees a notable increase in training time with

mRMR to 39.8 seconds from 1.4 seconds, likely

due to the computational demand of processing

relevant features. However, PCA dramatically

reduces this time to 1.16 seconds, demonstrating

the efficiency of dimensionality reduction. The

testing time also decreases under PCA to 33.5

seconds, showing enhanced performance with

fewer dimensions.

− Ensemble Adaboost and BagTree benefit from

both techniques in training times, particularly with

mRMR, which cuts down their times significantly

from the original. - PCA also saves time but not

as much as mRMR. The application of PCA and

mRMR for testing the models is effectively done

under both conditions, with PCA mostly giving

some improvements or at least maintaining the

times as that of mRMR which enables to have

quicker model evaluations.

− Decision Tree and SVM training times are greatly

reduced with PCA, which proves the efficiency of

decreasing the feature space in these algorithms.

PCA makes the testing times of Decision Trees

almost negligible which means that these trees are

extremely efficient at processing a reduced feature

set. SVM has a small rise in testing time under

PCA, which probably shows different

computational dynamics during the model

evaluation phase.

− DL-LSTM, a complicated neural network model,

has a drastic cut in the training time with PCA to

157. 5 seconds from 198. 2 seconds. This shows

the advantages of dimensionality reduction in

training deep learning models, although there is a

slight increase in testing time under PCA compared

to mRMR.

On the whole, PCA mostly helps to cut down significantly

on both training and testing times for all models since it is

so good at reducing data complexity by lowering the

dimensionality to only 18 columns. Besides, mRMR also

decreases time but not to the same extent as PCA does and

this shows that although it helps in concentrating on the

most relevant features, it is still not enough for reducing

computational load.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2024

Fig 10: Training and Testing times across various

classification models with and without feature engineering.

6. CONCLUSION

This study confirms the huge potential of combining

Machine Learning (ML) and Deep Learning (DL) methods

with advanced feature engineering techniques such as

Minimum Redundancy Maximum Relevance (mRMR) and

Principal Component Analysis (PCA) for improving

Intrusion Detection Systems in Internet of Things

environments. Thus, from the extensive experimentations it

has been proved that ML and DL models optimized with

feature engineering not only enhance in performance

metrics like accuracy, precision, recall and AUC but also

show significant reductions of both training as well as

testing times. The effectiveness of PCA in reducing the

dimensionality of the feature space, thus, simplifying the

computational requirements without decreasing detection

capabilities is very remarkable. Hence, the data processing

becomes faster which is very important in real-time

intrusion detection when it comes to quick response. In the

same vein, mRMR has proved to be very effective in model

enhancement by selecting only the most relevant features

and thus providing a balanced way between model

complexity and performance. The models like SVM,

Decision Trees and DL-LSTM have proved their efficiency

even in the context of security-critical issues. The DL-

LSTM model, in particular, has proved to be very effective

in dealing with sequence data which is crucial for IDS

network traffic analysis.

The future research in the development of Intrusion

Detection Systems (IDS) for IoT environments should focus

on hybrid models that combine different ML and DL

methods to deal with complex attack patterns efficiently.

Federated learning can be a way to enhance privacy and

scale in distributed environments, while the development of

autonomous and adaptive systems will enable IDS to update

and react to new threats in real-time. The coverage of tests

should be extended to cover broader and more diverse

datasets so as to confirm the strength and scalability of

models. Besides the above aspects, the use of XAI practices

would boost transparency and trustworthiness which are

actually crucial for operational acceptance especially in

critical infrastructure sectors. These advancements will

make sure that IDS systems are not only efficient but also

flexible and in line with the changing cybersecurity threat

landscape.

REFERENCES

[1] Alotaibi, B. (2023). A survey on Industrial Internet of

Things security: Requirements, attacks, AI based

solutions, and edge computing opportunities. Sensors,

23(17), 7470. https://doi.org/10.3390/s23177470

[2] Mirani, A. A., Velasco-Hernandez, G., Awasthi, A., &

Walsh, J. (2022). Key challenges and emerging

technologies in Industrial IoT architectures: A review.

Sensors, 22(15), 5836.

https://doi.org/10.3390/s22041586

[3] X. Gming, S. Xiaorui, Z. Zhihua, and X. Bertino,

“Advances in Artificial Intelligence and Security,” in

Proceedings of the 27th International Conference,

ICAIS 2021, Dublin, Ireland, July 2021.

[4] Suzen, “Developing a multi-level intrusion detection

system using hybrid-DBN,” Journal of Ambient

Intelligence and Humanized Computing, vol. 12, no. 2,

pp. 1913–1923, 2021.

[5] Ayodeji, Y.-k. Liu, N. Chao, and L. Q. Yang, “A new

perspective towards the development of robust data-

driven intrusion detection for industrial control

systems,” Nuclear Engineering and Technology, vol.

52, no. 12, pp. 2687–2698, 2020.

[6] Eid, A., Nassif, A., Soudan, B., & Injadat, M. (2023).

IIoT Network Intrusion Detection Using Machine

Learning. 2023 6th International Conference on

Intelligent Robotics and Control Engineering (IRCE),

196-201.

https://doi.org/10.1109/IRCE59430.2023.10255088.

[7] S.M. Bridges and R.B. Vaughn, Fuzzy data mining and

genetic algorithms applied to intrusion detection, USA,

in in Proceedings of 12th Annual Canadian Information

Technology Security Symposium,

2000. https://www.csee.umbc.edu/csee/research/cadip/

readings/DMID/005slide.pdf

[8] Raghav, S. Chhikara, and N. Hasteer, Intrusion

detection and prevention in cloud environment: a

systematic review, Int. J. Comput. Appl., Vol. 68, 2013,

pp. 7-11.

[9] R. Singh, H. Kumar, and R.K. Singla, An intrusion

detection system using network traffic profiling and

online sequential extreme learning machine, Expert

Syst. Appl., Vol. 42, 2015, pp. 8609-8624.

[10] K. Peng, V.C.M. Leung, L. Zheng, S. Wang, C. Huang,

and T. Lin, Intrusion detection system based on

https://doi.org/10.1109/IRCE59430.2023.10255088
https://www.csee.umbc.edu/csee/research/cadip/readings/DMID/005slide.pdf
https://www.csee.umbc.edu/csee/research/cadip/readings/DMID/005slide.pdf
http://dx.doi.org/10.5120/11725-7304
http://dx.doi.org/10.5120/11725-7304
http://dx.doi.org/10.5120/11725-7304
http://dx.doi.org/10.5120/11725-7304
http://dx.doi.org/10.1016/j.eswa.2015.07.015
http://dx.doi.org/10.1016/j.eswa.2015.07.015
http://dx.doi.org/10.1016/j.eswa.2015.07.015
http://dx.doi.org/10.1016/j.eswa.2015.07.015
http://dx.doi.org/10.1155/2018/4680867
http://dx.doi.org/10.1155/2018/4680867

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2025

decision tree over big data in fog environment, Wireless

Commun. Mob. Comput., Vol. 2018, 2018, pp. 1-10.

[11] V. Chandola, A. Banerjee, V. Kumar, Anomaly

detection, ACM Comput. Surv. 41 (2009), 1–58.

[12] Y. Xue, W. Jia, X. Zhao, W. Pang, ”An evolutionary

computation based feature selection method for

intrusion detection,” Security and Communication

Networks, 2018, (2018).

[13] Akashdeep, I. Manzoor, N. Kumar, A feature reduced

intrusion detection system using ANN classifier, Expert

Syst. Appl. 88 (2017), 249–257.

[14] Simone .A. Ludwig, Applying a neural network

ensemble to intrusion detection, J. Artif. Intell. Soft

Comput. Res. 9 (2019), 177–188.

[15] Chaopeng. Li, J. Wang, X. Ye, Using a recurrent neural

network and restricted Boltzmann machines for

malicious traffic detection, NeuroQuantology. 16

(2018), 823–831.

[16] Chuanlong. Yin, Y. Zhu, J. Fei, X. He, A deep learning

approach for intrusion detection using recurrent neural

networks, IEEE Access. 5 (2017), 21954–21961.

[17] Yihan Xiao, C. Xing, T. Zhang, Z. Zhao, An intrusion

detection model based on feature reduction and

convolutional neural networks, IEEE Access, , 7

(2019), pp. 42210–42219.

[18] Dimitrios. Papamartzivanos, F.G. Mármol, G.

Kambourakis, Dendron: Genetic trees driven rule

induction for network intrusion detection systems,

Future Generation Computer Systems, 79 (2018),

pp. 558–574.

[19] Kai. Peng, V.C.M. Leung, L. Zheng, S. Wang, C.

Huang, T. Lin, Intrusion detection system based on

decision tree over big data in fog environment, Wireless

Commun. Mob. Comput. 2018 (2018),

1–10.

[20] G. Kim, S. Lee, S. Kim, A novel hybrid intrusion

detection method integrating anomaly detection with

misuse detection, Expert Syst. Appl. 41 (2014), 1690–

1700.

[21] H.I. Ahmed, N.A. Elfeshawy, S.F. Elzoghdy, H.S. El-

Sayed, O.S. Faragallah, A neural network-based

learning algorithm for intrusion detection systems,

Wireless Personal Communications, 97 (2017), pp.

3097–3112.

[22] W, Alhakami, A. ALharbi, S. Bourouis, R. Alroobaea,

N. Bouguila, Network anomaly intrusion detection

using a nonparametric Bayesian approach and feature

selection, IEEE Access, 7 (2019), pp. 52181–52190.

[23] R. Abdulhammed, H. Musafer, A. Alessa, M.

Faezipour, A. Abuzneid, Features dimensionality

reduction approaches for machine learning based

network intrusion detection, Electronics.

8 (2019), 322.

[24] L. Xiao, Y. Chen, C. K. Chang, Bayesian model

averaging of Bayesian network classifiers for intrusion

detection, in IEEE 38th International Computer

Software and Applications Conference

Workshops, Vasteras, Sweden, 2014.

[25] W. Feng, Q. Zhang, G. Hu, J.X. Huang, Mining

network data for intrusion detection through combining

SVMs with ant colony networks, Future Gener.

Comput. Syst. 37 (2014), 127–140.

[26] E. Kabir, J. Hu, H. Wang, G. Zhuo, A novel statistical

technique for intrusion detection systems, Future

Gener. Comput. Syst. 79 (2018), 303–318.

[27] R. Vijayanand, D. Devaraj, B. Kannapiran, Intrusion

detection system for wireless mesh network using

multiple support vector machine classifiers with

genetic-algorithm-based feature selection, Comput.

Secur. 77 (2018), 304–314.

[28] F. Kuang, S. Zhang, Z. Jin, W. Xu, A novel SVM by

combining kernel principal component analysis and

improved chaotic particle swarm optimization for

intrusion detection, Soft Comput. 19 (2015), 1187–

1199.

[29] S.M.H. Bamakan, H. Wang, T. Yingjie, Y. Shi, An

effective intrusion detection framework based on

MCLP/SVM optimized by time-varying chaos particle

swarm optimization, Neurocomputing. 199 (2016), 90–

102.

[30] Alsaedi, A.; Moustafa, N.; Tari, Z.; Mahmood, A.;

Anwar, A.N. TON-IoT Telemetry Dataset: A New

Generation Dataset of IoT and IIoT for Data-Driven

Intrusion Detection Systems. IEEE Access 2024, 1,

165130–165150.

[31] Abiri, N., Linse, B., Edén, P., & Ohlsson, M. (2019).

Establishing strong imputation performance of a

denoising autoencoder in a wide range of missing data

problems. ArXiv, abs/2004.02584.

https://doi.org/10.1016/j.neucom.2019.07.065.

[32] Lopez-Arevalo, I., Aldana-Bobadilla, E., Molina-

Villegas, A., Galeana-Zapién, H., Muñiz-Sánchez, V.,

& Gausin-Valle, S. (2020). A Memory-Efficient

Encoding Method for Processing Mixed-Type Data on

Machine Learning. Entropy, 22.

https://doi.org/10.3390/e22121391.

[33] Abdulhammed, R., Faezipour, M., Musafer, H., &

Abuzneid, A. (2019). Efficient Network Intrusion

http://dx.doi.org/10.1155/2018/4680867
http://dx.doi.org/10.1155/2018/4680867
https://doi.org/10.1016/j.neucom.2019.07.065
https://doi.org/10.3390/e22121391

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2005 - 2026 | 2026

Detection Using PCA-Based Dimensionality Reduction

of Features. 2019 International Symposium on

Networks, Computers and Communications (ISNCC),

1-6. https://doi.org/10.1109/ISNCC.2019.8909140.

[34] Wang, C., Ye, X., He, X., Tian, Y., & Gong, L. (2019).

Two-Level Feature Selection Method for Low

Detection Rate Attacks in Intrusion Detection. Lecture

Notes of the Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering.

https://doi.org/10.1007/978-3-030-21373-2_58.

[35] Tsiapoki, S., Bahrami, O., Häckell, M., Lynch, J., &

Rolfes, R. (2020). Combination of damage feature

decisions with adaptive boosting for improving the

detection performance of a structural health monitoring

framework: Validation on an operating wind

turbine. Structural Health Monitoring, 20, 637 - 660.

https://doi.org/10.1177/1475921720909379.

[36] Yu, H., Xu, C., Geng, G., & Jiang, Q. (2024). Multi-

Time-Scale Shapelet-Based Feature Extraction for

Non-Intrusive Load Monitoring. IEEE Transactions on

Smart Grid, 15, 1116-1128.

https://doi.org/10.1109/TSG.2023.3285117.

[37] Chen, L., Dong, X., Wang, B., Shang, L., & Liu, C.

(2024). An Edge Computing-Oriented Islanding

Detection Using Differential Entropy and Multi-

Support Vector Machines. IEEE Transactions on Smart

Grid, 15, 191-202.

https://doi.org/10.1109/TSG.2023.3288361.

[38] Pujar, P., Kumar, A., & Kumar, V. (2024). Efficient

plant leaf detection through machine learning approach

based on corn leaf image classification. IAES

International Journal of Artificial Intelligence (IJ-AI).

https://doi.org/10.11591/ijai.v13.i1.pp1139-1148.

[39] Wang, Y., Yan, Z., Sang, L., Hong, L., Hu, Q.,

Shahidehpour, M., & Xu, Q. (2024). Acceleration

Framework and Solution Algorithm for Distribution

System Restoration Based on End-to-End Optimization

Strategy. IEEE Transactions on Power Systems, 39,

429-441.

https://doi.org/10.1109/TPWRS.2023.3262189.

[40] Nordin, S., Wah, Y., Haur, N., Hashim, A., Rambeli,

N., & Jalil, N. (2024). Predicting automobile insurance

fraud using classical and machine learning

models. International Journal of Electrical and

Computer Engineering (IJECE).

https://doi.org/10.11591/ijece.v14i1.pp911-921.

[41] Vaiyapuri, T., & Binbusayyis, A. (2024). Deep self-

taught learning framework for intrusion detection in

cloud computing environment. IAES International

Journal of Artificial Intelligence (IJ-AI).

https://doi.org/10.11591/ijai.v13.i1.pp747-755.

[42] Alrahhal, M., & Supreethi K.P. (2020). Multimedia

Image Retrieval System by Combining CNN With

Handcraft Features in Three Different Similarity

Measures. International Journal Of Computer Vision

And Image Processing, 10(1), 1-23. DOI:

10.4018/ijcvip.2020010101.

[43] Alrahhal, M., & K.P, S. (2021). Full Direction Local

Neighbors Pattern (FDLNP). International Journal Of

Advanced Computer Science And Applications, 12(1).

DOI: 10.14569/ijacsa.2021.0120116.

[44] Alrahhal, M., & K P, S. (2021). COVID-19 Diagnostic

System Using Medical Image Classification and

Retrieval: A Novel Method for Image Analysis. The

Computer Journal. DOI: 10.1093/comjnl/bxab051.

https://doi.org/10.1109/ISNCC.2019.8909140
https://doi.org/10.1007/978-3-030-21373-2_58
https://doi.org/10.1177/1475921720909379
https://doi.org/10.1109/TSG.2023.3285117
https://doi.org/10.1109/TSG.2023.3288361
https://doi.org/10.11591/ijai.v13.i1.pp1139-1148
https://doi.org/10.1109/TPWRS.2023.3262189
https://doi.org/10.11591/ijece.v14i1.pp911-921
https://doi.org/10.11591/ijai.v13.i1.pp747-755

