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Abstract: The Internet of Things (IoT) technologies have become so widespread that they are now the main cause of network security 

management problems. With the ever-growing integration of IoT into both consumer and industrial applications, security plays a very 

important role. The research in this paper is about the creation of a modern Intrusion Detection System (IDS) that can be applied to IoT 

network security using Machine Learning (ML) and Deep Learning (DL). The very heart of this system is the use of ML to discover and 

deal with possible threats in a quick and efficient way, though the focus here is on feature engineering that enhances detection accuracy. 

Through the use of mRMR for feature selection and PCA for feature reduction, our system is able to optimize the processing and analysis 

of network behaviors so that it can differentiate between normal operations and different types of attacks efficiently. This paper is about 

the comparison of effectiveness between ML and DL models in detecting threats inside IoT environments, which are tested on the ToN-

IOT dataset. The findings show that our ML and DL-driven IDS not only have a high level of accuracy in threat detection but also 

significantly reduces the computational demands, therefore enabling more efficient real-time applications in IoT security. 

Keywords: Internet of Things (IoT); Intrusion Detection System (IDS); Machine Learning (ML); Deep Learning (DL); and Minimum 

Redundancy Maximum Relevance (mRMR). 

1. Introduction 

The Internet of Things (IoT) is the network of physical 

things — "things" — which are equipped with sensors, 

software and other technologies that aim to connect and 

exchange data with other devices and systems through the 

Internet. These devices fall in the category from home 

appliances to complex industrial machines. In the industrial 

field, IoT technology is a basic element of the industrial 

Internet of Things (IIoT), which makes it possible to achieve 

extremely high levels of efficiency, productivity and 

performance. It is widely applied in the manufacturing 

processes to control machine operations, coordinate supply 

chain management and perform predictive maintenance. In 

the medical field, IoT has led to the Internet of Medical 

Things (IoMT), thus changing healthcare by enabling the 

remote monitoring of patients, which makes it possible for 

doctors to intervene in time and improve clinical treatment 

outcomes. The IoT devices in healthcare are wearable 

fitness bands and advanced units like heart rate monitoring 

cuffs [1]. 

The architecture of the Internet of Things (IoT) is formed by 

three main layers, each playing an important role in the 

operation of IoT systems. The Perception Layer, also known 

as the physical layer, is made up of sensors and actuators 

which collect all environmental parameters and interact with 

the real world. Then the Network Layer becomes the 

communication spine, which connects these sensors and 

actuators to the internet through technologies such as Wi-Fi, 

Bluetooth, and LTE; this is what enables the transmission 

and processing of collected data. At the top is the 

Application Layer, which uses the processed data to create 

personalized services for users and it supports a range of 

applications from business analytics to medical diagnostics, 

thus enabling people to make decisions based on real-time 

IoT data. 

The IoT networks have many security issues because of the 

large number of connected devices which create multiple 

weaknesses and ways for cyberattacks. The risks are the 

Data Breaches, where unauthorized people get into data 

either in transit or at rest within the network, which can lead 

to serious information leak. Man-in-the-Middle Attacks is 

another threat in which attackers intercept and change the 

communication between two people who have no idea about 

it, thus they compromise the integrity of data exchange. 

Besides, Denial of Service Attacks will make the system 

collapse by an excess load of data so that legitimate users do 

not get service and the operations in the network are 

disrupted. These weaknesses force the IoT ecosystems to be 

protected by strong security measures from such threats [3, 

4]. 

To guard IoT networks against the above-mentioned 

security hazards, the deployment of IDS that works well is 

a must. IDS fall into three main categories: HIDS, which are 
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installed on individual devices to monitor both the traffic 

entering and exiting the device as well as system logs for 

signs of malicious activity; NIDS, which check the entire 

network's traffic to find unusual or suspicious behavior; and 

Hybrid IDS that combine features of both HIDs and NIDS 

to provide a more comprehensive coverage. This security 

system has many layers that help in the identification and 

reduction of potential threats at both the device and network 

levels which increases the resistance level of IoT systems 

against cyber-attacks [5]. Machine learning boosts IDS by 

letting systems learn from data patterns and thus detect 

anomalies more accurately. Feature engineering is the main 

factor here that helps to identify which data characteristics 

are most important for detecting threats [6]. 

This research deals with the security issues in IoT networks 

that are innate by building a new Intrusion Detection System 

(IDS) which exploits machine learning and deep learning. 

The main objective is to develop a smart IDS system that 

combines different ML models and compares their 

performance with the DL model in detecting and dealing 

with possible security threats. The gist of our method is the 

feature engineering, which consists mainly of two parts: 

feature selection and feature reduction. We evaluate the 

effect of feature engineering on the IDS by measuring the 

performance of various ML and DL models, both with and 

without Minimum Redundancy Maximum Relevance 

(mRMR) for feature selection and Principal Component 

Analysis (PCA) for dimensionality reduction. The IDS's 

efficiency is thus increased by these feature engineering 

techniques and at the same time, the computational 

resources and time required to analyze IoT network 

behaviors are significantly decreased. This fast way lets our 

system to precisely tell the difference between the usual 

operations and possible security threats in both binary levels 

(normal or attack) and multiple levels (normal and various 

kinds of attacks). 

2. RELATED WORK 

IDS can be broadly categorized into two main types: The 

Network Intrusion Detection Systems (NIDS) and Host 

Intrusion Detection System (HIDS). NIDS are intended to 

watch the communication between nodes in a network, 

analyzing both incoming and outgoing traffic flow that 

includes packet headers and payload content [7]. On the 

contrary, HIDS concentrates on what is going inside every 

node or system like operating system files and log files and 

also can analyze encrypted network communication that 

either comes from or goes to the host [8]. 

Besides, IDS can be divided into three types: signature-

based, anomaly-based and specification-based [9]. 

Signature-based IDS, also known as Misuse Detection, are 

based on the predefined signatures of known intrusion 

patterns. They are good at identifying the known attacks, but 

they can also be deceived by new, undefined ones [9]. 

Anomaly-based IDS, or Behavior-based Detection, 

determine the discrepancies from the normal behavior 

patterns which are set. Those systems, usually based on AI 

techniques like Machine Learning (ML) and Deep Learning 

(DL), can both detect known and unknown attacks, but they 

have a higher False Positive Rate (FPR) [9]. Specification-

based IDS is a combination of the advantages of both 

signature-based and anomaly-based systems, which aims to 

detect a wide range of attacks by using different AI 

techniques [10]. 

The figure 1 in the paper is a kind of comparison between 

signature-based and anomaly-based IDS, which makes it 

clear that either stateless or stateful operational mode can be 

employed by these systems, and what types of network 

intrusions they are good at detecting. 

 

Fig 1: Signature-based versus Anomaly-based IDS. 

This classification of IDS is very important for the 

comprehension of their use in healthcare cybersecurity 

especially when it comes to IoT-based ICUs. Although IDS 

are the ones that detect intrusions, it is necessary to separate 

them from Intrusion Prevention Systems (IPS), which can 

apply corrective and preventive measures [10]. The research 

of IDS in the healthcare field, particularly with the growing 

use of IoT technologies, is what our study is based on. We 
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are aiming at improving cybersecurity in critical healthcare 

areas. 

The research by Chandola et al. [11] is a detailed study of 

the application of machine learning in anomaly detection, 

mainly in intrusion detection systems (IDS). Machine 

learning is applied in misuse detection, where classifiers are 

trained with pre-labeled datasets to identify certain types of 

intrusions. Anomaly detection is done through unsupervised 

learning where the system learns from data without pre-

existing labels to identify deviations from the norm. Semi-

supervised learning is like a mixture of both, it uses some 

labeled data to boost the learning process. 

Yu Xue and his colleagues [12] introduced a highly 

developed feature selection method for the Intrusion 

Detection Systems (IDS) based on the self-adaptive 

differential evolution (SaDE) algorithm and k-nearest 

neighbors (k-NN) for evaluation. The KDDCUP99 dataset, 

which is the standard in IDS research was divided into four 

smaller subsets for feature selection and classification. The 

k-NN's classification accuracy was checked by putting 

together three of the four subsets to test if the feature 

selection is stable in different parts of the data. 

Akashdeep et al. in their study [13] deal with the application 

of Artificial Neural Networks (ANNs) to Intrusion 

Detection (ID), mainly showing that feature selection and 

reduction are crucial for improving system performance. 

The methodology is to rank the data features according to 

their correlation and information gain, then combine them 

properly and preprocess redundant and irrelevant data in 

order to optimize the resource usage. Thus, time complexity 

will be reduced. Nevertheless, the study's use of the KDD99 

dataset makes us wonder about its relevance and reliability 

in today's network security problems. 

Simone A. Ludwig's [14] investigation on DNNs in the 

ensemble methods for IDS is a great contribution to 

cybersecurity. The NSL-KDD dataset, which is a better 

version of the KDD'99 was used to test IDS models. The 

research discovered that some attacks although were highly 

performing, they also revealed the need for more studies and 

development of new techniques to improve the detection 

capabilities especially in U2R and R2L types which are 

considered to be complex. 

The research conducted by Chaopeng Li [15] on the 

Intrusion Detection (ID) using Recurrent Neural Networks 

(RNNs) and Restricted Boltzmann Machines (RBMs) is a 

great step forward in cybersecurity methods. The approach 

utilizes the network traffic data that includes potential 

signatures of nefarious activities as input data. RBMs are 

applied to the construction of network packet 

representations, which take in the main features of data for 

analysis. RNNs are good at processing the sequential data, 

which is why they are perfect for analyzing the temporal 

correlations between neighboring network packets. 

Chuanlong Yin's [16] study on the use of Recurrent Neural 

Networks (RNNs) for Intrusion Detection Systems (IDS) 

shows the possibility of deep learning in cybersecurity. The 

research works on the NSL-KDD dataset to transform non-

numeric data into a numeric one for better processing and 

analysis of the data. The model shows good results in 

detecting various attacks, however it has some limitations in 

the detection of User to Root (U2R) and Remote to Local 

(R2L) which are often complex and low-frequency. 

Training time is another limitation, since RNNs can take a 

long time to train, especially when the dataset is big like 

NSL-KDD. Model complexity and overfitting are also the 

problems. RNNs are inherently complex models that tend to 

be overfitted if not properly regularized or trained on 

datasets which do not represent the full spectrum of possible 

intrusions. Real-time IDS deployment of RNNs could be 

hard to do because their computation is very intensive which 

might not be possible in all network environments. 

Yihan Xiao's study [17] comes with an Intrusion Detection 

System (IDS) using Convolutional Neural Network (CNN), 

a major cybersecurity strategy. The model is evaluated 

however it is outperformed by more than one other approach 

in the field. Nevertheless, it has some drawbacks such as 

computational complexity, the risk of overfitting, the 

problem of generalization to unseen attacks, real-time 

processing difficulties and compatibility with existing 

systems. 

Dimitrios Papamartzivanos's [18] "rule injection method" 

for Intrusion Detection Systems (IDS) is a new way that 

combines Decision Trees (DT) with Genetic Algorithms to 

come up with an efficient IDS. The method is used to 

improve the classification performance of Decision Trees in 

IDS with GAs optimization power. The main results prove 

that the IDS detection abilities can be improved by 

generating a strong set of rules with the help of GAs. 

Nevertheless, the issues related to computational 

requirements, generalization abilities and practical 

application in real-world situations are still the key areas 

that need more research and improvement. 

Kai Peng and his team [19] have come up with an IDS for 

big data environments which is based on Decision Trees 

(DT) as the core. The IDS is successfully dealing with and 

categorizing the big datasets through a structured way, 

which proves that machine learning techniques are really 

flexible to handle complex, large-scale data. Nevertheless, 

the method's scalability, adaptability to new threats, 

computational efficiency, overfitting risks and model 

complexity are all limitations. 

Gisung Kim and the team [20] have built a hybrid intrusion 

detection model which fuses together the concepts of misuse 

detection and anomaly detection via Decision Trees (DT) 
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and Support Vector Machines (SVM). The model initially 

concentrates on misuse detection using the C4. 5 Decision 

Tree algorithm, which is based on the segmentation of 

normal training data into smaller subsets for certain misuse 

detection cases. In the second phase, binary SVMs are used 

on each subset formed by the DT model to add more 

sensitivity of unknown or new intrusions. 

Hassan I. Ahmed and his colleagues [21] have carried out 

the full research on machine learning techniques in Intrusion 

Detection Systems (IDS), analyzing Decision Trees (DT), 

Artificial Neural Networks (ANN) and Random Forest. The 

main datasets that were used are KDDCUP99, ISC2012, and 

CICIDS2017. The comparative analysis was very useful as 

it helped to understand how different machine learning 

algorithms work in IDS, thus pointing out the strong and 

weak sides of each method when dealing with various types 

of intrusions. Nevertheless, the research had a number of 

drawbacks, for instance dataset limitations, generalization 

concerns, model complexity and scalability problems as 

well as overfitting risks. 

Wajdi Alhakami and his team have come up with a new way 

for anomaly-based Intrusion Detection (ID) in the field of 

Internet of Things (IoT) security. The model does both 

feature selection and classification which is very important 

for efficient ID, especially in complex environments like 

IoT. The model's capability is tested with three different 

datasets (KDDCUP99, Kyoto2006+, and ISC2012), which 

prove that the model can be applied in any network 

environment. 

Abdulhammed and others [23] have proposed a technique to 

improve the efficiency of Intrusion Detection Systems (IDS) 

by means of feature reduction using autoencoders and 

principal component analysis (PCA). The autoencoders and 

PCA duo can boost the IDS performance by simplifying 

data analysis and making classifiers more efficient in 

detecting intrusions. Nevertheless, the way must cope with 

issues associated with complexity, data loss, generalization 

and adaptability in order to be widely applicable in various 

IDS contexts. 

Xiao et al. [24] created an IDS that is more advanced than 

the previous ones by using a Bayesian Network Model 

Averaging (BNMA) classifier which combines BMA and k-

best BN classifiers to improve classification accuracy. 

Nevertheless, the decision of which feature subset to use is 

crucial for the performance of the classifier and thus it 

determines the accuracy. The model averaging is a complex 

task and it can be computationally intensive, especially 

when the datasets are large like in NSL-KDD. Another 

problem is the overfitting risk which happens, when you 

train and test on different subsets of the same dataset 

multiple times. Discretization bias is caused by the human 

factor in deciding how to group continuous variables. 

Wenying Feng et al. [25] combined an ant colony 

optimization (ACO) algorithm with a Support Vector 

Machine (SVM) to come up with a new IDS. The integrated 

apporach is better than using these methods one by one and 

it works well in classfying different types of network 

intrusions. Nevertheless, the drawbacks are related to 

dependence on clustering quality, computational 

complexity, dealing with evolving threats, generalization to 

new data, parameter tuning and overfitting risk. 

Table 1: Comparison between reference studies 

REF 
Approach 

Method 

Detailed 

Summarize 

Method 

Machine 

Learning 

Method 

Key Limitations 

Chandola et al. 

[11] 

Anomaly 

Detectors 

Comprehensive 

analysis of ML 

techniques for 

ID, covering 

supervised, 

unsupervised, 

and semi-

supervised 

learning, 

focusing on 

anomaly and 

misuse 

detection. 

Supervised & 

Unsupervised 

Learning 

Need for labeled 

datasets, 

generalization 

issues, overfitting 

Yu Xue et al. [12] 
Feature 

Selection 

Utilization of 

the SaDE 

algorithm for 

optimal feature 

selection and k-

NN to evaluate 

the quality of 

SaDE 

Algorithm & 

k-NN 

Lack of 

generalizability to 

entire dataset 
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these features in 

IDS. 

Akashdeep et al. 

[13] 

Feature 

Selection & 

Classification 

Strategic 

ranking and 

combination of 

data features 

using ANNs to 

build a 

classification 

system 

optimized for 

ID. 

Artificial 

Neural 

Networks 

(ANN) 

Dependency on 

KDD99 dataset, 

overfitting risk 

Simone A. 

Ludwig [14] 

Ensemble 

Methods 

Evaluation of 

DNNs in 

ensemble 

methods 

focusing on 

backpropagation 

neural networks 

and assessing 

false alarm and 

detection rates. 

Deep Neural 

Networks 

(DNNs) 

Less effective in 

U2R and R2L 

attacks 

Chaopeng Li [15] 
Traffic Data 

Analysis 

Use of RNNs 

and RBMs to 

analyze network 

traffic data, 

capturing 

temporal 

correlations and 

building packet 

representations. 

RNNs & 

RBMs 

Model complexity, 

overfitting, 

adaptability 

Chuanlong Yin 

[16] 

Binary & 

Multi-Class 

Classification 

RNNs applied to 

IDS for binary 

and multi-class 

classification 

tasks, assessing 

performance on 

accuracy, 

detection rate, 

and FP rate. 

Recurrent 

Neural 

Networks 

(RNNs) 

Shortcomings in 

U2R/R2L 

detection, training 

time 

Yihan Xiao [17] 

Data 

Transformation 

& Model 

Training 

Transformation 

of symbolic data 

to numeric and 

training of CNN 

model to 

enhance 

intrusion 

detection 

performance. 

Convolutional 

Neural 

Network 

(CNN) 

Surpassed by other 

methods 

Dimitrios 

Papamartzivanos 

[18] 

Rule Injection 

Synergy of 

Decision Trees 

and Genetic 

Algorithms to 

create a rule-

based intrusion 

detection model, 

Decision 

Trees & 

Genetic 

Algorithms 

Complexity, 

overfitting, 

generalization 
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optimizing 

detection rules. 

Kai Peng et al. 

[19] 

Data 

Preprocessing 

& 

Classification 

Processing and 

classifying big 

data in IDS 

using DT, 

involving pre-

processing, 

normalization, 

and 

classification 

steps. 

Decision 

Trees (DT) 

Scalability, 

adaptability, 

efficiency 

Gisung Kim et al. 

[20] 

Misuse & 

Anomaly 

Detection 

Hybrid model 

using DT for 

misuse detection 

and binary 

SVMs for 

anomaly 

detection, 

focusing on 

segmenting and 

classifying 

network data. 

Decision 

Trees & SVM 

Complexity, 

generalization, 

detection 

capabilities 

Hassan I. Ahmed 

[21] 

Comparative 

Analysis 

Analysis of 

various ML 

techniques for 

IDS, comparing 

their 

performance 

across different 

datasets. 

DT, ANN, 

Random 

Forest 

Dataset 

limitations, 

generalization, 

adaptability 

Wajdi Alhakami 

[22] 

Feature 

Selection & 

Classification 

Bayesian 

methods used 

for both feature 

selection and 

classification, 

tailoring the 

model for IoT 

ID systems. 

Bayesian 

Methods 

Complexity, 

scalability, 

adaptability 

Abdulhammed et 

al. [23] 

Feature 

Reduction 

Employing 

autoencoders 

and PCA for 

dimensionality 

reduction in 

IDS, enhancing 

classifier 

efficiency. 

Autoencoders 

& PCA 

Complexity, data 

loss, adaptability 
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Xiao et al. [24] 
Classifier 

Development 

Development of 

BNMA 

classifier 

through BMA 

and k-best BN 

classifiers, 

enhancing 

classification 

accuracy in IDS. 

Bayesian 

Network 

Model 

Averaging 

(BNMA) 

Feature selection, 

model complexity 

Wenying Feng et 

al. [25] 

Data 

Clustering & 

Classification 

Combination of 

ACO for 

clustering and 

SVM for 

classification, 

improving 

intrusion 

detection in 

IDS. 

Ant Colony & 

SVM 

Clustering quality, 

computational 

complexity 

Enamul Kabir et 

al. [26] 

Sampling & 

Detection 

Two-stage 

decision-

making using 

sampling for 

representative 

data selection 

and LS-SVM for 

intrusion 

detection. 

Least Square 

SVM (LS-

SVM) 

Sample 

representativeness, 

initial subgrouping 

Vijayanand et al. 

[27] 

Feature 

Selection & 

Classification 

GA for feature 

selection and 

multiple SVM 

classifiers for 

sequential data 

processing and 

classification in 

mesh IoT 

networks. 

SVM & 

Genetic 

Algorithm 

Complexity, 

specificity to mesh 

IoT 

Kuang et al. [28] 

Feature 

Reduction & 

Optimization 

SVM model 

integration with 

KPCA for 

feature 

reduction and 

CPSO for 

parameter 

optimization in 

IDS. 

SVM, KPCA, 

& CPSO 

Optimization 

complexity, 

dataset limitations 

Bamakan et al. 

[29] 

Feature 

Selection & 

Optimization 

Focus on feature 

selection and 

SVM parameter 

optimization in 

IDS to 

maximize 

detection rate 

and minimize 

false alarms. 

Feature 

Selection & 

SVM 

Optimization 

Limitations in R2L 

and U2R detection 

 

Enamul Kabir et al. [26] proposed a new method to IDS that 

is based on the sampling technique and the Least Square 

Support Vector Machine (LS-SVM). The two-stage 

decision-making process begins by dividing the dataset into 

subgroups, then selecting samples that are representative 

and truly reflect the overall characteristics of the dataset. 

The LS-SVM is then used to the samples to find intrusions. 

The technique is tested on the KDDCUP99 dataset, which 

is a well-known benchmark in intrusion detection. 

Vijayanand et al. [27] invented the new way of IDS for mesh 

IoT networks, which is a combination of SVM and GA. The 
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model is created for the mesh IoT networks, and it focuses 

on its importance in the modern connected network 

environment. Nevertheless, the model's real-world 

application could be affected by factors like computational 

complexity, the linear arrangement of classifiers and its 

adaptability to changing network threats and environments. 

SVM and KPCA were integrated by Kuang et al. [28] in 

their novel method of IDS along with the improved CPSO 

to make it more efficient. The model applies SVM together 

with KPCA for the feature dimensionality reduction, which 

is then fine-tuned to minimize computational time and 

enhance accuracy. Nevertheless, the possible drawbacks of 

this method are the difficult optimization process, 

dependence on KPCA for feature reduction, data set 

limitations, potential overfitting. Computational resource 

requirements as well as adaptability to changing threats and 

generalization across different network environments are 

also among them. 

The paper of Bamakan et al. [29] presents an Intrusion 

Detection System (IDS) framework which merges the 

feature selection and Support Vector Machine (SVM) 

parameter optimization techniques. The framework tries to 

have a high detection rate and at the same time avoid false 

alarms as much as possible using the least features. Tested 

on the NSL-KDD and KDDCUP99 datasets, the framework 

showed significant reductions in false alarm rates and 

reasonable detection rates, especially for Probe and Denial 

of Service (DoS) attacks. However, it showed limitations in 

detecting R2L and U2R attacks, which often involve more 

sophisticated intrusion methods. The framework's 

performance is evaluated on widely used datasets, which 

may not fully represent the current network attack 

landscape. Table 1 provides a comparison between previous 

studies. 

Our work seeks to address several key gaps in the field of 

Intrusion Detection Systems (IDS) for the Internet of Things 

(IoT) by leveraging advanced machine learning (ML) and 

deep learning (DL) techniques: 

− Comparative Analysis of ML and DL Models: we 

are exploring how different ML models stack up 

against DL models in terms of effectiveness in 

detecting and responding to security threats within 

IoT environments. 

− Efficient Data Processing with Feature 

Engineering: By implementing MrMr based 

feature selection and PCA based feature reduction 

for feature selection, our work significantly 

reduces the dimensionality of data, enhancing the 

IDS's performance and lowering the computational 

demands, which is crucial for real-time 

applications in IIoT. 

− Multi-level Threat Detection: Unlike many 

existing systems that only categorize activities as 

normal or malicious, our IDS is designed to 

identify various levels of threats, providing a 

nuanced and effective security mechanism. 

3. METHODOLOGY 

The proposed system framework consists of a recorder, an 

AI-based intrusion detection system, and a decision-making 

module. The recorder records IoT network behavior, while 

the AI-based system analyzes network properties to identify 

patterns. The final component makes decisions based on the 

assessed behavior, determining if the observed behavior is 

normal or a potential attack. A visual representation of these 

components is provided in Figure 2. 

 

Fig 2: Components of the framework. 

The proposed model for an intrusion detection system structured as sequential steps as depicted in Figure 3:  
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Fig 3: Proposed model of our smart IDS. 

Step 1: Choose the Dataset: In our work, we will use ToN-

IOT dataset of network traffic from an industrial IoT 

application case. The ToN-IOT [30] are newer generations 

of Internet of Things IoT and Industrial datasets to assess 

the accuracy as well as efficiency of different cybersecurity 

applications derived from Artificial Intelligence. The 

dataset consists of 461,034 records with a total of 52 

features which are used in the machine learning model and 

work as functioning as an Intrusion Detection System (IDS). 

It includes two labels: ’label’ indicating whether the record 

represents normal behavior or an attack (0 for normal, 1 for 

attack), and ‘Type’, classifying records to specific 

categories of attacks such as DoS; DDoS; and backdoor 

alongside normal data. The dataset had ten classes, where 

nine of them presented distinct type attacks, as well as one 

class, described the normal condition. This is a rich structure 

to be used in developing a sufficiently strong IDS system 

able of differentiating between various network activities 

and identifying threats properly. The statistical descriptions 

of Label and Type columns are depicted in Figure 4. 

a 

b 

Fig 4: Details of (a) Label and (b) Type columns. 

Step 2: Data Pre-processing: The preprocessing stage 

includes the following steps: 

a. Handle Missing Values: To ensure the dataset is 

complete without gaps, which might lead to biased 
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or incorrect model predictions. Knowing that 

Numeric columns with missing values are filled 

using the mean value of the column, which 

preserves the central tendency. Whereas, 

categorical columns are filled using the mode 

value, which is the most frequent category, 

ensuring that the original distribution of categories 

is maintained as closely as possible [31]. The 

dataset contains 9476837 missing values in 

different columns as shown in Table 2. 

Table 2: number of missing values for each column. 

Column Number of Missing 

'service' 280216 

'dns_query' 366019 

'dns_AA' 365158 

'dns_RD' 365158 

'dns_RA' 365158 

'dns_rejected' 365158 

'ssl_version' 460737 

'ssl_cipher' 460737 

'ssl_resumed' 460352 

'ssl_established' 460352 

'ssl_subject' 461034 

'ssl_issuer' 461034 

'http_trans_depth' 460796 

'http_method' 460809 

'http_uri' 460809 

'http_version' 460801 

'http_user_agent' 460809 

'http_orig_mime_types' 461029 

'http_resp_mime_types' 460883 

'weird_name' 459749 

'weird_addl' 460290 

'weird_notice' 459749 

 

b. One-Hot Encoding: Machine learning models 

generally work better with numerical input. 

Categorical data are transformed into a numerical 

format that models can interpret without 

introducing ordinality [32]. 

c. Min-Max Normalization: To scale numerical 

features in the dataset to a common scale without 

distorting differences in the ranges of values [32]. 

This rescales the feature to a fixed range of 0 to 1, 

using the equation (1):  

 

 

Step 3: Feature Engineering is crucial for enhancing model 

performance and efficiency. It utilizes two main techniques: 

Principal Component Analysis (PCA) and Maximum 

Relevance Minimum Redundancy (mRMR). PCA 

minimizes the number of features, therefore simplifying the 

dataset while mRMR chooses only those most impactful and 

informative from this reduced set. 

− PCA is used for feature reduction, where it changes 

the original features into a new set of variables 

which are called principal components. These 

elements are made to get the most variance or 

information from the data while being uncorrelated 

with each other. The reduction of the data thus not 

only simplifies it but also helps in getting rid of 

noise and enhancing computational efficiency 

[33]. 

− On the contrary, mRMR is applied to feature 

selection which emphasizes on choosing features 

that are most relevant to the predictive task and at 

(1

) 

(1) 
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the same time ensuring that there is a minimum 

redundancy in them. This procedure selects those 

features that are the most informative about the 

target variable and at the same time, they are not 

related to each other. Thus, it prevents a model 

from learning any redundant information. This 

contributes to the increase of the predictive 

accuracy and generalization capability of the 

model [34]. 

Step 4: Split DS using Holdout: The dataset is split into 

training (70%) and testing (30%) sets. The training set is 

used to build and train the model, while the testing set is 

used purely for evaluating its performance, simulating how 

the model would perform on unseen data. 

Step 5: Classification: In our work we use three levels of 

classification: 

− First Level - Normal or Attack: Determine whether 

each instance in the dataset is a normal operation 

or an anomalous attack. 

− Second Level - Type of Attack: Further classify 

each detected attack into types, for instance, DOS, 

malware, or phishing, based on the characteristics 

of the attack. 

Regarding classifier, we used three types of classifiers:  

− Ensemble Classifiers: Use methods like Bagging 

Trees and AdaBoost, which combine the 

predictions of several base estimators to improve 

robustness and accuracy over a single estimator. 

− Standard Classifiers: Use the algorithms like 

Support Vector Machine, K Nearest Neighbor, 

Naive Bayes and Decision Trees that have their 

own strengths in dealing with different types of 

data and classification problems.  

− Deep Neural Networks: Use the complicated 

models like LSTM which are good at processing 

sequences and time-series data, thus they are 

suitable for tasks such as anomaly detection in 

time-dependent data.  

Step 6: Assessment: The model is to be tested on the new, 

unseen data which are practical and accurate for it. This is 

achieved through the use of different indicators like 

accuracy, precision, recall, F1-Measure and ROC curves to 

assess the model's performance from various aspects so that 

it meets the set standards for deployment. 

A.     Classification Algorithm 

AdaBoost (Adaptive Boosting) [35] is a technique that 

uses multiple weak learners to produce a strong classifier. 

The ensemble, usually a single decision tree for each learner 

is constructed sequentially and the next one focuses on those 

instances which were not classified correctly by the 

previous ones. The learners are given weights according to 

their accuracy and each instance in the dataset is also 

assigned a weight that increases if it is misclassified. As a 

result, the ensemble becomes able to adjust itself to the 

harder cases in the dataset. AdaBoost is specialized in 

binary classification problems, and it is famous for its high 

accuracy of classification.  

Bagging Trees (BagTree) or Bootstrap Aggregating [36], 

is a different ensemble technique in which multiple decision 

trees are trained on the same training set but on its different 

subsets. These subsets are produced by the random selection 

of some training samples with replacement. Every tree is 

trained separately, and their predictions are then combined 

usually by the majority voting for classification or averaging 

for regression. This technique minimizes the variance and 

thus, the chance of overfitting which in turn makes the 

ensemble more robust than individual decision trees.  

Support Vector Machine (SVM) [37] is a very efficient 

classification method that does it by finding the hyperplane 

which best separates two classes of data with the maximum 

margin. In a nutshell, it determines the broadest "street" 

between classes. SVM is very good in high-dimensional 

spaces, and it can be used for both linear and non-linear 

boundaries by the kernel trick. 

K-Nearest Neighbors (KNN) [38] is an easy, instance-

based learning algorithm. In KNN, the classification of a 

new instance is determined by a plurality vote of its 

neighbors, with the instance being assigned to the class most 

common among its k nearest neighbors measured by a 

distance function. KNN is easy to implement and 

understand but can become computationally expensive as 

the size of the data grows. 

Decision Tree (DT) classifiers [39] are intuitive models 

that split data by learning decision rules inferred from the 

features. Trees are formed by nodes representing tests on 

features and leaf nodes representing classes. Decision trees 

are easy to interpret and can handle both numerical and 

categorical data but are prone to overfitting, especially with 

complex trees. 

Naive Bayes (NB) classifiers [40] are probabilistic models 

that apply Bayes’ Theorem, assuming strong (naive) 

independence between the features. They are particularly 

well-suited for classification tasks where high 

dimensionality is present, such as text classification. Despite 

their simplicity and the naive assumption, Naive Bayes 

classifiers often perform very well under many complex 

real-world situations. 

Long Short-Term Memory (LSTM) [41] networks are a 

type of recurrent neural network (RNN) suitable for 

sequence prediction problems. Unlike standard feedforward 

neural networks, LSTMs have feedback connections and 
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can process data sequences irrespective of input sequence 

length They are of great help in those cases where the 

context from the input data is very important, for example, 

speech recognition or anomaly detection in time series data. 

LSTMs solve the problem of vanishing gradient that is 

common to RNNs, so they can learn longer dependencies. 

Our LSTM model configuration is designed to effectively 

handle sequence classification tasks and consists of 

following layers:  

− Input Layer: The model processes sequences 

where each sequence element has only one feature. 

− LSTM Layer: The LSTM layer has 200 hidden 

units, providing it with substantial capacity to learn 

from the data by capturing complex temporal 

dependencies within the sequence. It's configured 

to output only the last hidden state, which is typical 

for sequence-to-label tasks where the final state 

represents the culmination of learned temporal 

features relevant to the prediction task. 

− Fully Connected Layer: This layer has as many 

neurons as there are unique classes in the dataset, 

ensuring each class can be predicted. 

− Softmax Layer: Following the fully connected 

layer, the softmax layer normalizes the output to a 

probability distribution over the predicted classes, 

making the model's output interpretable as class 

probabilities. 

− Classification Layer: The final layer computes the 

cross-entropy loss during training, which helps in 

optimizing the model by comparing the predicted 

output with the true class labels. 

The LSTM model utilizes the Adam optimizer with settings 

optimized for GPU execution. Training is now set to 10 

epochs at a learning rate of 0.001. Verbose output and 

progress plots are enabled to monitor the training process. 

This setup strikes a balance between achieving convergence 

in a reasonable number of training cycles and providing 

detailed insights into training progress through visual 

feedback. 

Each of these models has its strengths and particular 

contexts where it excels as shown in Table 3, making them 

suitable for various kinds of data and predictive modelling 

challenges. 

Table 3: Advantage and Disadvantage of each used model. 

Classifier Advantages Disadvantages 

AdaBoost 

Enhances the accuracy of weak learners, 

robust to overfitting, less prone to 

overfitting than DT. 

Sensitive to noisy data and outliers, performance 

depends on data and weak learner. 

Bagging Trees 

Reduces variance, less prone to 

overfitting, works well for high 

dimensional data. 

Computationally intensive, less interpretable, not the 

best choice for very large datasets. 

SVM 

Effective in high-dimensional spaces, 

works well with clear margin separation, 

versatile (kernel methods). 

Requires full data in memory, can be slow to train, 

choosing a correct kernel can be challenging. 

KNN 
Simple and effective, no training period, 

naturally handles multi-class cases. 

Slow query time as dataset grows, sensitive to irrelevant 

features, needs homogeneous features. 

Decision Trees 
Easy to interpret and explain, can handle 

both numerical and categorical data. 

Prone to overfitting, can be unstable, sensitive to small 

changes in the data. 

Naive Bayes 

Fast and efficient, performs well with 

large datasets, good baseline for text 

classification. 

Assumes feature independence, poor estimates of 

probability can be a drawback. 

LSTM 

Excellent for sequential data, can model 

time series data, capable of learning 

long-term dependencies. 

Computationally intensive, difficult to train, and can 

suffer from overfitting without proper regularization. 

 

4. PERFORMANCE MEASURES 

Classification accuracy serves as an effective metric to 

gauge learning performance of proposed models [42-44]. 

The evaluation utilizes a standard confusion matrix 

technique, with the following metrics listed below: 

Confusion Matrix: A confusion matrix provides a concise 

summary of prediction outcomes in classification problems. 

It offers insight into classification accuracy by 

(2) 
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distinguishing between correct and incorrect predictions as 

well as errors made within each class, distinguishing 

between true positives (true negatives) and 

misclassifications (false positives and false negatives). 

Diagonal elements indicate this information while off-

diagonal ones represent misclassification errors like false 

positives/false negatives respectively. 

Accuracy can be defined as the percentage of correctly 

classified samples when measured values are compared with 

known ones; expressed using equation (2): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Where true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN) represent key components of 

confusion matrices. 

Error Rate measures the proportion of misclassified 

samples within the dataset as defined by equation (3). 

Ultimately, lower error rates mean better model 

performance. 

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

Precision measures the model's ability to correctly classify 

positive values as shown by equation (4): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall measures the proportion of true positives (instances 

that correctly identify a particular class) among all positives, 

both true positives and false positives combined. As shown 

by equation (5): 

 

𝑅𝑒𝑐𝑎𝑙𝑙  =
TP

TP + FN
 

Specificity refers to a model's ability to predict negative 

values accurately as indicated by equation (6): 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑁 + 𝐹𝑃
 

Area Under the Curve (AUC) serves as an evaluation 

metric of binary classification models. It measures the area 

beneath a Receiver Operating Characteristic curve which 

illustrates true positive rates versus false positive rates at 

various classification thresholds; an AUC value of one 

denotes ideal classification while one or less indicates 

random classification.  

Receiver Operating Characteristic (ROC) curves are 

visual illustrations depicting True Positive Rate versus False 

Positive Rate in binary classification models. Their 

proximity to the upper-left corner often correlates to better 

model performance. 

F Measure is an often-utilized performance metric in binary 

classification tasks. It represents the harmonic average 

between precision and recall - providing an assessment that 

considers both aspects. Equation (7) illustrates this 

calculation process of the F1 score: 

F Measure = 2 × (
precision ×  recall 

precision +  recall
) 

Training time is the duration required to train a model on a 

specific dataset. Fast training times are desirable as they 

facilitate rapid model development and deployment. 

Testing time pertains to the duration taken to assess a 

trained model on a new dataset. Efficient testing times are 

advantageous as they enable prompt inference of model 

predictions. 

 

5. RESULTS AND DISCUSSIONS 

In In this section, we conduct two experiments: the first 

experiment focuses on classifying network behavior as 

normal or attack, and the second experiment extends the 

classification to distinguish between normal operations and 

various types of attacks. For both experiments, we will 

evaluate different models with and without the application 

of feature engineering (PCA based feature engineering and 

mRMR based feature selection). 

A. First Experiment for First Level (Binary) Classification 

In the initial experiment, the details of the full dataset along 

with its training and testing splits using 70:30% is shown in 

Figure 5. The metrics used for comparison will include 

accuracy, error rate, precision, recall, specificity, and the F-

measure across both the training and testing phases. This 

setup will allow us to assess the impact of PCA and mRMR 

on model effectiveness comprehensively. 

(3) 

(3) 

(5) 

(6) 

(7) 
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Fig 4: Details of Full, Training and testing datasets for first level of classification. 

When applying mRMR to the dataset, we can specify a 

specific score threshold for dropping columns that score 

below this threshold. Figure 5 illustrates the feature scores 

for each column using mRMR, both in their original order 

and ranked from highest to lowest importance. These visuals 

provide valuable insights into which features are most 

influential in the dataset when mRMR is applied. 

 

Fig 5: The feature scores for each column using MRMR, both in their original order and ranked from highest to lowest 

importance, for first level of classification. 

Knowing that, setting a threshold value for feature scores in 

MRMR can significantly influence model performance and 

computational efficiency. Our choice of a threshold value of 

0.01, which results in selecting the top 23 highest-scoring 

features and dropping the other 20, appears to be a strategic 

compromise between performance and efficiency. 

Knowing that, choosing a higher threshold value will lead 

to fewer features being selected. This can simplify the 

model further and reduce training and testing times, but at 

the risk of dropping potentially important features, which 

might degrade the model's performance. It's crucial to 

ensure that the selected features still capture the essence of 

the data without sacrificing the ability to generalize well. 

Whereas, a lower threshold value means more features will 

be retained, which might maintain or even slightly enhance 

performance due to the richer feature set. However, this 

comes with increased computational costs, as more features 

require more processing power and time during both 

training and testing phases. This might not be desirable, 

especially in scenarios where rapid decision-making is 

critical. The columns that their score high or equal threshold 

ranking from highest to lowest score are:  src_ip, 

http_method, ssl_subject, http_trans_depth, dns_rejected, 

weird_name, proto, missed_bytes, ts, weird_addl, 

ssl_resumed, dns_AA, dst_port, dst_ip_bytes, dst_ip, 

src_ip_bytes, conn_state, dns_query, duration, dns_qtype, 

http_request_body_len, dst_bytes, src_pkts.  

Figure 6 demonstrates the cumulative variance explained by 

each principal component in the dataset. Based on this, we 

select the first 18 principal components, as they capture a 

significant portion of the variance (99.99%). 
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Fig 6: Cumulative Explained Variance by Principal 

Components. 

Principal Component Analysis (PCA) is a statistical 

technique aimed at reducing the complexity in high-

dimensional data while preserving essential trends and 

patterns. This reduction is achieved by transforming the 

original variables into a new set of variables, known as 

principal components, which are orthogonal and ordered by 

the amount of variance they capture from the data. Since 

PCA is an unsupervised method, it is applied to the feature 

set without considering the label. This characteristic makes 

PCA versatile across different types of classification tasks—

whether for binary classification (first level) or multiclass 

classification (second level). The method does not 

differentiate between these scenarios because it focuses 

exclusively on the input features and their variance, not the 

outcome variable. Thus, the application of PCA is consistent 

regardless of the classification level, simplifying the feature 

space and ensuring uniformity in how the data is processed 

for model training. 

The performance of various classification models without 

feature engineering, with mRMR feature selection, and with 

PCA feature reduction is shown in Table 3 (a)- (c) 

respectively.  

From Table 3, we can observe the following: 

− Without Feature Engineering: Models such as Naïve 

Bayes exhibit limited capability in this scenario, 

managing only 65.07% accuracy with a high error rate 

of 34.93%, underscoring its challenges with complex, 

unprocessed datasets. Conversely, KNN achieves a 

reasonable performance level at 86.83% accuracy, 

indicating a better handling of the raw data. The 

ensemble methods (Adaboost and BagTree) and other 

robust models like Decision Trees, SVM, and DL-

LSTM demonstrate excellent performance, with 

accuracies nearing or achieving 99.99%. This suggests 

that more sophisticated or ensemble-based approaches 

are well-suited to manage the dataset's complexity 

effectively without prior feature engineering. 

− With mRMR Feature Selection: The application of 

mRMR significantly improves the performance of 

Naïve Bayes, boosting its accuracy to 85.27%, which 

highlights the benefits of selecting relevant and 

minimally redundant features. KNN also sees an 

enhancement in its performance to 91.06%, benefiting 

from the streamlined feature set that enhances both 

precision and recall. Ensemble methods such as 

Adaboost and BagTree continue to perform at an 

optimal level with accuracies close to 99.99%, 

underscoring the complementarity of mRMR with 

these algorithms. -       The high performance is kept 

intact with the Decision Trees, SVM and DL-LSTM 

that all score around 99 across the board. The 99% 

accuracy, therefore reinforcing the effectiveness of 

mRMR in improving model accuracy while 

maintaining the essential data integrity. 

− With PCA Feature Reduction: Naïve Bayes illustrates a 

slight increase to 84. PCA applied gave a 99% 

accuracy which means it really reduced the feature 

dimensionality though not as much as mRMR did. 

KNN is a bit towards 90. 87% accuracy could be the 

result of PCA's reduction that may have removed the 

discriminative features which are important for its 

classification strategy. 

− A slight performance decrease is also observed in 

ensemble methods, with Adaboost dropping to 99.68% 

and BagTree to 99.80%, suggesting that the loss of 

certain critical features can adversely affect their 

performance. Decision Trees, SVM, and DL-LSTM, 

although experiencing slight decreases in performance 

to accuracies like 99.91% and 99.95%, still indicate 

strong capabilities, albeit slightly hampered by the 

PCA process. 

The analysis underscores that mRMR feature selection 

generally offers the most consistent performance 

improvements across models, likely due to its effectiveness 

in focusing on relevant and non-redundant features. PCA, 

while beneficial for simplifying the data structure, may not 

always be the best choice for all models, particularly those 

that depend on specific feature interactions. 

The analysis of training and testing times across various 

classification models with and without using feature 

engineering techniques are shown in figure 7. 

PCA consistently reduces both training and testing times 

more significantly across all models compared to mRMR. 

This reduction is because PCA reduces the dataset size to 

only 18 columns, which simplifies calculations by 

decreasing the complexity of the data. mRMR also reduces 

training and testing times in most cases, but not as 

dramatically as PCA because it selects a dataset size of 23 

columns only. This suggests that while mRMR helps by 
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selecting the most relevant features, it does not reduce the 

computational load as much as PCA. 

− Naïve Bayes and KNN: Both models show reduced 

testing times with PCA, indicating faster performance 

due to fewer and more compact features. However, 

Naïve Bayes experiences a slight increase in training 

time with mRMR. 

− Ensemble Models (Adaboost and BagTree): These 

models benefit greatly from both techniques, with 

PCA yielding the most significant time reductions, 

facilitating faster model training and testing. 

− Decision Tree and SVM: Experience substantial 

reductions in both training and testing times with PCA, 

suggesting these models are highly sensitive to the 

number of features, and benefit from the simplified 

feature space. 

− DL-LSTM: Shows a pronounced reduction in training 

time with PCA, highlighting the advantage of reduced 

feature dimensions in complex neural network 

architectures. 

 

Fig 7: Training and Testing times across various 

classification models with and without feature engineering. 

B. Second experiment for Second Level (MultiClass) 

Classification 

In the second experiment, the focus shifts to 

classifying data into categories of 'normal' or various 

'types of attack.' This experiment utilizes mRMR 

with a threshold value of 0.1 to strategically select 

the top 31 features for the classification task. For 

PCA, the 3. (a) Results of the different model without 

Feature Selection or reduction -First Level 
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3. (b) Results of the different model with MRMR 

Feature Selection -First Level 
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3. (c) Results of the different model with PCA Feature 

Reduction -First Level 
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4. (a) Results of the different models without Feature 

Selection or reduction -Second Level 
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4. (b) Results of the different models with MRMR 

Feature Selection -second Level 
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4 (c) Results of the different models with PCA Feature 

Reduction -Second Level 
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approach remains consistent with the first experiment, 

selecting the first 18 principal components to capture 

99.99% of the cumulative variance. Detailed distributions of 

the full dataset, along with the training and testing splits set 

at a 70:30 ratio, are outlined in Figure 8. 

 

Fig 8: Details of Full, Training and testing datasets for 

second level (Multiclass) of classification. 

Figure 9 illustrates the feature scores for each column using 

mRMR, both in their original order and ranked from highest 

to lowest importance, when applied to the second level 

(multiclass classification).  

 

Fig 9: The feature scores for each column using MRMR, 

both in their original order and ranked from highest to 

lowest importance, for second level of classification. 

The performance of various classification models without 

feature engineering, with mRMR feature selection, and with 

PCA feature reduction is shown in Table 4 (a)- (c) 

respectively.  
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− Without Feature Engineering: Naïve Bayes 

achieves a moderate accuracy of 80.91% but 

struggles with a high error rate of 99.32%, 

indicating difficulties in handling unprocessed 

datasets. KNN performs better with 89.54% 

accuracy, suggesting it can manage the raw data 

more effectively. Ensemble models like Adaboost 

and BagTree show good results, achieving 

accuracies of 94.20% and 98.16% respectively, 

though Adaboost's precision at 43.62% points to 

some classification challenges. Decision Trees, 

SVM, and DL-LSTM excel, displaying nearly 

perfect or perfect metrics, underscoring their 

robustness in complex scenarios. 

− With mRMR Feature Selection: Naïve Bayes 

significantly improves to 93.01% accuracy but 

shows unstable metrics, such as NaN for precision 

and a low recall of 10.00%, likely indicating issues 

with outlier sensitivity or feature selection. KNN 

sees enhanced performance at 95.28% accuracy, 

benefiting from the more targeted feature set. Both 

Adaboost and BagTree perform robustly, with 

BagTree nearly achieving perfect precision and 

recall. Decision Trees, SVM, and DL-LSTM 

maintain their high performance, demonstrating 

mRMR's effectiveness in enhancing accuracy 

while preserving data integrity. 

− With PCA Feature Reduction: Naïve Bayes shows 

an improved accuracy of 89.55%, benefiting from 

the reduced complexity of the dataset. KNN also 

improves, with accuracy at 90.39% and high 

precision of 94.48%. However, Ensemble 

Adaboost and BagTree, while still performing 

well, exhibit slight variations in their metrics. 

Decision Trees, SVM, and DL-LSTM perform 

exceptionally, albeit with some minor reductions in 

certain metrics, suggesting a slight loss of critical 

information due to the dimensionality reduction. 

Finally, we conclude that the results highlight that PCA 

generally aids in simplifying model computations, but 

mRMR consistently delivers the most robust performance 

improvements by effectively selecting relevant and minimal 

redundant features. 

The analysis of training and testing times across various 

classification models with and without using feature 

engineering techniques are shown in figure 10. 

− Naïve Bayes experiences a significant reduction in 

training time with mRMR, dropping from 2.5 

seconds to 0.59 seconds, though it increases to 1.95 

seconds with PCA. This suggests that while 

mRMR significantly reduces the complexity, PCA 

slightly increases the processing time compared to 

mRMR. In testing, both methods reduce times, 

with PCA showing a more considerable reduction 

to 0.44 seconds from 0.6 seconds, indicating faster 

performance due to a more compact feature set. 

− KNN sees a notable increase in training time with 

mRMR to 39.8 seconds from 1.4 seconds, likely 

due to the computational demand of processing 

relevant features. However, PCA dramatically 

reduces this time to 1.16 seconds, demonstrating 

the efficiency of dimensionality reduction. The 

testing time also decreases under PCA to 33.5 

seconds, showing enhanced performance with 

fewer dimensions. 

− Ensemble Adaboost and BagTree benefit from 

both techniques in training times, particularly with 

mRMR, which cuts down their times significantly 

from the original. -       PCA also saves time but not 

as much as mRMR. The application of PCA and 

mRMR for testing the models is effectively done 

under both conditions, with PCA mostly giving 

some improvements or at least maintaining the 

times as that of mRMR which enables to have 

quicker model evaluations. 

− Decision Tree and SVM training times are greatly 

reduced with PCA, which proves the efficiency of 

decreasing the feature space in these algorithms. 

PCA makes the testing times of Decision Trees 

almost negligible which means that these trees are 

extremely efficient at processing a reduced feature 

set. SVM has a small rise in testing time under 

PCA, which probably shows different 

computational dynamics during the model 

evaluation phase.  

− DL-LSTM, a complicated neural network model, 

has a drastic cut in the training time with PCA to 

157. 5 seconds from 198. 2 seconds. This shows 

the advantages of dimensionality reduction in 

training deep learning models, although there is a 

slight increase in testing time under PCA compared 

to mRMR. 

On the whole, PCA mostly helps to cut down significantly 

on both training and testing times for all models since it is 

so good at reducing data complexity by lowering the 

dimensionality to only 18 columns. Besides, mRMR also 

decreases time but not to the same extent as PCA does and 

this shows that although it helps in concentrating on the 

most relevant features, it is still not enough for reducing 

computational load. 
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Fig 10: Training and Testing times across various 

classification models with and without feature engineering. 

6. CONCLUSION 

This study confirms the huge potential of combining 

Machine Learning (ML) and Deep Learning (DL) methods 

with advanced feature engineering techniques such as 

Minimum Redundancy Maximum Relevance (mRMR) and 

Principal Component Analysis (PCA) for improving 

Intrusion Detection Systems in Internet of Things 

environments. Thus, from the extensive experimentations it 

has been proved that ML and DL models optimized with 

feature engineering not only enhance in performance 

metrics like accuracy, precision, recall and AUC but also 

show significant reductions of both training as well as 

testing times. The effectiveness of PCA in reducing the 

dimensionality of the feature space, thus, simplifying the 

computational requirements without decreasing detection 

capabilities is very remarkable. Hence, the data processing 

becomes faster which is very important in real-time 

intrusion detection when it comes to quick response. In the 

same vein, mRMR has proved to be very effective in model 

enhancement by selecting only the most relevant features 

and thus providing a balanced way between model 

complexity and performance. The models like SVM, 

Decision Trees and DL-LSTM have proved their efficiency 

even in the context of security-critical issues. The DL-

LSTM model, in particular, has proved to be very effective 

in dealing with sequence data which is crucial for IDS 

network traffic analysis.  

The future research in the development of Intrusion 

Detection Systems (IDS) for IoT environments should focus 

on hybrid models that combine different ML and DL 

methods to deal with complex attack patterns efficiently. 

Federated learning can be a way to enhance privacy and 

scale in distributed environments, while the development of 

autonomous and adaptive systems will enable IDS to update 

and react to new threats in real-time. The coverage of tests 

should be extended to cover broader and more diverse 

datasets so as to confirm the strength and scalability of 

models. Besides the above aspects, the use of XAI practices 

would boost transparency and trustworthiness which are 

actually crucial for operational acceptance especially in 

critical infrastructure sectors. These advancements will 

make sure that IDS systems are not only efficient but also 

flexible and in line with the changing cybersecurity threat 

landscape. 
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