

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2057–2064 | 2057

Load Balancing using Particle Swarm Optimization based

Algorithms in Docker Container Cloud Environment: A

Comparative Analysis

Manmitsinh Chandrasinh Zala 1, Dr. Jaykumar Shantilal Patel 2

Submitted:14/03/2024 Revised: 28/04/2024 Accepted: 06/05/2024

Abstract: Cloud computing has vast usage in all type of services such as PaaS, SaaS, IaaS, XaaS , since last few years container based

technologies have evolved and popular among industries and programmers, contrast with traditional Hypervisor based architecture

container based applications are easy to load , deploy , secure and easy implementation , It also provides cluster based implementation and

auto calling features, as of now multiple container based implantation is used in industries which leads to problem of resource allocation

and efficient resource utilization , to maintain smooth and fair functioning of multiple containers over clusters load balancing mechanism

is essential to distribute load equally to get maximum performance in cloud based services , Currently many technologies provides

implementation of such as Nginx[18], kubernetes[14], and Docker Swarm[15] , here nginx and kubernetes provides default load balancing

techniques , to improve this as per requirements many researchers have proposed various load balancing mechanisms. This paper is focused

on comparison and result analysis of PSO (Particle Swarm Optimization) based algorithms proposed for load balancing in container based

applications here we have showed and implemented various PSO algorithms for load balancing using parameters such as CPU usage,

memory usage and optimize load allocation and finally concludes results comparisons of PSO algorithm variants..

Keywords: Cloud Computing, Docker Container, Load balancing, Particle Swarm Optimization (PSO)

1. Introduction

This In cloud computing based applications virtualization is used

to facilitate hardware and software resources availability , this is

useful to run virtualized applications over the shared resources ,

There are many challenges in cloud based architecture such as

resource allocation ,security , efficient usage , privacy , availability

and scaling, to provide virtualization there are mainly two

fundamental technologies are being used 1.VM based

virtualization(Hypervisor) and Container based technologies i.e.

Docker, Kubernetes etc. the main difference between container

based technologies and VM based technologies. (1) VM based

virtualization and (2). Container based virtualization [15], VM-

based virtualization uses a hypervisor to create and manage virtual

machines (VMs), each running a full guest operating system and

virtual hardware. This approach offers high isolation, strong

security, and compatibility with multiple operating systems but

incurs significant resource overhead, lower performance, and

slower start up times due to the need to boot full OSes.[18] In

contrast, container-based virtualization employs a container engine

(like Docker) to manage containers that share the host OS kernel

and run as isolated processes. Containers are lightweight, efficient,

and start almost instantly, offering higher performance and

portability across environments. However, they provide less

isolation, posing potential security risks, are limited to applications

compatible with the host OS, and may face resource contention.

VMs are ideal for running diverse operating systems and

applications requiring strong isolation, while containers are best

for micro services, development environments, and applications

needing efficient resource usage and rapid scaling [14] [15] 16].

Fig. 1: VM based System Architecture and Container based

System Architecture [14]

1 Gujarat Technological University, Ahmedabad, Gujarat-

382350,, India

ORCID ID : 0000-0002-6987-2718

Manmit.zala@email.com

2 Chaudhari Technical Institute, Gandhinagar, Gujarat-382007,

India

 jay_sp_mca@yahoo.co.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2057–2064 | 2058

Table 1: Comparison of Virtual Machine (VM) and Container [14, 16, 18, 29, 32]

Fig 2 : Classification of Load balancing algorithms in cloud

1.1. Load Balancing

It is s a technique that distributes workload among various nodes

in an environment to ensure no node is overloaded or idle at any

given time. An effective load balancing algorithm ensures that

each node performs a similar volume of work, improving response

time and resource utilization. The algorithm maps incoming jobs

to unoccupied resources, which is crucial in cloud computing due

to the unpredictable number of requests. The primary goal is to

dynamically allocate load among nodes to meet user requirements

and maximize resource utilization. [17-21]

The core principle of load balancing is to distribute the workload

evenly across all available nodes. This aims to enhance user

satisfaction, which is increasingly important as user numbers and

demands grow. An ideal load balancing algorithm optimally

utilizes available resources, preventing nodes from being

overloaded or under loaded. This process enables scalability,

avoids bottlenecks, and reduces response time. Although many

load balancing algorithms have been developed to distribute load

Among various machines, achieving perfect load distribution

remains an NP-complete problem, meaning no ideal algorithm

currently exists that can allocate the load perfectly evenly across a

system. [28], [42], [45]

Load balancing algorithms are essential for optimizing resource

utilization and performance in distributed computing

environments. Figure 2 shows these algorithms can be broadly

classified into static and dynamic approaches. Static load

balancing algorithms rely on a priori information about job

characteristics, computing resources, and the communication

network, making deterministic or probabilistic decisions at

compile time that remain fixed during runtime. This approach is

attractive due to its simplicity and minimal runtime overhead;

however, it lacks responsiveness to dynamic runtime

environments, potentially causing load imbalances and increased

response times.
Conversely, dynamic load balancing algorithms leverage runtime

state information to make real-time load-sharing decisions,

providing robustness and flexibility suitable for modern systems.

Dynamic algorithms can be further categorized based on several

parameters: centralized versus decentralized, cooperative versus

non-cooperative, adaptive versus non-adaptive, sender-initiated

versus receiver-initiated, and pre-emptive versus non-pre-emptive.

[20] Centralized algorithms gather necessary parameters via a

single resource, advantageous when communication costs are low

but prone to single points of failure and scalability limitations.

Decentralized algorithms involve all resources in decision-making,

Feature Virtual Machine Container

OS

Requires same OS as client including Kernels, and other resources

like CPU, Memory and Storage.

It works based on user mode kernels , so light weight and

has required services inbuilt

Deployment Takes time, restart is time consuming. Easy to deploy

Fault

Tolerance
Need to restart if gets failed Can be easily created by an orchestrator if gets failed

Load

Balancing
VM migration to different cluster is required

Container actually don’t move

Image (snapshot) is moved.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2057–2064 | 2059

enhancing scalability and fault tolerance. Cooperative algorithms

involve distributed system components in collaborative decision-

making, unlike non-cooperative algorithms.

[39] Adaptive algorithms adjust parameters during execution, in

contrast to non-adaptive ones. In sender-initiated algorithms,

overloaded nodes request process migration, while in receiver-

initiated algorithms, under-loaded nodes initiate the request. Pre-

emptive algorithms enable process transfer during execution,

whereas non-pre-emptive algorithms consider only those processes

awaiting CPU service.

Key functions of load balancing algorithms include load sensing,

orchestration, balancing criteria calculation, task migration, and

resource allocation requests, with actual load balancing occurring

during task migration and decisions communicated to the Task

Controller [45].

2. Related Work In Particle Swarm Optimization

(Pso) Based Algoithm

2.1. Particle Swarm Optimization (PSO)

Introduced by Eberhart and Kennedy in 1995, PSO algorithm is

based on bird flock food searching pattern, when bird flock is

flying in search of food, they need to follow optimized pattern to

land near the location of food as well as minimum risk of predators,

all the birds follow the bird which has best position near the food.

Various Particle Swarm Optimization (PSO) variants have been

developed to enhance load balancing in cloud computing

environments, such as Docker. The standard PSO algorithm treats

each particle as a potential solution, optimizing the distribution of

Docker containers across nodes. Two-Memory PSO (TMPSO)

employs two sets of memories for each particle, enhancing

exploration and exploitation balance. Adaptive PSO dynamically

adjusts parameters during optimization to accelerate convergence

and avoid local minima. Multi-Objective PSO (MOPSO) handles

multiple objectives simultaneously, using Pareto dominance for

optimal solutions. Hierarchical PSO (HPSO) organizes particles

hierarchically for improved exploration. Cooperative PSO (CPSO)

involves multiple swarms cooperating to optimize different

solution space parts. Discrete PSO (DPSO) is tailored for discrete

optimization problems like container placement. Quantum-

behaved PSO (QPSO) integrates quantum mechanics principles for

better global search and faster convergence.

Hybrid PSO combines PSO with other techniques like Genetic

Algorithms (GA) or Simulated Annealing (SA) for enhanced

performance. Dynamic Multi-Swarm PSO (DMS-PSO) uses

interacting swarms to adapt to dynamic environments. Opposition-

based Learning PSO (OBL-PSO) enhances population diversity to

escape local optima. Chaotic PSO (CPSO) utilizes chaotic maps to

control parameters, preventing premature convergence.

Constriction Factor PSO (CF-PSO) includes a constriction factor

for convergence and stability. Table 2 provides a detailed

comparison of these PSO variants

2.2. Equations and Functions of PSO:

2.2.1: Velocity Update

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔 −

𝑥𝑖(𝑡)𝑣𝑖(𝑡 + 1) = 𝑤 𝑣𝑖(𝑡) + 𝑐1 𝑟1 (𝑝𝑖 − 𝑥𝑖(𝑡)) +

 𝑐2 𝑟2 (𝑔 − 𝑥𝑖(𝑡))𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖 −

𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔 − 𝑥𝑖(𝑡)) (1)

2.2.2: Position Update

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) +

 𝑣𝑖(𝑡 + 1)𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (2)

2.2.3: Personal Best Update

i𝑓 𝑓(𝑥𝑖(𝑡 + 1)) < 𝑓(𝑝𝑖) 𝑡ℎ𝑒𝑛 𝑝𝑖 = 𝑥𝑖(𝑡 + 1)/

𝑡𝑒𝑥𝑡{𝑖𝑓 } 𝑓(𝑥𝑖(𝑡 + 1)) < 𝑓(𝑝𝑖) /𝑡𝑒𝑥𝑡{ 𝑡ℎ𝑒𝑛 } 𝑝𝑖 =

 𝑥𝑖(𝑡 + 1)𝑖𝑓 𝑓(𝑥𝑖(𝑡 + 1)) < 𝑓(𝑝𝑖) 𝑡ℎ𝑒𝑛 𝑝𝑖 = 𝑥𝑖(𝑡 +

1) (3)

 2.2.4: Global Best Update

 𝑖𝑓 𝑓(𝑝𝑖) < 𝑓(𝑔) 𝑡ℎ𝑒𝑛 𝑔 = 𝑝𝑖\𝑡𝑒𝑥𝑡{𝑖𝑓 }𝑓(𝑝𝑖) <
 𝑓(𝑔)\𝑡𝑒𝑥𝑡{ 𝑡ℎ𝑒𝑛 }𝑔 = 𝑝𝑖 𝑖𝑓 𝑓(𝑝𝑖) < 𝑓(𝑔) 𝑡ℎ𝑒𝑛 𝑔 =

𝑝𝑖 (4)

Fig 3: Graph representation of PSO algorithm

Figure 3 graph helps to visualize how particles in the PSO

algorithm interact with their personal best positions and the global

best position. We have generated figure 3 in python where node

P0-P4 represents particles and Pb0- Pb4 represents personal best

positions G is global best position and each particle tries to move

related best positons indicated by arrows. In this paper we have

implemented PSO, TMPSO, MOPSO and Adaptive PSO for load

balancing and resource allocation for container based environment.

Traditional PSO uses container resource allocation with most

optimized solution, while TMPSO (Two Stage Multi option PSO

has two steps (I) VM Selection (ii) VM Placement.VM selection

uses first fit strategy while VM placement uses PSO operations to

place the VM, While Adaptive PSO and MOPSO (Multi Objective

Parallel Particle swarm optimization) uses combination of parallel

PSO with micro service architecture for various requirement such

as Computing storage, memory, failure rate etc.). We have also

compared PSO, TMPSO with

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2057–2064 | 2060

Table 2: Comparison of various PSO based algorithms

Algorithm Name Usage

Parameters Result Findings Tools Used

Standard PSO [1] Resource allocation,
load balancing

Inertia weight,
cognitive and social

coefficients

Basic optimization,
good convergence

speed

Effective for simple
problems, struggles

with complex

landscapes

MATLAB, Python,
C++

Two-Memory PSO

(TMPSO) [2]

Improved resource

management

Inertia weight,

cognitive and social
coefficients

Enhanced

optimization, faster
convergence

Better memory

utilization, more
efficient than standard

PSO

MATLAB, Python,

Apache Bench

Adaptive PSO [3] Scalability, fault

tolerance

Adaptive control

parameters, learning

rates

Highly scalable,

robust against faults

Balances performance

and resource use,

requires dynamic
adjustment

MATLAB, Python,

Java

Multi-Objective PSO
(MOPSO) [4]

Handling multiple
objectives

Multiple objective
functions

Efficient multi-
objective

optimization, diverse

solutions

High efficiency in
multi-objective

scenarios, suitable for

complex problems

MATLAB, Python, R

Hierarchical PSO

(HPSO) [5]

Task scheduling, data

clustering

Hierarchical

structure, social
coefficients

Improved

convergence, better
resource utilization

Suitable for

hierarchical problems,
efficient clustering

MATLAB, Python,

Java

Cooperative PSO

(CPSO) [6]

Enhanced

collaboration among

particles

Cooperative

parameters, social

coefficients

Better convergence,

enhanced

optimization

Effective for

problems requiring

cooperation, improves
overall performance

MATLAB, Python

Discrete PSO (DPSO)
[7]

Task scheduling, data
clustering

Position and velocity
in discrete space

Efficient task
scheduling, effective

clustering

Suitable for discrete
problems, limited by

problem size

MATLAB, Python,
C++

Quantum-behaved PSO

(QPSO) [8]

Security optimization,

energy efficiency

Quantum potential

well, particle position

High security, low

energy consumption

High efficiency in

specific applications,

requires careful
tuning

MATLAB, Python,

C#

Hybrid PSO [9] Job-shop scheduling
problem

Combination of PSO
and other algorithms'

parameters

Improved
convergence, better

resource utilization

Better performance in
complex scenarios,

more computationally

intensive

MATLAB, Python,
Java

Dynamic Multi-Swarm

PSO (DMS-PSO) [10]

Dynamic resource

allocation

Dynamic parameters,

swarm division

Responsive to

changing
environment,

efficient allocation

Adapts well to

changing conditions,
can be complex to

implement

MATLAB, Python, R

Opposition-based

Learning PSO (OBL-

PSO) [11]

Global optimization Opposition-based

learning parameters

Enhanced global

search capability,

faster convergence

Balances exploration

and exploitation,

improves overall
optimization

efficiency

MATLAB, Python,

C++

Chaotic PSO (CPSO)

[12]

Resource allocation,

load balancing

Chaotic sequences,

acceleration

coefficients

Improved

convergence, better

resource utilization

Utilizes chaos theory

for optimization, can

be more effective for
complex landscapes

MATLAB, Python,

Java

Constriction Factor PSO
(CF-PSO) [13]

Resource allocation,
load balancing

Constriction factor,
cognitive and social

coefficients

Stable convergence,
avoids premature

convergence

Improved stability
and convergence,

effective for a wide

range of optimization
problems

MATLAB, Python,
C++

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2057–2064 | 2061

Adaptive PSO, adaptive PSO adapts the global best position and

its balances the performance, resource use, but it requires higher

adjustment due to dynamic nature.

3. Proposed Model And Experimental Setup

3.1. Proposed Model:

Fig 4: Proposed Model for Experimental setup

Table 3: Average Resource Utilization, CPU and Memory

Utilization

Container

Name
CPU Usage Memory Usage

Total Resource

Usage

PSO 50.93 100.18 51.86

TMPSO 55.85 105.31 56.71

MOPSO 60.22 111.9 60.45

PSO2 50 104.09 50

MOPSO2 60.24 116.33 60.49

Resource Utilization: Percentage of resources (CPU, memory, etc.)

used over time.

CPU Usage: Percentage of CPU used over time.

Memory Usage: Amount of memory used over time.

Load Balancing: Effectiveness of load distribution over time

demagnetizing factor

We have performed execution of request on each container for 100

times on 5 different containers where PSO and MOPSO requires 2

containers for the given load data, while TMPSO requires only 1

container for same operations.

Figure 5: Resource Utilization, CPU Usage, Memory Usage, and

Load Balancing using PSO algorithms.

Table 3 shows average CPU and memory usage also total resource

utilization percentage, we can see the effect of load balancing using

these three algorithms in figure 4,5,6, and 7 while figure 8 shows

load balancing over a time PSO based algorithms have better load

balancing output compare to other heuristic algorithms.

Figure 6: CPU Usage in Docker

Container

Figure 7: Memory Utilization in

Docker Container

Figure 5,6 and 7 shows that Simple PSO requires less memory and

CPU utilization compare to other variants but over a time for better

load balancing results are produced by MOPSO and Adaptive

PSO, initially they require more resources but later on they provide

better performance compare to PSO and TMPSO.

Figure 8: Load balancing

Effectiveness over Time

Figure 9: Load balancing

Effectiveness over Time

Figure 10: CPU Load Comparison using PSO Algorithm (PSO,

TMPSO, and Adaptive PSO).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2057–2064 | 2062

4. Conclusion and Future Work

4.1. Conclusions

Container provides light weight virtualization and has better

performance over traditional VMs; to analyse load balancing for

each container, we need to define a metric that measures the

effectiveness of load distribution. Load balancing metrics can

include the standard deviation of CPU and memory usage across

containers, which indicates how evenly the load is distributed.

Since we already have hypothetical data for resource utilization,

CPU usage, and memory usage, we can use this data to calculate

load balancing effectiveness. We have followed below steps.

1. Calculate the standard deviation of CPU and memory usage

across containers over time.

2. Plot these standard deviations to visualize load balancing

effectiveness.

Based on the comparative analysis in Figure 8 , Figure 9 and Figure

11 of PSO, TMPSO, MOPSO, and Adaptive PSO algorithms, PSO

demonstrated the best overall performance in terms of CPU load,

memory usage, and execution time for the given single-objective

problem. With an average CPU load of 23.46%, memory usage of

61.73 MB, and execution time of 77.04 seconds, PSO's simplicity

resulted in efficient resource utilization and quick convergence.

TMPSO, designed for dynamic environments, exhibited the

highest average CPU load of 49.66%, memory usage of 74.83 MB,

and execution time of 84.9 seconds, indicating significant

computational overhead and suboptimal performance in this static,

single-objective context.

Fig. 11: Initial and balanced comparison of PSO based

algorithms. (PSO, TMPSO, and Adaptive PSO).

Adaptive PSO showed balanced resource usage with an average

CPU load of 26.43%, memory usage of 63.22 MB, and execution

time of 77.93 seconds, benefiting from dynamic load distribution

and efficient resource allocation. While MOPSO was not directly

compared in the detailed data, it is generally known for higher

resource consumption due to its multi-objective optimization

focus, which may not be justified in single-objective problems.

Overall, PSO's ease of tuning and well-understood parameters

make it ideal for simple optimization tasks, while Adaptive PSO

offers robust performance in dynamic scenarios. TMPSO's

complexity may not provide significant advantages in static

Table 4: Comparative Analysis of PSO, TMPSO and Adaptive PSO

Container Algorithm CPU Load Memory Usage (MB) Execution Time (Sec.)

1 PSO 23.5655 61.78275 77.06965

2 PSO 23.40568 61.70284 77.0217

3 PSO 23.3991 61.69955 77.01973

4 PSO 23.45902 61.72951 77.03771

5 PSO 23.46109 61.73055 77.03833

Average PSO 23.46 61.73 77.04

1 TMPSO 50.18283 75.09142 85.05485

2 TMPSO 49.44382 74.72191 84.83315

3 TMPSO 49.27857 74.63929 84.78357

4 TMPSO 49.75902 74.87951 84.92771

5 TMPSO 49.61538 74.80769 84.88462

Average TMPSO 49.66 74.83 84.9

1 Adaptive PSO 25.99327 62.99663 77.79798

2 Adaptive PSO 26.3002 63.1501 77.89006

3 Adaptive PSO 26.2197 63.10985 77.86591

4 Adaptive PSO 26.78923 63.39462 78.03677

5 Adaptive PSO 26.87113 63.43557 78.06134

Average Adaptive PSO 26.43 63.22 77.93

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2057–2064 | 2063

environments, and MOPSO should be reserved for complex, multi-

objective tasks.

4.2. Future Work

In future we will try to implement more heuristic based algorithms

for efficient resource utilization with less CPU time and memory

requirement, above comparison shows that PSO based algorithms

have effective mechanism for load balancing and container

scheduling. More classification methods can be combined with

PSO based algorithm to solve load balancing and resource

allocation problem in container-based architecture.

Author contributions

Both Authors have contributed equally

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Kennedy, J., & Eberhart, R. (1995). "Particle Swarm

Optimization." Proceedings of IEEE International Conference on

Neural Networks (Vol. 4, pp. 1942-1948). IEEE.

[2] Tang, Y., & Zhang, W. (2006). "Two-Memory Particle

Swarm Optimization." Proceedings of the IEEE Congress on

Evolutionary Computation (pp. 1861-1867). IEEE.

[3] Ratnaweera, A., Halgamuge, S. K., & Watson, H. C.

(2004). "Self-organizing hierarchical particle swarm optimizer

with time-varying acceleration coefficients." IEEE Transactions

on Evolutionary Computation, 8(3), 240-255.

[4] Coello, C. A., Pulido, G. T., & Lechuga, M. S. (2004).

"Handling multiple objectives with particle swarm optimization."

IEEE Transactions on Evolutionary Computation, 8(3), 256-279.

[5] Gazi, V., & Passino, K. M. (2004). "Stability analysis of

social foraging swarms." IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 34(1), 539-557.

[6] Van den Bergh, F., & Engelbrecht, A. P. (2004). "A

cooperative approach to particle swarm optimization." IEEE

Transactions on Evolutionary Computation, 8(3), 225-239.

[7] Kennedy, J., & Eberhart, R. C. (1997). "A discrete binary

version of the particle swarm algorithm." Proceedings of the 1997

IEEE International Conference on Systems, Man, and Cybernetics.

Computational Cybernetics and Simulation (Vol. 5, pp. 4104-

4108). IEEE.

[8] Sun, J., & Wu, X., Palade, V., & Fang, W. (2012).

"Quantum-behaved particle swarm optimization: analysis of

individual particle behavior and parameter selection."

Evolutionary Computation, 20(3), 349-393.

[9] Zhang, X., Zhou, Y., & Jiao, L. (2008). "An improved

particle swarm optimization algorithm for job-shop scheduling

problem." International Journal of Advanced Manufacturing

Technology, 38(7-8), 731-737.

[10] Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S.

(2006). "Comprehensive learning particle swarm optimizer for

global optimization of multimodal functions." IEEE Transactions

on Evolutionary Computation, 10(3), 281-295.

[11] Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. A.

(2008). "Opposition-based differential evolution." IEEE

Transactions on Evolutionary Computation, 12(1), 64-79.

[12] Li, X., & Yin, M. (2013). "A hybrid particle swarm

optimization with sine cosine acceleration coefficients." Expert

Systems with Applications, 40(1), 174-184.

[13] Clerc, M., & Kennedy, J. (2002). "The particle swarm-

explosion, stability, and convergence in a multidimensional

complex space." IEEE Transactions on Evolutionary Computation,

6(1), 58-73.

[14] B. Bashari Rad, H. John Bhatti, and M. Ahmadi, “An

Introduction to Docker and Analysis of its Performance,” IJCSNS

Int. J. Comput. Sci. Netw. Secur., vol. 17, no. 3, pp. 228–235, 2017.

[15] J. Lv, M. Wei, and Y. Yu, “A container scheduling

strategy based on machine learning in microservice architecture,”

Proc. - 2019 IEEE Int. Conf. Serv. Comput. SCC 2019 - Part 2019

IEEE World Congr. Serv., pp. 65–71, 2019, doi:

10.1109/SCC.2019.00023.

[16] J. Bhimani, Z. Yang, M. Leeser, and N. Mi,

“Accelerating big data applications using lightweight

virtualization framework on enterprise cloud,” 2017 IEEE High

Perform. Extrem. Comput. Conf. HPEC 2017, 2017, doi:

10.1109/HPEC.2017.8091086.

[17] J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S.

Zumberi, and H. C. Gall, “An Empirical Analysis of the Docker

Container Ecosystem on GitHub,” IEEE Int. Work. Conf. Min.

Softw. Repos., pp. 323–333, 2017, doi: 10.1109/MSR.2017.67.

[18] H. Rajavaram, V. Rajula, and B. Thangaraju,

“Automation of Microservices Application Deployment Made

Easy By Rundeck and Kubernetes,” 2019 IEEE Int. Conf. Electron.

Comput. Commun. Technol. CONECCT 2019, pp. 3–5, 2019, doi:

10.1109/CONECCT47791.2019.9012811.

[19] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle,

“Autonomic Vertical Elasticity of Docker Containers with

ELASTICDOCKER,” IEEE Int. Conf. Cloud Comput. CLOUD,

vol. 2017-June, pp. 472–479, 2017, doi:

10.1109/CLOUD.2017.67.

[20] F. Wan, X. Wu, and Q. Zhang, “Chain-Oriented Load

Balancing in Microservice System,” 2020 World Conf. Comput.

Commun. Technol. WCCCT 2020, pp. 10–14, 2020, doi:

10.1109/WCCCT49810.2020.9169996.

[21] C. Singh, N. S. Gaba, M. Kaur, and B. Kaur,

“Comparison of different CI/CD Tools integrated with cloud

platform,” Proc. 9th Int. Conf. Cloud Comput. Data Sci. Eng.

Conflu. 2019, pp. 7–12, 2019, doi:

10.1109/CONFLUENCE.2019.8776985.

[22] G. Ambrosino, G. B. Fioccola, R. Canonico, and G.

Ventre, “Container mapping and its impact on performance in

containerized cloud environments,” Proc. - 14th IEEE Int. Conf.

Serv. Syst. Eng. SOSE 2020, pp. 57–64, 2020, doi:

10.1109/SOSE49046.2020.00014.

[23] Y. Xu and Y. Shang, “Dynamic Priority based Weighted

Scheduling Algorithm in Microservice System,” IOP Conf. Ser.

Mater. Sci. Eng., vol. 490, no. 4, 2019, doi: 10.1088/1757-

899X/490/4/042048.

[24] N. NaiK, “Docker Container Based Big Data Processing

System In Multiple Clouds for Everyone,” vol. 29, no. 3, pp. 712–

717, 2017, doi: 10.3788/AOS20092903.0712.

[25] H. Zeng, B. Wang, W. Deng, and W. Zhang,

“Measurement and evaluation for docker container networking,”

Proc. - 2017 Int. Conf. Cyber-Enabled Distrib. Comput. Knowl.

Discov. CyberC 2017, vol. 2018-Janua, pp. 105–108, 2017, doi:

10.1109/CyberC.2017.78.

[26] Q. Li and Y. Fang, “Multi-algorithm collaboration

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2057–2064 | 2064

scheduling strategy for docker container,” 2017 Int. Conf. Comput.

Syst. Electron. Control. ICCSEC 2017, pp. 1367–1371, 2018, doi:

10.1109/ICCSEC.2017.8446688.

[27] D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li, and

R. Ranjan, “A holistic evaluation of docker containers for

interfering microservices,” Proc. - 2018 IEEE Int. Conf. Serv.

Comput. SCC 2018 - Part 2018 IEEE World Congr. Serv., no. VM,

pp. 33–40, 2018, doi: 10.1109/SCC.2018.00012.

[28] Y. Kang and R. Y. C. Kim, “Twister Platform for

MapReduce Applications on a Docker Container,” 2016 Int. Conf.

Platf. Technol. Serv. PlatCon 2016 - Proc., no. i, pp. 16–18, 2016,

doi: 10.1109/PlatCon.2016.7456834.

[29] V. G. da Silva, M. Kirikova, and G. Alksnis, “Containers

for Virtualization: An Overview,” Appl. Comput. Syst., vol. 23, no.

1, pp. 21–27, 2018, doi: 10.2478/acss-2018-0003.

[30] “Bowen Ruan, Hang Huang , SongWu ,andHaiJin "

Performance Study of Conteiners In Cloud Environment.pdf.”

Springer International Publishing.

[31] M. Cerqueira De Abranches and P. Solis, “An algorithm

based on response time and traffic demands to scale containers on

a Cloud Computing system,” Proceedings - 2016 IEEE 15th

International Symposium on Network Computing and

Applications, NCA 2016. pp. 343–350, 2016, doi:

10.1109/NCA.2016.7778639.

[32] M. Beranek, V. Kovar, and G. Feuerlicht, Framework

for Management of Multi-tenant Cloud Environments, vol. 10967

LNCS. Springer International Publishing, 2018.

[33] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs

containerization to support PaaS,” Proc. - 2014 IEEE Int. Conf.

Cloud Eng. IC2E 2014, pp. 610–614, 2014, doi:

10.1109/IC2E.2014.41.

[34] P. Mohan, T. Jambhale, L. Sharma, S. Koul, and S. Koul,

“Load Balancing using Docker and Kubernetes: A Comparative

Study,” Int. J. Recent Technol. Eng., vol. 9, no. 2, pp. 782–792,

2020, doi: 10.35940/ijrte.b3938.079220.

[35] A. Khan, “Key Characteristics of a Container

Orchestration Platform to Enable a Modern Application,” IEEE

Cloud Comput., vol. 4, no. 5, pp. 42–48, 2017, doi:

10.1109/MCC.2017.4250933.

[36] N. Nguyen and D. Bein, “Distributed MPI cluster with

Docker Swarm mode,” 2017 IEEE 7th Annu. Comput. Commun.

Work. Conf. CCWC 2017, 2017, doi:

10.1109/CCWC.2017.7868429.

[37] K. Ye and Y. Ji, “Performance Tuning and Modeling for

Big Data Applications in Docker Containers,” 2017 IEEE Int.

Conf. Networking, Archit. Storage, NAS 2017 - Proc., 2017, doi:

10.1109/NAS.2017.8026871.

[38] Z. Kozhirbayev and R. O. Sinnott, “A performance

comparison of container-based technologies for the Cloud,” Futur.

Gener. Comput. Syst., vol. 68, pp. 175–182, 2017, doi:

10.1016/j.future.2016.08.025.

[39] M. Rusek, D. Rzegorz, and A. Orłowski, “A

decentralized system for load balancing of containerized

microservices in the cloud,” Int. Conf. Syst. Sci., vol. 539, no.

November, pp. 142–152, 2016, doi: 10.1007/978-3-319-48944-5.

[40] E. Jafarnejad Ghomi, A. Masoud Rahmani, and N. Nasih

Qader, “Load-balancing algorithms in cloud computing: A

survey,” J. Netw. Comput. Appl., vol. 88, pp. 50–71, 2017, doi:

10.1016/j.jnca.2017.04.007.

[41] J. Cito and H. C. Gall, “Using docker containers to

improve reproducibility in software engineering research,” Proc. -

Int. Conf. Softw. Eng., vol. 1, pp. 906–907, 2016, doi:

10.1145/2889160.2891057.

[42] C. Cérin, T. Menouer, W. Saad, and W. Ben Abdallah,

“A New Docker Swarm Scheduling Strategy,” Proc. - 2017 IEEE

7th Int. Symp. Cloud Serv. Comput. SC2 2017, vol. 2018-Janua,

pp. 112–117, 2018, doi: 10.1109/SC2.2017.24.

[43] Z. Wei-guo, M. Xi-lin, and Z. Jin-zhong, “Research on

kubernetes’ resource scheduling scheme,” ACM Int. Conf.

Proceeding Ser., pp. 144–148, 2018, doi:

10.1145/3290480.3290507.

[44] W. Ren, W. Chen, and Y. Cui, “Dynamic Balance

Strategy of High Concurrent Web Cluster Based on Docker

Container,” IOP Conf. Ser. Mater. Sci. Eng., vol. 466, no. 1, 2018,

doi: 10.1088/1757-899X/466/1/012011.

[45] G. P. P. Geethu and S. K. Vasudevan, “An in-depth

analysis and study of Load balancing techniques in the cloud

computing environment,” Procedia Comput. Sci., vol. 50, pp. 427–

432, 2015, doi: 10.1016/j.procs.2015.04.009.

