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Abstract: Cloud computing has vast usage in all type of services such as PaaS, SaaS, IaaS, XaaS , since last few years container based 

technologies have evolved and popular among industries and programmers, contrast with traditional Hypervisor based architecture 

container based applications are easy to load , deploy , secure and easy implementation , It also provides cluster based implementation and 

auto calling features, as of now multiple container based implantation is used in industries which leads to problem of resource allocation 

and efficient resource utilization , to maintain smooth and fair functioning of multiple containers over clusters load balancing mechanism 

is essential to distribute load equally to get maximum performance in cloud based services , Currently many technologies provides 

implementation of  such as Nginx[18], kubernetes[14], and Docker Swarm[15] , here nginx and kubernetes provides default load balancing 

techniques , to improve this as per requirements many researchers have proposed various load balancing mechanisms. This paper is focused 

on comparison and result analysis of PSO (Particle Swarm Optimization) based algorithms proposed for load balancing in container based 

applications here we have showed and implemented various PSO algorithms for load balancing using parameters such as CPU usage, 

memory usage and optimize load allocation and finally concludes results comparisons of PSO algorithm variants.. 
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1. Introduction 

This In cloud computing based applications virtualization is used 

to facilitate hardware and software resources availability , this is 

useful to run virtualized applications over the shared resources , 

There are many challenges in cloud based architecture such as 

resource allocation ,security , efficient usage , privacy , availability 

and scaling, to provide virtualization there are  mainly two 

fundamental technologies are being used 1.VM based 

virtualization(Hypervisor) and Container based technologies i.e. 

Docker, Kubernetes etc. the main difference between container 

based technologies and VM based technologies. (1) VM based 

virtualization and (2). Container based virtualization [15], VM-

based virtualization uses a hypervisor to create and manage virtual 

machines (VMs), each running a full guest operating system and 

virtual hardware. This approach offers high isolation, strong 

security, and compatibility with multiple operating systems but 

incurs significant resource overhead, lower performance, and 

slower start up times due to the need to boot full OSes.[18] In 

contrast, container-based virtualization employs a container engine 

(like Docker) to manage containers that share the host OS kernel 

and run as isolated processes. Containers are lightweight, efficient,  

 

and start almost instantly, offering higher performance and 

portability across environments. However, they provide less 

isolation, posing potential security risks, are limited to applications 

compatible with the host OS, and may face resource contention. 

VMs are ideal for running diverse operating systems and 

applications requiring strong isolation, while containers are best 

for micro services, development environments, and applications 

needing efficient resource usage and rapid scaling [14] [15] 16]. 

 

 

 

Fig. 1: VM based System Architecture and Container based 

System Architecture [14] 
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Table 1: Comparison of Virtual Machine (VM) and Container [14, 16, 18, 29, 32] 

 

      

 

 

Fig 2 : Classification of Load balancing algorithms   in cloud   

 

1.1. Load Balancing 

It is s a technique that distributes workload among various nodes 

in an environment to ensure no node is overloaded or idle at any 

given time. An effective load balancing algorithm ensures that 

each node performs a similar volume of work, improving response 

time and resource utilization. The algorithm maps incoming jobs 

to unoccupied resources, which is crucial in cloud computing due 

to the unpredictable number of requests. The primary goal is to 

dynamically allocate load among nodes to meet user requirements 

and maximize resource utilization. [17-21] 

 

The core principle of load balancing is to distribute the workload 

evenly across all available nodes. This aims to enhance user 

satisfaction, which is increasingly important as user numbers and 

demands grow. An ideal load balancing algorithm optimally 

utilizes available resources, preventing nodes from being 

overloaded or under loaded. This process enables scalability, 

avoids bottlenecks, and reduces response time. Although many 

load balancing algorithms have been developed to distribute load  

Among various machines, achieving perfect load distribution 

remains an NP-complete problem, meaning no ideal algorithm 

currently exists that can allocate the load perfectly evenly across a 

system. [28], [42], [45] 

 

 

Load balancing algorithms are essential for optimizing resource 

utilization and performance in distributed computing 

environments. Figure 2 shows these algorithms can be broadly 

classified into static and dynamic approaches. Static load 

balancing algorithms rely on a priori information about job 

characteristics, computing resources, and the communication 

network, making deterministic or probabilistic decisions at 

compile time that remain fixed during runtime. This approach is 

attractive due to its simplicity and minimal runtime overhead; 

however, it lacks responsiveness to dynamic runtime 

environments, potentially causing load imbalances and increased 

response times.  
Conversely, dynamic load balancing algorithms leverage runtime 

state information to make real-time load-sharing decisions, 

providing robustness and flexibility suitable for modern systems. 

Dynamic algorithms can be further categorized based on several 

parameters: centralized versus decentralized, cooperative versus 

non-cooperative, adaptive versus non-adaptive, sender-initiated 

versus receiver-initiated, and pre-emptive versus non-pre-emptive. 

[20] Centralized algorithms gather necessary parameters via a 

single resource, advantageous when communication costs are low 

but prone to single points of failure and scalability limitations. 

Decentralized algorithms involve all resources in decision-making, 

Feature Virtual Machine Container  

OS 

Requires same OS as client including Kernels, and other resources 

like CPU, Memory and Storage.  

 

It works based on user mode kernels , so light weight and 

has required services inbuilt  

Deployment Takes time, restart is time consuming. Easy to  deploy  

Fault 

Tolerance 
Need to restart if gets failed  Can be easily created by an orchestrator if gets failed  

Load 

Balancing 
VM migration to different cluster is required 

Container actually don’t move  

Image (snapshot) is moved. 
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enhancing scalability and fault tolerance. Cooperative algorithms 

involve distributed system components in collaborative decision-

making, unlike non-cooperative algorithms.  

 

[39] Adaptive algorithms adjust parameters during execution, in 

contrast to non-adaptive ones. In sender-initiated algorithms, 

overloaded nodes request process migration, while in receiver-

initiated algorithms, under-loaded nodes initiate the request. Pre-

emptive algorithms enable process transfer during execution, 

whereas non-pre-emptive algorithms consider only those processes 

awaiting CPU service.  

 

Key functions of load balancing algorithms include load sensing, 

orchestration, balancing criteria calculation, task migration, and 

resource allocation requests, with actual load balancing occurring 

during task migration and decisions communicated to the Task 

Controller [45]. 

2. Related Work In Particle Swarm Optimization 

(Pso) Based Algoithm 

2.1.  Particle Swarm Optimization (PSO) 

Introduced by Eberhart and Kennedy in 1995, PSO algorithm is 

based on bird flock food searching pattern, when bird flock is 

flying in search of food, they need to follow optimized pattern to 

land near the location of food as well as minimum risk of predators, 

all the birds follow the bird which has best position near the food. 

Various Particle Swarm Optimization (PSO) variants have been 

developed to enhance load balancing in cloud computing 

environments, such as Docker. The standard PSO algorithm treats 

each particle as a potential solution, optimizing the distribution of 

Docker containers across nodes. Two-Memory PSO (TMPSO) 

employs two sets of memories for each particle, enhancing 

exploration and exploitation balance. Adaptive PSO dynamically 

adjusts parameters during optimization to accelerate convergence 

and avoid local minima. Multi-Objective PSO (MOPSO) handles 

multiple objectives simultaneously, using Pareto dominance for 

optimal solutions. Hierarchical PSO (HPSO) organizes particles 

hierarchically for improved exploration. Cooperative PSO (CPSO) 

involves multiple swarms cooperating to optimize different 

solution space parts. Discrete PSO (DPSO) is tailored for discrete 

optimization problems like container placement. Quantum-

behaved PSO (QPSO) integrates quantum mechanics principles for 

better global search and faster convergence.  

Hybrid PSO combines PSO with other techniques like Genetic 

Algorithms (GA) or Simulated Annealing (SA) for enhanced 

performance. Dynamic Multi-Swarm PSO (DMS-PSO) uses 

interacting swarms to adapt to dynamic environments. Opposition-

based Learning PSO (OBL-PSO) enhances population diversity to 

escape local optima. Chaotic PSO (CPSO) utilizes chaotic maps to 

control parameters, preventing premature convergence. 

Constriction Factor PSO (CF-PSO) includes a constriction factor 

for convergence and stability. Table 2 provides a detailed 

comparison of these PSO variants  

 

 

 

2.2. Equations and Functions of PSO: 

2.2.1: Velocity Update 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔 −

𝑥𝑖(𝑡)𝑣𝑖(𝑡 + 1)  =  𝑤 𝑣𝑖(𝑡)  +  𝑐1 𝑟1 (𝑝𝑖 −  𝑥𝑖(𝑡))  +

 𝑐2 𝑟2 (𝑔 −  𝑥𝑖(𝑡))𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖 −

𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔 − 𝑥𝑖(𝑡))                      (1) 

2.2.2: Position Update 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)𝑥𝑖(𝑡 + 1)  =  𝑥𝑖(𝑡)  +

 𝑣𝑖(𝑡 + 1)𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)     (2)               

2.2.3: Personal Best Update 

i𝑓 𝑓(𝑥𝑖(𝑡 + 1)) < 𝑓(𝑝𝑖) 𝑡ℎ𝑒𝑛 𝑝𝑖 = 𝑥𝑖(𝑡 + 1)/

𝑡𝑒𝑥𝑡{𝑖𝑓 } 𝑓(𝑥𝑖(𝑡 + 1))  <  𝑓(𝑝𝑖) /𝑡𝑒𝑥𝑡{ 𝑡ℎ𝑒𝑛 } 𝑝𝑖 =

 𝑥𝑖(𝑡 + 1)𝑖𝑓 𝑓(𝑥𝑖(𝑡 + 1)) < 𝑓(𝑝𝑖) 𝑡ℎ𝑒𝑛 𝑝𝑖 = 𝑥𝑖(𝑡 +

1)                          (3) 

               2.2.4: Global Best Update 

 𝑖𝑓 𝑓(𝑝𝑖) < 𝑓(𝑔) 𝑡ℎ𝑒𝑛 𝑔 = 𝑝𝑖\𝑡𝑒𝑥𝑡{𝑖𝑓 }𝑓(𝑝𝑖) <
 𝑓(𝑔)\𝑡𝑒𝑥𝑡{ 𝑡ℎ𝑒𝑛 }𝑔 =  𝑝𝑖   𝑖𝑓 𝑓(𝑝𝑖) < 𝑓(𝑔) 𝑡ℎ𝑒𝑛 𝑔 =

𝑝𝑖                 (4) 

 

Fig 3: Graph representation of PSO algorithm 

 

Figure 3 graph helps to visualize how particles in the PSO 

algorithm interact with their personal best positions and the global 

best position. We have generated figure 3 in python where node 

P0-P4 represents particles and Pb0- Pb4 represents personal best 

positions G is global best position and each particle tries to move 

related best positons indicated by arrows. In this paper we have 

implemented PSO, TMPSO, MOPSO and Adaptive PSO for load 

balancing and resource allocation for container based environment. 

Traditional PSO uses container resource allocation with most 

optimized solution, while TMPSO (Two Stage Multi option PSO 

has two steps (I) VM Selection (ii) VM Placement.VM selection 

uses first fit strategy while VM placement uses PSO operations to 

place the VM, While Adaptive PSO and MOPSO (Multi Objective 

Parallel Particle swarm optimization) uses combination of parallel 

PSO with micro service architecture for various requirement such 

as Computing storage, memory, failure rate etc.). We have also 

compared PSO, TMPSO with  
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Table 2: Comparison of various PSO based algorithms 

 

 

 

  

Algorithm Name Usage 

 

Parameters Result Findings Tools Used 

Standard PSO [1] Resource allocation, 
load balancing 

Inertia weight, 
cognitive and social 

coefficients 

Basic optimization, 
good convergence 

speed 

Effective for simple 
problems, struggles 

with complex 

landscapes 
 

MATLAB, Python, 
C++ 

Two-Memory PSO 

(TMPSO) [2] 

Improved resource 

management 

Inertia weight, 

cognitive and social 
coefficients 

Enhanced 

optimization, faster 
convergence 

Better memory  

utilization, more 
efficient than standard 

PSO 

 

MATLAB, Python, 

Apache Bench 

Adaptive PSO [3] Scalability, fault 

tolerance 

Adaptive control 

parameters, learning 

rates 

Highly scalable, 

robust against faults 

Balances performance 

and resource use, 

requires dynamic 
adjustment 

 

MATLAB, Python, 

Java 

Multi-Objective PSO 
(MOPSO) [4] 

Handling multiple 
objectives 

Multiple objective 
functions 

Efficient multi-
objective 

optimization, diverse 

solutions 

High efficiency in 
multi-objective 

scenarios, suitable for 

complex problems 
 

MATLAB, Python, R 

Hierarchical PSO 

(HPSO) [5] 

Task scheduling, data 

clustering 

Hierarchical 

structure, social 
coefficients 

Improved 

convergence, better 
resource utilization 

Suitable for 

hierarchical problems, 
efficient clustering 

 

MATLAB, Python, 

Java 

Cooperative PSO 

(CPSO) [6] 

Enhanced 

collaboration among 

particles 

Cooperative 

parameters, social 

coefficients 

Better convergence, 

enhanced 

optimization 

Effective for 

problems requiring 

cooperation, improves 
overall performance 

 

MATLAB, Python 

Discrete PSO (DPSO) 
[7] 

Task scheduling, data 
clustering 

Position and velocity 
in discrete space 

Efficient task 
scheduling, effective 

clustering 

Suitable for discrete 
problems, limited by 

problem size 

 

MATLAB, Python, 
C++ 

Quantum-behaved PSO 

(QPSO) [8] 

Security optimization, 

energy efficiency 

Quantum potential 

well, particle position 

High security, low 

energy consumption 

High efficiency in 

specific applications, 

requires careful 
tuning 

 

MATLAB, Python, 

C# 

Hybrid PSO [9] Job-shop scheduling 
problem 

Combination of PSO 
and other algorithms' 

parameters 

Improved 
convergence, better 

resource utilization 

Better performance in 
complex scenarios, 

more computationally 

intensive 
 

MATLAB, Python, 
Java 

Dynamic Multi-Swarm 

PSO (DMS-PSO) [10] 

Dynamic resource 

allocation 

Dynamic parameters, 

swarm division 

Responsive to 

changing 
environment, 

efficient allocation 

Adapts well to 

changing conditions, 
can be complex to 

implement 

 

MATLAB, Python, R 

Opposition-based 

Learning PSO (OBL-

PSO) [11] 

Global optimization Opposition-based 

learning parameters 

Enhanced global 

search capability, 

faster convergence 

Balances exploration 

and exploitation, 

improves overall 
optimization 

efficiency 

 

MATLAB, Python, 

C++ 

Chaotic PSO (CPSO) 

[12] 

Resource allocation, 

load balancing 

Chaotic sequences, 

acceleration 

coefficients 

Improved 

convergence, better 

resource utilization 

Utilizes chaos theory 

for optimization, can 

be more effective for 
complex landscapes 

 

MATLAB, Python, 

Java 

Constriction Factor PSO 
(CF-PSO) [13] 

Resource allocation, 
load balancing 

Constriction factor, 
cognitive and social 

coefficients 

Stable convergence, 
avoids premature 

convergence 

Improved stability 
and convergence, 

effective for a wide 

range of optimization 
problems 

 

 

MATLAB, Python, 
C++ 
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Adaptive PSO, adaptive PSO adapts the global best position and 

its balances the performance, resource use, but it requires higher 

adjustment due to dynamic nature.  

3.  Proposed Model And Experimental Setup 

3.1. Proposed Model: 

 

Fig 4: Proposed Model for Experimental setup 

Table 3:  Average Resource Utilization, CPU and Memory 

Utilization 

Container 

Name 
CPU Usage Memory Usage 

Total Resource 

Usage 

PSO 50.93 100.18 51.86 

TMPSO 55.85 105.31 56.71 

MOPSO 60.22 111.9 60.45 

PSO2 50 104.09 50 

MOPSO2 60.24 116.33 60.49 

 

Resource Utilization: Percentage of resources (CPU, memory, etc.) 

used over time. 

 

CPU Usage: Percentage of CPU used over time. 

 

Memory Usage: Amount of memory used over time. 

 

Load Balancing: Effectiveness of load distribution over time 

demagnetizing factor 

 
 

  
   

We have performed execution of request on each container for 100 

times on 5 different containers where PSO and MOPSO requires 2 

containers for the given load data, while TMPSO requires only 1 

container for same operations. 

 

 

Figure 5: Resource Utilization, CPU Usage, Memory Usage, and 

Load Balancing using PSO algorithms. 

Table 3 shows average CPU and memory usage also total resource 

utilization percentage, we can see the effect of load balancing using 

these three algorithms in figure 4,5,6, and 7 while figure 8 shows 

load balancing over a time PSO based algorithms have better load 

balancing output compare to other heuristic algorithms.  

 

  

Figure 6:  CPU Usage in Docker 

Container 

Figure 7:  Memory Utilization in 

Docker Container 

Figure 5,6 and 7 shows that Simple PSO requires less memory and 

CPU utilization compare to other variants but over a time for better 

load balancing results are produced by MOPSO and Adaptive 

PSO, initially they require more resources but later on they provide 

better performance compare to PSO and TMPSO. 

 

  

Figure 8: Load balancing 

Effectiveness over Time 

Figure 9: Load balancing 

Effectiveness over Time 

 

 

Figure 10: CPU Load Comparison using PSO Algorithm (PSO, 

TMPSO, and Adaptive PSO). 
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4. Conclusion and Future Work 

4.1. Conclusions 

Container provides light weight virtualization and has better 

performance over traditional VMs; to analyse load balancing for 

each container, we need to define a metric that measures the 

effectiveness of load distribution. Load balancing metrics can 

include the standard deviation of CPU and memory usage across 

containers, which indicates how evenly the load is distributed. 

Since we already have hypothetical data for resource utilization, 

CPU usage, and memory usage, we can use this data to calculate 

load balancing effectiveness. We have followed below steps.  

1. Calculate the standard deviation of CPU and memory usage 

across containers over time. 

2. Plot these standard deviations to visualize load balancing 

effectiveness. 

Based on the comparative analysis in Figure 8 , Figure 9 and Figure 

11 of PSO, TMPSO, MOPSO, and Adaptive PSO algorithms, PSO 

demonstrated the best overall performance in terms of CPU load, 

memory usage, and execution time for the given single-objective 

problem. With an average CPU load of 23.46%, memory usage of 

61.73 MB, and execution time of 77.04 seconds, PSO's simplicity 

resulted in efficient resource utilization and quick convergence. 

TMPSO, designed for dynamic environments, exhibited the 

highest average CPU load of 49.66%, memory usage of 74.83 MB, 

and execution time of 84.9 seconds, indicating significant 

computational overhead and suboptimal performance in this static, 

single-objective context. 

 

 

 

 

 

Fig. 11: Initial and balanced comparison of PSO based 

algorithms. (PSO, TMPSO, and Adaptive PSO). 

 

 

Adaptive PSO showed balanced resource usage with an average 

CPU load of 26.43%, memory usage of 63.22 MB, and execution 

time of 77.93 seconds, benefiting from dynamic load distribution 

and efficient resource allocation. While MOPSO was not directly 

compared in the detailed data, it is generally known for higher 

resource consumption due to its multi-objective optimization 

focus, which may not be justified in single-objective problems. 

Overall, PSO's ease of tuning and well-understood parameters 

make it ideal for simple optimization tasks, while Adaptive PSO 

offers robust performance in dynamic scenarios. TMPSO's 

complexity may not provide significant advantages in static 

Table 4: Comparative Analysis of PSO, TMPSO and Adaptive PSO 

 

Container Algorithm CPU Load  Memory Usage (MB) Execution Time (Sec.) 

1 PSO 23.5655 61.78275 77.06965 

2 PSO 23.40568 61.70284 77.0217 

3 PSO 23.3991 61.69955 77.01973 

4 PSO 23.45902 61.72951 77.03771 

5 PSO 23.46109 61.73055 77.03833 

Average PSO 23.46 61.73 77.04 

1 TMPSO 50.18283 75.09142 85.05485 

2 TMPSO 49.44382 74.72191 84.83315 

3 TMPSO 49.27857 74.63929 84.78357 

4 TMPSO 49.75902 74.87951 84.92771 

5 TMPSO 49.61538 74.80769 84.88462 

Average TMPSO 49.66 74.83 84.9 

1 Adaptive PSO 25.99327 62.99663 77.79798 

2 Adaptive PSO 26.3002 63.1501 77.89006 

3 Adaptive PSO 26.2197 63.10985 77.86591 

4 Adaptive PSO 26.78923 63.39462 78.03677 

5 Adaptive PSO 26.87113 63.43557 78.06134 

Average Adaptive PSO 26.43 63.22 77.93 
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environments, and MOPSO should be reserved for complex, multi-

objective tasks. 

 

4.2. Future Work 

In future we will try to implement more heuristic based algorithms 

for efficient resource utilization with less CPU time and memory 

requirement, above comparison shows that PSO based algorithms 

have effective mechanism for load balancing and container 

scheduling. More classification methods can be combined with 

PSO based algorithm to solve load balancing and resource 

allocation problem in container-based architecture. 
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