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Abstract: Computational loads of Ensemble prediction models (EPMs) are discussed in this paper with a special emphasis on their 

carbon footprints or carbon emissions. It is purposefully carried out to determine and reduce the carbon emissions caused by EPMs for 

forecasting Agricultural product prices (APP). Random Forest (RF) and Gradient Boosting (GBR), as well as combinations of both with 

an adaptive weighted strategy, were included in the experimental study that assessed energy consumption and carbon emissions of EPMs. 

Carbon emissions were significantly reduced while maintaining prediction accuracy through optimising these models on CPU and T4 

GPU platforms. For instance, for optimized RF models on CPU; there was a decline in carbon emission from 3.576e-07 kgCO2e to 1.793e-

07 kgCO2e, while Mean Squared Error (MSE) improved from 3.014 to 2.189 respectively. Similarly, after optimization, GBR models on 

GPU no longer changed their carbon footprint but changed MSE significantly. The findings indicated that it is possible to mitigate the 

carbon output without affecting the accuracy of predictions using hyperparameter optimization based EPM. 
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1. Introduction 

Accurate price forecasts are important in the agricultural 

industry, shaping decisions from farm to market. Popular 

forecasting models such as Ensemble prediction models 

(EPMs) have been preferred by many for APP due to 

their reliability and high accuracy. However, they come 

with computational costs resulting in significant energy 

consumption contributing to global warming. The 

objective of this paper is to explore approaches for 

assessing and mitigating the carbon intensity of EPMs so 

as to make them more environmentally sustainable. 

1.1 Ensemble Prediction Model 

It compiles predictions from several basic prediction 

models to create one single predicted output. The 

mathematical formulation of an EPM can be illustrated 

by the equation: Let {h1(x),h2(x),…,hM(x)} be M base 

prediction models, where  hi(x) represents the prediction 

of the ith  model for an input x The final ensemble 

prediction y^(x) is given by:  

y^(x)=f(h1(x),h2(x),…,hM(x))  where ‘f’ is a function 

that combines the predictions of the base models. The 

specific form of ‘f ‘depends on the type of ensemble 

method used.  These ensemble methods falls into three 

common types: A popular example of bagging is 

Random Forests. What bagging does is generate multiple 

versions of a predictor by training on different random 

subsets of the training data and then aggregates their 

predictions. 

• Popular boosting algorithms include AdaBoost, 

Gradient Boosting Machines (GBM), and XGBoost. 

Boosting is an ensemble method that sequentially 

trains models, each correcting the errors of its 

predecessor. 

• Stacking is an ensemble method that combines 

multiple models by using another model (meta-

learner) to make the final prediction and learns how 

to best combine the base models. 

1.2 Measuring Carbon Intensity 

The following methods are used for measuring the 

carbon intensity of EPMs: 

• Monitoring CPU/GPU Usage: Done using 

system performance tools; 

• Power Consumption: Kilowatt hour (kWh) 

measured using power meters or estimated from 

hardware specifications; 

• Execution Time: The total time taken by the 

model to run predictions. 

1.3 Carbon Emission Factors 

Energy consumption data is transformed into carbon 

emissions by employing regional specific emission 

factors (kg CO₂e  per kWh), which consider the local 

energy mix.  

This can be represented in equation 1.:  

1*Ph.D Research Scholar, Periyar University, Salem- 11. Email: 

rrcspu@gmail.com  
2Assistant Professor, Periyar University, Salem- 11. Email: 

rrcspu@gmail.com 

* Corresponding Author: R. Rathipriya 

*Email: rathipriyar@gmail.com 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 776–781  |  777 

𝐶𝑎𝑟𝑏𝑜𝑛 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑘𝑔 𝐶𝑂2𝑒 =

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑘𝑤ℎ) ×

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑘𝑔 𝐶𝑂2𝑒 𝑝𝑒𝑟 𝑘𝑤ℎ) ----------(1) 

1.4 Reducing Carbon Intensity using Model 

Optimization Techniques 

• Algorithmic Improvements: This approach helps 

to reduce the computational complexity of the 

algorithm. 

• Efficient Coding Practices: Implementing code 

that avoids unnecessary computations. 

• Model Pruning: Reducing model size by removing 

excessive elements while maintaining the same 

level of performance. 

1.5 Hardware and Infrastructure 

• Efficient Hardware: The use of energy-efficient 

hardware, such as low-power CPUs and GPUs. 

• Cloud Computing: Using cloud services that rely 

on renewable energy sources and offer expandable 

computer resources.  

• Edge Computing: Placing models on edge devices 

to minimize data transfer and central processing 

demand. 

1.6 Scheduling and Workload Management 

• Task Scheduling: Executing computational 

problems when less power is required during off 

peak periods. 

• Dynamic Scaling: Changing computing power 

based on workload prevents oversupplying. 

The upcoming sections of this work are prepared as 

follows: Section 2 delivers essential background 

information. Section 3 outlines the proposed research 

work, and Section 4 explores the results of the proposed 

work and engages in detailed discussions of it. In 

conclusion, Section 5 presents a comprehensive study of 

this work. 

2 Review Literature 

EPMs aggregate the outputs of several base models to 

ensure improvement in prediction accuracy and 

robustness. RF and GBR are the most applied techniques 

in agricultural forecasting, since they turn out to be very 

efficient for treating large datasets with complex 

nonlinear relationships. Research works of Breiman, 

2001, and Friedman, 2001 showed that RF and GBR 

work very well for different agriculture predictive tasks. 

Another important factor in improving model 

performance is the optimization of the hyperparameters 

of these models. Much research has focused on methods 

like grid search, random search, and Bayesian 

optimization. Bergstra and Bengio, 2012, demonstrated 

that random search often proves to be more efficient than 

grid search, while Snoek et al., 2012 indicated that 

Bayesian optimization represents a principled way to 

find the optimal hyperparameters. These optimization 

techniques are accordingly of crucial importance to 

ensure both accuracy and computational efficiency for 

EPM methods. 

Training and deployment for EPMs are very 

computationally intensive; hence, they contribute 

significantly to energy usage and carbon emission. 

According to Strubell et al. (2019), carbon emissions 

from machine learning models have been on the rise. 

Henderson et al. (2020) showed that it is also becoming 

ever more urgent to develop sustainable practice 

methods that would be in a position to measure and then 

reduce energy use by these models. Some research on the 

carbon footprint of machine learning models has noted 

the use of energy-efficient hardware such as GPUs and 

TPUs, providing higher performance per watt than 

traditional CPUs. In addition, efficient techniques such 

as model pruning, scaling, and efficient training 

algorithms reduce energy consumption by up to 100-fold 

without compromising model accuracy (Han et al., 2015; 

Jacob et al., 2018). 

Sustainable and Green AI works on the conservation of 

the environment within the realms of Artificial 

Intelligence and Machine Learning. It deals with the 

consumptions of energy and the toll on the environment 

from AI-related technologies, not limited to data centers, 

machine learning algorithms, and the training of models 

itself (Rey 2024, Huertas-García 2023). This includes the 

use of machine learning to speed up processes involved 

in establishing a circular economy by developing 

environmentally sensitive machine learning models for 

use in industries, and an application of AI in the real-

time monitoring of territory and environmental resources 

Huertas-García 2022. Other research investigates how 

AutoML influences energy consumption and proposes 

strategies through which improving the energy efficiency 

of computational processes involved within AutoML can 

be achieved Castellanos-Nieves 2023; Rey 2024; 

Tornede 2021. Specifically, these very frameworks and 

methodologies will contribute to an extended field of 

Green AI, supporting the development of 

environmentally friendly AI and machine learning 

systems. 

According to the literature, EPM optimization should not 

be limited to predictive accuracy but also include energy 

efficiency and carbon emissions reduction. While RF and 

GBR proved efficient for agricultural forecasting, their 

computational requirements should not come at the 

expense of the environment. Green AI can thus be 

attained through not only hyperparameter tuning but also 

by fusing with energy-efficient hardware. 
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3.  Proposed Work 

3.1 Design Goal and Problem Statement 

The main objective of this study is to reduce the 

computation complexity inherent in ensemble prediction 

models used for agricultural product price forecasting in 

order to reduce energy consumption and therefore carbon 

emission without jeopardizing the accuracy of the 

forecast. So far, EPMs have been reliable models 

compared with base models used today in agricultural 

price forecasting; however, their large energy 

consumption and carbon footprint make them 

unsustainable in the long term. 

This, therefore, requires optimization strategies that 

reduce computational complexity without reducing 

EPMs’ predictive performance. This includes 

quantifying current computational demands, using 

hyperparameter optimization methods, and evaluating 

their impact on energy efficiency and prediction 

accuracy. The goal of this work is thus to establish 

scalable and sustainable practices for developing and 

using EPMs in agricultural economics. 

3.2 Optimizing Hyperparameters in Ensemble 

Prediction Models for Agricultural Product Price 

Forecasting 

First, different ensemble prediction models such as 

Random Forest (RF), Gradient Boosting (GBR) and 

Ensemble of both using adaptive weighted strategy are 

initialized. Initial hyperparameter settings for these 

models are defined. Functions are developed to calculate 

the mean squared error (MSE), which measures how 

accurate the predictions are, and to calculate carbon 

emissions based on models' energy consumption, to 

understand their environmental impact. The models are 

optimized by testing different hyperparameters to find 

the best settings that result in the lowest MSE. This 

process is repeated for each model until the best 

performance is achieved. After optimization, the energy 

consumption of the models is measured on CPU and 

GPU platforms. Using this energy consumption data, 

carbon emissions are calculated. Finally, the optimized 

models are evaluated by comparing their prediction 

accuracy and carbon emissions, highlighting 

improvements in efficiency and sustainability. The 

detailed steps of the proposed work are given in 

Pseudocode 1. 

Pseudocode 1: Agri-Eco Predict: Optimizing EPMs for Agricultural Product Price Forecasting 

Step 1: Initialize models: RF (Random Forest), GBR (Gradient Boosting), Ensemble model 

               Initialize hyperparameters: RF_params, GBR_params 

Step 2:  function calculate_MSE(y_true, y_pred): 

             MSE = (1/N) * sum((y_true - y_pred)^2) 

              return MSE 

             function calculate_carbon_emissions(energy_consumption): 

             carbon_emissions = energy_consumption * carbon_factor 

             return carbon_emissions 

Step 3:  for each model in [RF, GBR, Ensemble]: 

              best_MSE = infinity 

    best_hyperparameters = None 

    for hyperparameters in model.hyperparameter_space: 

        model.set_params(hyperparameters) 

        model.train(training_data, training_labels) 

        predictions = model.predict(validation_data) 

        MSE = calculate_MSE(validation_labels, predictions) 

        if MSE < best_MSE: 

            best_MSE = MSE 

            best_hyperparameters = hyperparameters 

        model.set_params(best_hyperparameters) 

Step 4: energy_consumption_CPU = measure_energy_CPU(model, data) 

               energy_consumption_GPU = measure_energy_GPU(model, data) 

 Step 5: carbon_emissions_CPU = calculate_carbon_emissions(energy_consumption_CPU) 

               carbon_emissions_GPU = calculate_carbon_emissions(energy_consumption_GPU) 

Step 6:  for each platform in [CPU, GPU]: 

    for each model in [RF, GBR, Ensemble]: 

        model.train(training_data, training_labels) 

        predictions = model.predict(test_data) 
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        MSE = calculate_MSE(test_labels, predictions) 

        if platform == CPU: 

            energy_consumption = measure_energy_CPU(model, test_data) 

        else: 

            energy_consumption = measure_energy_GPU(model, test_data) 

            carbon_emissions = calculate_carbon_emissions(energy_consumption) 

 Step 7:  Return ({platform} {model.name},{MSE}, {carbon_emissions}) as output 

Note:  

Equations: 

Mean Squared Error (MSE): MSE = (1/N) * Σ(y_true - y_pred)^2 

Carbon Emissions: carbon_emissions = energy_consumption * carbon_factor 

Where,   

N: Number of data points 

carbon_factor: Conversion factor from energy consumption to carbon emissions 

 

4. Results and discussions 

Data were sourced from data.gov.in and pre-processed 

for EPMs modeling. It includes predictor variables such 

as year, average rainfall, and month, and, with the 

target variable being crop’s wholesale price index 

value. The crop chosen for this study is paddy. 

Addressing the missing value problem, crucial for 

accurate model outcomes, appropriate imputation 

techniques were applied to replace missing values. 

Table 1 presents the hyperparameter setting of RF and 

GBR models. 

 

 

 

Table 1: Hyperparameters Details for EPM 

Regression Model Hyperparameters Optimal Values 

Random Forest Regression (RFR) 
 

n_estimators Integer: 25 

max_depth Integer: 10 

GBoost Regression(GBR) 
 

learning_rate Float: 0.3 

max_depth Integer:10 

 

Table 2: Comparative summary of the initial and optimized EPMs (CPU) 

Model Initial Mean 

Squared Error 

(MSE) 

Initial Carbon 

Emissions (kg CO2e) 

Optimized Mean 

Squared Error (MSE) 

Optimized Carbon 

Emissions (kg CO2e) 

Random Forest 

(RF) 

3.014 8.5e-07 2.189 3.8e-07 

Gradient 

Boosting (GBR) 

3.177 2.9e-07 3.205 2.9e-07 

Ensemble (RF + 

GBR) 

2.962 3.2e-07 2.676 3.1e-07 

 

Table 2 presents a clear comparison between the initial 

and optimized models run CPU platform for Mean 

Squared Error (MSE) and Carbon Emissions. It is 

observed that there is an improvement MSE reduction 

and carbon emission reduction for all models. Table 3 

shows a clear comparison between the initial and 

optimized models run T4 GPU platform for Mean 

Squared Error (MSE) and Carbon Emissions. It is noted 

that there is an improvement MSE reduction and carbon 

emission reduction for all models. Both CPU and GPU 

platforms show improvements in the reduction of MSE 

and Carbon emissions after hyperparameter optimization 
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for all models. The extension of improvement differ 

between CPU and T4 GPU platforms, with the T4 GPU 

platforms showing more significant improvements in 

MSE. 

 

Table 3: Comparative summary of the initial and optimized EPMs (T4 GPU) 

Model Initial Mean 

Squared Error 

(MSE) 

Initial Carbon 

Emissions (kg CO2e) 

Optimized Mean 

Squared Error (MSE) 

Optimized Carbon 

Emissions (kg CO2e) 

Random Forest 

(RF) 

3.014 3.6e-07 2.189 1.8e-07 

Gradient 

Boosting (GBR) 

3.177 2.4e-07 3.205 1.9e-07 

Ensemble (RF + 

GBR) 

2.962 1.9e-07 2.676 1.6e-07 

 

4.1 Observations and Discussions 

The following sub-section offers an elaborate 

examination of the outcomes derived from the research, 

centering on the influence of hyperparameter 

optimization on model accuracy and carbon footprint. 

The research was carried out to assess the efficiency of 

ensemble prediction models (EPMs) when operating on 

both CPU and T4 GPU systems. Its objective was to 

unveil the predictive capabilities and sustainability of 

these models in forecasting APP. The results underscore 

enhancements in predictive accuracy and diminished 

carbon emissions. The subsequent points encapsulate the 

main findings: 

4.1.1. Model Accuracy Improvement (MSE Reduction): 

• CPU Models: Reduction in mean-squared error upon 

optimization for all models, RF, GBR, and Ensemble, 

proves an increase in predictive performance. 

• T4 GPU Models: Although there has been an surge 

in MSE for GBR upon optimization, RF and 

Ensemble models depict a reduced MSE, which 

reflects that the model has generalized better. 

4.1.2. Carbon Emissions Reduction: 

• CPU Models: Optimised models give off less CO2 

emissions than their original counter-parts. Most 

conspicuously, the GBR model represents the largest 

drop in emissions, hence ascertaining efficiency with 

optimisation. 

• T4 GPU Models: Although there are variations of 

carbon emission amongst models, on the whole 

computation on the GPU platform seems to retain a 

low emission; hence, the environment-friendly side 

over the CPU. 

4.1.3. Platform-dependent Observations: 

• CPU vs. T4 GPU:  T4 GPU generally generates 

fewer CO2 emissions per computation compared to a 

CPU, making it more relevant to green AI 

development. 

• Tasks that are model-specific: These optimization 

results are not consistent; some of the models 

tendencies in their MSE values surprisingly change. 

This calls for progressive monitoring and adjustments 

in the ways of optimization so that models either 

remain or improve in performance. 

4.1.4. Efficiency and Sustainability: 

• Enhanced optimization of EPMs would not only lead 

to greater accuracy of the models, but also to 

sustainability through lesser energy consumption and 

lower carbon footprint. 

• As such, efficient strategies shall be implemented for 

training and deploying models that help minimize the 

environmental impact while maximizing 

computational performance. 

5. Conclusion: 

This research work explored the computational loads and 

carbon emissions of Ensemble Prediction Models 

(EPMs) for predicting agricultural product prices (APP). 

The empirical experiments were conducted using 

Random Forest (RF), Gradient Boosting (GBR), and 

their adaptive weighted ensemble model. The energy 

usage and carbon footprints of these EPMs on both CPU 

and T4 GPU platforms were evaluated using crop 

dataset. These results highlighted the potential to 

decrease carbon emissions and enhance model 

performance by fine-tuning hyperparameters in these 

models. This paves the way to develop sustainable AI 

applications in agricultural prediction. To move forward 

this research, it is recommended to explore the 

integration of advanced hardware such as TPUs, 

optimize multi-objective functions for accuracy and 

carbon footprint reduction, and evaluate the long-term 

environmental impacts of optimized EPMs across 

various sectors beyond agriculture. 
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