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Abstract: In the current study, the influences of the numerical study ofthermal conductivity in the presence of non-uniform heat sources 

or sinks and MHD (magnetic field)motivateus to examine the impact of thermal conductivity characteristics of Maxwell fluid over a porous 

stretching sheet. We delve into various parameter effects through graphical representations.The presence of a transverse magnetic field in 

an incompressible, electrically conducting fluid causes the velocity field to decrease, causing the temperature field to rise. The results 

reveal that temperature rises for positive values of the heat source/sink parameters and falls for negative values. Therefore, non-uniform 

heat sinks are preferable for cooling purposes. 

Keywords: Stretching surface, UCM fluid, Magnetic field, heat generation/absorption, porous medium.  

1 Introduction 

Studying flow induced by a stretching surface in a still 

fluid and subsequent heat transfer is crucial for various 

technological applications, such as plastic sheet extrusion, 

wire production, papermaking, crystal growth, and glass 

blowing. These processes require bringing molten liquid 

into a cooling system and occasionally stretching it, as in 

polymer extrusion, to cool it. Achieving the desired fluid 

properties in such processes is based on cooling rate and 

stretching rate. Selecting the right cooling liquid is 

essential as it directly affects the cooling rate, and optimal 

stretching must be maintained to avoid unwanted property 

changes. Therefore, The major goal of this study is to have 

a thorough comprehension of flow heat transfer 

characteristics. 

In the realm of numerous applications similar to the 

process of polymer extrusion, Crane [1] pioneered the 

analytical examination of boundary layer flow caused by 

a stretching sheet. He assumed that the sheet's velocity 

varied linearly with distance from slit. In the context of 

the Navier-Stokes equations, Crane's solution for the flow 

caused by a stretched sheet is an important illustration of 

an exact solution, and its singularity has long been proved. 

Many authors have since explored the presence and 

uniqueness of solutions for stretching sheet-induced flow, 

as documented by Rajagopal and McLeod [2] and Troy et 

al [3]. McLeod and Rajagopal's analytical investigation 

sheds light on the treatment of infinity when solving 

ordinary differential equationsin bounded domains. 

More recently, several researchers have extended Crane's 

work to encompass Newtonian and non-Newtonian 

boundary layer flows under differentphysical conditions. 

When examining heat transfer from an isothermal 

stretched sheet, Gupta and Gupta [4] took suction/blowing 

effects into account. Gupta and Gupta's study was 

developed by Chen and Char [5] to handle non-isothermal 

stretching sheets with suction and blowing. Using the 

power law fluctuation of surface temperature, Grubka, 

and Bobba [6]conducted heat transfer investigations, 

while Chiam [7] examined magnetohydrodynamic heat 

transfer from a non-isothermal stretched sheet. 

The impact of the heat source/sink phenomenon is a 

crucial aspect deserving careful attention, as it wields a 

significant effect on the heat transfer characteristics 

within exothermic processes. Numerous researchers have 

explored heat transfer phenomena by examining either a 

constant heat source/sink or one that varies with 

temperature, as seen in the works of Rollins and 

Vajravelu[8]. Furthermore Emad[9] expanded on this by 

considering the impactof a non-uniform heat source/sink, 

which varies in both space and temperature, on heat 

transfer. 

Anon-Newtonian 2nd-grade fluid proves inadequate in 

yielding meaningful outcomes when dealing with highly 

elastic fluids like polymer melts, especially at high 

Deborah numbers (See Hayat et al. [10, 11]. 

Consequently, the importanceof the findings presented in 

the aforementioned studies is somewhat constrained, 

particularly in the context of the polymer industry. It is 
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essential to use more realistic viscoelastic fluid models, 

such as the Upper-Convected Maxwell model or the 

Oldroyd-B model, in the study to give the theoretical 

conclusions industrial significance. As mentioned by 

Sadeghy et al. [12], and Hayat et al. [13] These 2 fluid 

models were recently applied to examine the viscoelastic 

fluids flow through both stretching” and non-stretched 

surfaces. However, heat transfer effects were not taken 

into account. 

Several researchers like Sadeghy[14], Alizadeh-Pahlavan 

et al. [15, 18], Renardy[16], Rao and Rajagopal [17], 

Aliakbar et al. [19,20],etc.., have all explored the UCM 

fluids using the various analytical and numericalmethods 

with or without considering the heat transfer effects.  

However, the influence of thermal conductivity in the 

incidence of non-uniform heat sources or sinks motivates 

us to examine the impact of thermal conductivity features 

of Maxwell fluid across a porous stretching sheet. We 

delve into various parameter effects through graphical 

representations. 

2 Mathematical Formulation 

The flow is caused due to “stretching of a porous sheet”, 

that drags from a thin slit. Two forces of equal magnitude 

but in opposite directions are applied to the sheet in a way 

that stretches the wall while keeping its starting point 

unmovable. 

 

The equations governing the flow problem (Refs. 

Renardy[12],Sadeghy et.al[16], Alizadeh-Pahlavan and 

Sadeghy[15]) are as mentioned below. 

𝑢𝑥 + 𝑢𝑦 = 0     

 (1)  

𝑢𝑢𝑥 + 𝑣𝑢𝑦 + 𝜆[𝑢2𝑢𝑥𝑥 + 𝑣2𝑢𝑦𝑦 + 2𝑢𝑣𝑢𝑥𝑦] = 𝜐𝑢𝑦𝑦 −

𝜎𝐵0
2

𝜌
𝑢 −

𝜈

𝑘′
𝑢,(2) 

𝑢𝑇𝑥 + 𝑣𝑇𝑦 =
𝑘

𝜌𝐶𝑝
𝑇𝑦𝑦 +

𝑞‴

𝜌𝐶𝑝
+

𝜇

𝜌𝐶𝑝
𝑢𝑦

2

  
  (3)

 

where “u and vindicate the velocity components along x 

and y directions respectively, tdenotes the temperature of 

the fluid, 𝜎 presents the density, υrepresents the kinematic 

viscosity, 𝑘′ denotes the porosity parameter, Cp signifies 

the specific heat at constant pressure, 𝑘indicates the 

thermal conductivity of the liquid far away from the sheet, 

𝐵0, denotes the strength of the magnetic field, 𝜐represents 

the inematic viscosity of the fluid and𝜆 denotes the 

relaxation time Parameter of the fluid.  The model of the 

non-uniform heat source/sink, 𝑞‴, is as follows: (see 

Chiam[7]) 

 𝑞‴ =
𝑘𝑢𝑤(𝑥)

𝑥𝜐
[𝐴 ∗ (𝑇𝑆 − 𝑇0)𝑓′ + (𝑇 − 𝑇0)𝐵 ∗],

   (4) 

where the coefficients A* and B* represent the space-

dependent heat source/sink and temperature-dependent 

properties, respectively. Here, we make a note that the 

scenario in which,𝐴∗ > 0, 𝐵∗ > 0 corresponds to the 

formation of heat on the inside of the system, and that is 

the case in which, 𝐴∗ < 0, 𝐵∗ < 0corresponds to the 

absorption of heat on the inside of the system. 

The boundary conditions are,𝑢 = 𝑏𝑥, 𝑣 = 0, 𝑇 = 𝑇𝑤 =

𝑇∞ + 𝐴 (
𝑥

𝑙
)

2

𝑃𝑆𝑇𝐶𝑎𝑠𝑒 

−𝐾𝑇𝑦 = 𝑄𝑤 = 𝐷 (
𝑥

𝑙
)

2

𝑃𝐻𝐹 𝐶𝑎𝑠𝑒 𝑎𝑡 𝑦 = 0 

𝑢 → 0, 𝑢𝑦 → 0, 𝑇 → 𝑇∞, 𝑎𝑠𝑦 → ∞   

           (5) 

HereA and D indicate the constants, b denotes the 

constantrecognized as the stretching rate, l the 
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characteristic length, Twsignifies the wall temperature and 

𝑇∞represents the constant temperature far away from 

the”sheet.  

The dimensionless parameter are; 

𝑢 = 𝑏𝑥𝑓𝜂(𝜂), 𝑣 = −√𝑏𝛾𝑓(𝜂), 𝑊ℎ𝑒𝑟𝑒𝜂 = √
𝑏

𝛾
𝑦𝜃(𝜂)

=
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞

, 𝑤ℎ𝑒𝑟𝑒𝑇𝑤 − 𝑇∞

= 𝐴 (
𝑥

𝑙
)

2

𝑃𝑆𝑇𝐶𝑎𝑠𝑒 

                            = 𝐷 (
𝑥

𝑙
)

2

𝑃𝐻𝐹𝐶𝑎𝑠𝑒   

  (6)                                                                

where subscript 𝜂 denotes derivative w.r.t𝜂. U& v gratify 

(1). Substituting (6) in (2) and (3) 

𝑓‴ − 𝑀2𝑓′ − (𝑓′)2 + 𝑓″ + 𝛽(2𝑓𝑓′𝑓″ − 𝑓𝑓‴) +

𝑘2𝑓′ = 0,    (7) 

 𝑃𝑟[2𝑓′𝜃 − 𝜃′𝑓] = 𝜃″ + 𝐸𝑐 𝑃𝑟 𝑓″2 + (𝐴∗𝑓′ +

𝐵∗𝜃),     (8) 

 𝑃𝑟[2𝑓′𝑔 − 𝑔′𝑓] = 𝑔″ + 𝐸𝑐 𝑃𝑟 𝑓″2 + (𝐴∗𝑓′ +

𝐵∗𝑔),     (9) 

Equation (5)'s boundary conditions change to 

PST CASE 

     

 (10) 

PHF CASE 

     

 (11) 

𝛽 denotes the elastic parameter, 

𝑘2 represents “the porosity parameter, 

M- presents the magnetic parameter, 

Pr-signifies the Prandtl number, 

Ec- indicates the Eckert number, 

A*- denotes the space temperature-dependent heat 

source/sink 

B*-presents the temperature-dependent heat source/sink”.   

𝜏𝑤 −signifies the shear stress  

Nu- denotes the Nussult number.  These quantities are, 

𝑘2 =
𝛾

𝑏𝑘′,𝑀
2 =

𝜎𝐵0
2

𝑏𝜌
, 𝑃𝑟 =

𝜇𝐶𝑝

𝐾∞
,      𝐸𝑐 =

𝑏2𝑙2

𝐴𝑐𝑝
 

𝜏𝑤 =
𝜏∗

𝜇𝑏𝑥√𝑏 𝛾⁄
= 𝑓𝜂𝜂(0), 𝑊ℎ𝑒𝑟𝑒𝜏∗ = −𝜇 (

𝜕𝑢

𝜕𝑦
)

𝑦=0
 

             (12) 

𝑁𝑢 =
−ℎ

𝑇𝑤−𝑇∞
𝑇𝑦 = {

𝜃𝜂(0)𝑃𝑆𝑇𝐶𝑎𝑠𝑒

1 𝜃(0)𝑃𝐻𝐹𝐶𝑎𝑠𝑒⁄
}  

  (13) 

3 Numerical Solution  

We utilize the highly efficient shooting technique, as 

detailed in references De Boor and Conte [21] and 

Bradshaw and Cebeci [22], in conjunction with a 4th-

order Runge-Kutta integration method to address the 

boundary value issues discussed earlier in the preceding 

section. In the PST and PHF scenarios, we convert the 

nonlinear equations (14) and (15) into five first-order 

ODEs.   

𝑑𝑓0

𝑑𝜂
= 𝑓1, 

𝑑𝑓1

𝑑𝜂
= 𝑓2, 

𝑑𝑓2

𝑑𝜂
=

(𝑓1)2+𝑀2𝑓1−𝑓0𝑓2−2𝛽𝑓0𝑓1𝑓2−𝑘2𝑓′

1−𝛽𝑓0
2 ,   

   (14) 

𝑑𝜃0

𝑑𝜂
= 𝜃1, 

𝑑𝜃1

𝑑𝜂
= 𝑃𝑟[2𝑓1𝜃0 − 𝜃1𝑓0] − Ec 𝑃𝑟 𝑓2

2 + (𝐴 ∗ 𝑓′ + 𝐵 ∗ 𝜃).

  

The boundary conditions (9) then take the form, 

𝑓0(0) = 0, 𝑓1(0) = 1, 𝑓1(∞) = 0, 

𝑓2(0) = 0, 𝜃0(0) = 0, 𝜃0(∞) = 0.   

                         (15)  

Here 𝑓0 = 𝑓(𝜂) and 𝜃0 = 𝜃(𝜂).First finding the missing 

slopes𝑓2(0) and 𝜃1(0) by shooting technique. The 

convergence criteria significantly depend on estimations 

of the firing procedure's initial conditions that are deemed 

to be fairly reliable. The iterative operation will continue 

until the relative variation between the most recent 

iterative values of 𝑓2(0) and the most prior iterative value 

of 𝑓2(0)are equal, with a tolerance of10−6. To get the 

crucial outcome, integrate the resulting ODE using the 4th-

order Runge-Kutta technique after attaining convergence. 

 

4 Results and Discussion 

The results of numerical computations for different 

physical parameters are shown visually in Figures 1 - 11. 

The 4th order Runge-Kutta with shot technique approach 

was used to solve the nonlinear ODEs (7 to 9) subject 

toboundary conditions (5), (9), and (10) numerically. 

Visual representations and a brief description of the 

impact of various parameters on the velocity and 

temperature profiles are provided. 
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Figures 1 & 2depict a variation of M with 𝛽 = 1 on the 

velocity profile. A rise in the Mcorrespondstoa reduction 

of the velocity profile along u and v.The applied 

transverse magnetic field creates Lorentz force drag, 

which reduces velocity.Figures 3 and 4depict the variation 

of 𝛽 with M = 1 on the velocity profile.  A rise in 𝛽is 

observed to declinethe velocity profile along u &v. Figs.5 

and 6 reveal that, the effect of  𝛾with M = 𝛽 = 1 on the 

velocity profile. A rise in 𝛾 corresponds to a risein velocity 

profile along u and v.  

Fig.7(a) & 7(b) reveal “the effectof Pr on the profiles of 

temperature for2 special cases PST and PHF.  As 

Princreases the temperature increases monotonously from 

𝑇𝑠 to 𝑇0. The thermal boundary layer thickness drops 

significantly For high values of Pr, or low thermal 

diffusivity. 

Figures 8(a) and 8(b) depict the impact of Ec on the 

temperature profiles for two unique instances, PHF 

andPST. Ec has the power to raise the fluid's temperature. 

Higher Ec values, then, suggest a thickening of the 

thermal boundary layer. Figs. 9(a) and 9(b) show the 

impact of the space-dependent parameter,  𝐴∗, on the 

temperature profiles for two unique situations, PHF 

andPST. In the PST and PHF cases, the thermal boundary 

layer generates energy that causes the temperature to 

increase in magnitude with raisingvalues of,𝐴∗(> 0)  

whereas for,𝐴∗(< 0)The boundary layer fascinates 

energy that causes the temperature to significantly 

decrease with reducing values of|𝐴∗|.For some negative 

values of 𝐴∗, it is seen in all these plots that there is a heat 

transfer from the boundary layer area to the sheet. 

Figures 10(a) and 10(b) for the PHF and PST instances 

illustrate how the temperature-dependent parameter, 𝐵∗, 

affects heat transport. According to these graphs, energy 

is released for rising values of𝐵∗(> 0)which results in 

temperature increases in PST and PHF situations, but 

energy is absorbed for falling values of𝐵∗(< 0) which 

causes the temperature to fall sharply close to the 

boundary layer. 

Figures 11(aand b)shows that, the effect of porosity 

𝛾with M = 𝛽 = 1 on the temperature profile. When the 

porosity parameter israised, the temperature falls in the 

PST case, while the converse is true in the PHF”case. 
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5 Conclusions 

1. In a viscous,incompressible,electrically 

conducting fluid, the existence of a transverse magnetic 

field causes the velocity field to decrease, leading to a rise 

in the temperature field. 

2. Eckert number measures viscosity. In the 

incidence of viscous dissipation, dimensionless 

temperature increases with fluid heating (Ec> 0) and 

decreases with cooling (E c < 0). Viscous dissipation 

raises thermal boundary layer temperature. 

3. The temperature rises for positive values of 

the heat source/sink parameters and falls for negative 

values. Therefore, non-uniform heat sinks are preferable 

for cooling purposes. 

 

Nomenclature: 

fc               skin friction coefficient    

f                  dimensionless stream function  

h                 dimensionless concentration function 
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k                 thermal conductivity 

M                magnetic parameter  

xNu            local Nusselt number   

Pr               Prandtl number 

Rex            local Reynolds number    

T               temperature of the fluid inside the boundary 

layer    

wT              temperature at the surface of the sheet   

T              ambient temperature 

U free stream velocity          

u,vvelocity component along x- and y-direction      

Greek symbols               

   η            gdimensionless similarity variable 

   μ           dynamic viscosity of the fluid        

  υ           kinematic viscosity of the fluid       

  ψ            stream function 

   α             thermal diffusivity 

   σ             electrical conductivity 

   Ө            dimensionless temperature 

∞  condition at the free stream  

W  condition at the surface 
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