

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 838–850 | 838

Exploring the Limits of Raft's Fault Tolerance: Insights from Simulated

Network Partitions

Kiran Kumar Kondru1*, Saranya Rajiakodi2

Submitted: 03/05/2024 Revised: 16/06/2024 Accepted: 23/06/2024

Abstract: This paper delves into the robustness of the Raft consensus algorithm, particularly focusing on its fault tolerance capabilities

and the challenges it faces under network partitions and node failures. This study provides a comprehensive analysis of Raft's mechanisms

to ensure data consistency across distributed databases. Through detailed UML diagrams followed by simulations, this work effectively

illustrates the leader election algorithmic processes and fault tolerance operations within the Raft. This paper focuses on edge-case failure

scenarios and illustrates them with sequence diagrams and complimented by graphs of results from the discrete event simulation of Raft's

leader election. Using a custom-built Discrete Event Simulator, we explored the space of Raft's lesser-known failure cases, thus

complementing previous studies on consensus mechanisms. This study pushes the limits of Raft's liveness and provides a broader picture

for better understandability.

Keywords: Raft Consensus; Fault Tolerance; Aliveness; Discrete Event Simulation;

I. INTRODUCTION

Modern databases are designed to be distributed in nature

from the get-go, as the liveness of the system depends on

the availability of the database to service. This distributed

nature ensures that even if one of the database servers is out

of service, the other backup servers will pick up and process

requests for applications. Ensuring that all the backup

servers have identical data is the responsibility of the

consensus mechanism employed by these distributed

databases. These consensus modules are usually chosen

from the existing list of consensus protocols, such as

Paxos[1] and Raft[2], which are battle-tested and proven

mathematically for correctness. They are usually state

machine replication protocols that replicate a monotonically

increasing log of commands from the clients to all backup

servers or replicas. These replicas execute commands in the

same sequence from the log, thus achieving the same state

as the entire data store. The state machine, after this

sequential execution of each of the nodes in the cluster, will

have identical information and thus form a single source of

truth for the entire application.

These consensus protocols perform some of the core

functions of a distributed database. To show the importance

of these protocols for databases, we list some databases here

and the type of consensus mechanisms they employ (Fig 1:

Distributed Databases that use Raft and Paxos consensus

mechanisms.).

Databases that use the Raft consensus

• etcd[3]-a key value data store that uses Raft to manage

its highly available replicated log.

• CockroachDB[4]–uses Raft in its replication layer to

maintain data consistency, even when machines fail.

Each data range has its own raft group.

• TiDB [5] - uses Raft with its key value storage engine,

TiKV, to ensure data replication and consistency.

• YugabyteDB uses Raft for DocDB replication.

• MongoDB[6]–uses a variant of the Raft protocol in its

replication sets to ensure data consistency and automatic

failure.

• RabbitMQ [7] uses Raft to implement replicated durable

FIFO queues.

• Neo4j[8] is a graph database that uses Raft to ensure

consistency and safety.

• Influx DB[9] - uses Raft for high availability of its

metadata nodes.

• Splunk[10] used Raft in its Search Head Cluster (SHC)

for consensus.

• Redpanda [11] uses Raft for data replication.

The core functionality of the raft consensus in these

databases is to ensure that all data remain consistent across

the cluster. This is crucial to maintaining the integrity of the

database, particularly in the event of network partitions or

node failures. Therefore, it is imperative that we understand

the fault-tolerant features of Raft and how they contribute

to the robustness of the system.

One of the key fault-tolerant features of Raft is the concept

of log matching, which ensures that if two logs contain an

1*Department of Computer Science, Central University of Tamil Nadu,

Thiruvarur, India

kirankondru@ieee.org
2Department of Computer Science, Central University of Tamil Nadu

Thiruvarur, India, saranya@acad.cutn.ac.in

* Corresponding Author: Kiran Kumar Kondru

*Department of Computer Science, Central University of Tamil Nadu,

Thiruvarur, India

kirankondru@ieee.org

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 838–850 | 839

entry with the same index and term, then the logs are

identical in all entries through the index. This property is

crucial for ensuring consistency across clusters after a

leader changes. Another important aspect is the

commitment to log entries. A log entry is committed when

it is replicated safely on most nodes.

Fig 1: Distributed Databases that use Raft and Paxos consensus mechanisms.

Only committed entries apply to the state machine;

therefore, even if a leader crashes after committing a log

entry, the system can recover and maintain consistency. The

new leader will pick up where the old leader left off,

ensuring that no committed changes are lost. The heartbeat

mechanism in Raft also plays a significant role in fault

tolerance. These periodic messages are sent by the leader to

all followers to maintain authority and prevent new

elections. If followers stop receiving heartbeats, they will

initiate a new election, potentially electing a new leader to

continue their operations. This helps the system to self-heal

in the face of network problems or leader failures,

minimising downtime and maintaining availability.

 Using Raft, these databases can provide strong consistency

guarantees, which are essential for reliable and accurate

applications that require transactions.

As such, in this paper, we examine how fault tolerance

works in raft consensus and how the cluster is not

significantly affected, even when there are failures of the

servers or network partitions. We illustrate this through a

series of UML sequence diagrams explaining the

algorithmic aspects of Raft and various scenarios that lead

to failure situations. We also show how Raft cannot handle

certain corner cases, and we provide alternative solutions to

fix this. We simulated Raft consensus using a discrete event

simulator written in Java. Furthermore, we present and

discuss the results.

II. BACKGROUND

A. Raft Consensus Algorithm

The Raft distributed consensus algorithm, which serves as

the foundation for numerous distributed systems, including

several distributed databases, is a single-leader state

machine replication algorithm. Instead, consensus was

achieved by managing a replicated log across the raft

cluster. When the cluster starts with multiple nodes, one of

them times out and becomes a candidate to become a leader

by seeking votes from other nodes, such as followers. These

follower nodes vote for a candidate with a higher term

number and vote on a first-come-first-serve basis. A term is

a monotonically increasing number that uniquely represents

the leader’s reign. When a follower times out and becomes

a candidate, it first increases its term number. After the

candidate receives the majority vote, it becomes the leader

and sends a message (RPC) called a heartbeat message. This

message informs followers of who the leader is and the term

in which it operates. This process is depicted in the election.

Fig 2: Activity Diagram of Raft Leader Election

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 838–850 | 840

A Raft cluster operates as a single entity, although it may

have many servers. An example is a simple key-value data

store. When a client wants to store or retrieve a value for a

key, it communicates through the leader, although the client

is aware of all IP addresses of the cluster members. The

leader accepts a client’s ‘set' request of a (key, value) pair.

After receiving the command, the leader places this in a log

of every increasing size. This process helps linearize the

various commands from various clients. Once a client's

command is written to the log (disk), this log, with its latest

entries, is replicated exactly across the cluster with the

followers. These followers acknowledge the latest entries of

the replicated log and apply the command in the entries to

their own state machine (data store). After receiving the

majority of the acknowledgements from the followers, the

leader also applies the command in the entry to its own data

store and sends a success request to the respective client.

This process is illustrated in Figure 3.

Fig 3: Activity Diagram for Log Replication in Raft Consensus

B. Attempts to improve Raft's fault tolerance

Several enhancements to Raft fault tolerance have been

proposed in the literature. For example, introducing a

supervisor node and secret sharing can make the Raft

Byzantine fault tolerant without requiring invisible trust

between the nodes[12]. Combining Raft with a reputation

mechanism can help identify and isolate malicious nodes

[13]. Hierarchical Byzantine Fault Tolerance (HBFT) has

also been integrated with Raft to improve its performance

and fault tolerance in large-scale systems [14].

III. RAFT'S FAULT TOLERANCE

The Raft consensus algorithm has many built-in features

that make it live even when there are non-functioning

servers or network link partitions. In the following cases, we

discuss how Raft effectively handles these failure-inducing

scenarios and how it recovers from them.

A. Split Vote

Raft is designed specifically to be tolerant of network node

failures and network partitions. For a leader election, one of

the followers must time out and become a candidate.

However, each node randomly assigns a number to wait.

This random timeout in milliseconds was set between 150

and 300 ms, according to the original Raft paper. This is set

by considering the network delay that naturally occurs.

However, there is a chance that two followers might have

the same or nearby timeouts, and they might wake up

parallel and seek votes, giving rise to a split vote situation.

Figure 4 illustrates this scenario, in which two servers wake

up and try to seek votes simultaneously. An equal number

of followers might vote for the two competing candidates.

This results in two candidates getting equal votes, but no

majority. No leader in this term. However, any of the cluster

servers may timeout and start a new election with a new

term number (term no. 3). Because there is no other

candidate with this high term number, all candidates and

follower nodes vote for this new candidate, and it

subsequently becomes a leader.

B. Fault Tolerance in Log Replication

Raft follows a strict leader-follower architecture, where the

leader has all the power, and the followers replicate the

leader’s commands. Only with the failure of a leader do

followers start the election process by giving a vote.

However, even the way the log is structured and replicated

allows a follower to pick up the commands from the leader

and populate its state machine quickly.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 838–850 | 841

Fig 4: Scenario where during Leader Election, split vote occurs, and Raft recovers from the split vote with another round

of voting.

In Fig 5: Even when the leader fails, because the log is up

to date, any follower can contest and win to become a if the

leader fails, and committed entries are present in the logs of

the majority of followers. Even if a follower becomes a

candidate and then a leader, the cluster remains operational

while maintaining consistency and integrity. This is

possible because of the proper replication of the log. Even

if a follower goes offline and returns, it seeks the most

recent entries in the log. It will inform the leader of the

status of its log and, accordingly, the leader will populate

the followers' log until it is consistent with the leader’s log.

Crashes and network faults can be overcome using this

fault-tolerant design.

IV. RAFT'S FAILURE SCENARIOS

After the text editing was completed, the paper was ready for

the template. Duplicate the template file using the Save As

command and use the naming convention prescribed by the

conference for the name of the paper. In this newly created

file, highlight all the content and import the prepared text

file. You are now ready to style your paper; use the scroll-

down window on the left of the MS Word Formatting

toolbar.

A. Network partitions

There are situations where the Raft cluster is not alive for a

significant portion of the time, and this issue is predicted but

is considered a corner case and ignored for a long time.

However, the Cloudflare[15], [16] incident brought this

issue back to the forefront. The article [17] discussed this

and reproduced the problem through emulation. These

partial network partitions, though covered theoretically, are

not given much importance because of the rarity of such

real-world scenarios occurring in the real world.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 838–850 | 842

Fig 5: Even when the leader fails, because the log is up to date, any follower can contest and win to become a leader.

Here, we will explain a scenario where there is a partial

network failure with a three-node cluster using the sequence

diagram in Fig 6: Non-Transitive Rechability - where

repeated elections happen because of network partition

between two nodes. We assume that the leader election has

already occurred and that a leader exists. When the leader

receives a request from a client, it adds to its log the latest

command as an entity. This log is replicated throughout the

cluster using the AppendEntry RPC command. Obtaining a

majority of AppendEntriesResponse would suffice, but

generally all followers respond positively. Because there are

three nodes in the cluster, the leader only needs one more

vote from Follower1 apart from his own self-vote to commit

the entry to its state machine and respond positively to the

client. If there are any remaining followers who are yet to

respond, the leader retries the AppendEntries command for

all missing log entries of such followers.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 838–850 | 843

Fig 6: Non-Transitive Rechability - where repeated elections happen because of network partition between two nodes

However, in the scenario described in Fig 6: Non-Transitive

Rechability - where repeated elections happen because of

network partition between two nodes, we see that a full

network partition occurs between the leader and follower1.

After a while, follower1 does not receive any heartbeats

from the leader and assumes that the leader is not present.

Follower1 times out and starts the election process by

incrementing the term to two and seeking votes from the

other followers. However, since there is no link between

Follower1 and the leader, RequestVote does not reach the

leader but reaches Follower2. Follower2, seeing the greater

term number and an UpToDate log of Follower1 accepts its

request and votes for Follower2 to become the new leader

of term 2.

When the old leader receives a client request, it attempts

AppendEntries, which only reaches Follower2. However,

Follower2 does not accept the AppendEnries, but sends

back a 'no' answer with the new term number and the id of

the new leader (which is Follower1). This caused the old

leader to descend from its leadership position. However,

after this, it does not receive any heartbeats from the new

leader (aka Follower1), and it breaks and starts a new

election with term 3. This process of repeated elections

continues to occur until the partition is healed. This removes

the operational time of the Raft cluster, as during the leader

election, the entire cluster becomes non-responsive to the

clients.

B. Partial Network Partition

Another type of network partition is possible, in which only

partial communication occurs between a node and the rest

of the Raft cluster. This may be due to a faulty or

misconfigured network device. We illustrate this problem

using a sequence diagram, as shown in the device. In a four-

node cluster, when a client requests a set operation, leader

node 1 responds with an AppendEntries RPC to nodes 2,3,

and 4. However, node 4 has a faulty network device

between it, which prohibits receiving communication from

any of the other nodes, including the leader. This, after a

while, makes node 4 time out and starts the election process

by incrementing the term number to two and seeking votes

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 838–850 | 844

from others. This RequestVote from node 4 goes to the other

nodes because simplex communication is still possible.

Because this is a higher term and the log is up to date, all

nodes oblige and send a positive AppendEntriesResponse

back to node 4. The leader (node 1) also steps down, seeing

a larger number of terms. However, none of these responses

is received by the new candidate node 4.

While node 4 keeps waiting for AppendEntriesResponse,

one node (node 3) is reactivated and starts its own election

process by increasing its term to 3 and seeking votes. The

nodes that can receive the communication respond

positively to VoteRequest as this is a higher term, but node

4 cannot receive it yet. Node 3 obtains the maximum

number of votes from the cluster (nodes 1 and 2, including

self-vote) and starts issuing AppendEntries to its followers.

Fig 7: Asymmetric rechability - repeated leader election caused by a node isolated by a partially communicating network

device.

Candidate node 4 has received no votes yet and times out,

and starts another election with an increased term number,

term 3. This is received by the other nodes in cluster (1,2

and 3) but because there is already a leader with term 3 and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 838–850 | 845

with an updated log, all the nodes reject this VoteRequest.

However, this RPC also did not reach the candidate (Node

4). After a wait period, it times out and starts with an

increased term, Term 4. With this new term number,

VoteRequest may be accepted by the other nodes (1,2, and

3) if no client request comes in between, and their logs are

identical. If the logs are identical, nodes 1,2 and 3 grant

votes to candidate 4. However, this also does not reach node

4, and this cycle is repeated until the faulty network device

is fixed.

V. SIMULATING CONSENSUS

To simulate the Raft-distributed consensus to test for a

leader election, we created a Discrete Event Simulator

coded in Java. We chose to test the leadership algorithm

through DES, as it can accurately model the sequence of

events in a distributed system. We can simulate node

failures, link failures, packet loss, etc. with precision. The

simulator allowed us to customize the configuration of the

network conditions, track the state of each node, and

measure the time to reach a consensus. Through discrete

event simulation, we can gain insight into the robustness of

the Raft protocol, especially its leadership election process.

The simulation also recorded statistics for analysis,

highlighting potential areas for optimization and

improvement.

We implemented our own Raft algorithm in Java and

subjected it to a simulator to verify that the algorithm

adheres to the original specification.

Fig 8: Activity Diagram for a Discrete Event Simulator

However, a discrete event simulator differs from a normal

network simulator. DES processes events in chronological

order. It has its own simulated time, which is a

nondecreasing number representing real-world time. The

components of the simulation, such as nodes and links, are

abstracted as entities, and the communication messages

between these nodes through hardware links are abstracted

as events. The internal timers were also events. A single

thread (event queue) handles all of these events. This event

queue is a priority queue that orders the events based on

their scheduled time. Event handlers define how a system

should respond to each type of event. Finally, the system

state encompasses all the variables that represent the status

of the nodes in the network. As with any simulation, we

abstract only the necessary parameters relevant to the

problem we are solving. Figure 8 shows an activity diagram

to illustrate the general flow of control in a DES.

When a node wants to send a message to another node, it

sends it as an event with the sender's address, message, and

time that it should be scheduled. The event queue registers

(accepts) the event and places it in the queue. When the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 838–850 | 846

simulation started, each event was popped and executed.

Figure 9 presents a UML state diagram to better understand

the internal structure of the DES.

Fig 9: State Diagram for a Discrete Event Simulator

This execution results in the calling of the appropriate event

handler, depending on the type of event. In this case, a

message is sent from one node to another. The receiving

node receives the event through the event handler and starts

processing. It updates the system state of the node. The

receiving node can respond via another message event by

registering the event in the event queue. This process was

continued. This generation of new events by responding to

previous events makes the simulation run indefinitely, given

that events are continuously generated. Termination can be

induced programmatically, either through the number of

rounds or by stopping after a fixed time. This is a simple

scenario of discrete event simulation occurring in the

context of distributed systems. This simulation provides the

complete behaviour of a system. The following sequence

diagram illustrates the complex interactions of the processes

in a DES:

Fig 10: Sequence Diagram of Discrete Event Simulator

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 838–850 | 847

Figure 11: Class diagram of the discrete event simulator.

We also provide a class diagram in Figure 11 for the discrete

event simulator that we developed for a better

understanding of our architecture.

VI. EXPERIMENT WITH RAFT LEADER

ELECTION

We tested our Raft leader election algorithm with the

discrete event simulator that we developed, and the results

are as follows. The work by Dr. Heidi Howard in her thesis

"ARC: Analysis of Raft consensus" tested many parameters

regarding leader election. The work includes testing with

different parameters for the random timeout for the leader

election, from 150ms to 300ms with varying intervals. In

this section, we test the changes in different parameters with

varying latencies. We tested those that were not covered in

the above study, such as increasing the node count from 5

to 25 and changing the latencies.

Initially, we tested our Raft consensus in DES without any

leader failure. Subsequently, we induced a link failure link

attached to the leader to a follower. Because Raft assumes a

one-to-one direct connection with each of the participants

of the cluster, failure of one link causes a leader election

initiated by the follower on the other side of the link failure.

This scenario is illustrated in Figure 6 in Section IV. A

(nontransitive repeatability).

The median latency for a normal raft cluster was 30 ms. We

tested with varying latencies for each link of the nodes in

the cluster from 10-30ms, 20-40ms, and 30-50ms. We

found that with increasing latencies, the election time also

increased in proportion, as expected. However, anything

more than 50 ms causing the cluster to not function

properly, resulting in multiple leaders. We conducted this

round of simulations with the leader heartbeat at 140ms, and

the election timeout for each follower was randomly

assigned between 150-300ms. The graph in Figure 12

shows the variation in election times with changing

latencies.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 838–850 | 848

Fig 12: Varying election times with changing latencies.

The median latency for a normal raft cluster was 30 ms. We

tested with varying latencies for each link of the nodes in

the cluster from 10-30ms, 20-40ms, and 30-50ms. We

found that with increasing latencies, the election time also

increased in proportion, as expected. However, anything

more than 50ms causes the cluster to not function properly,

resulting in multiple leaders. The random frequencies

generated followed a normal distribution. We continued

with our simulations and tested the effect of changing the

latencies on the normal operation time of a cluster of five

nodes. We found that there was a slight difference, but it did

not significantly affect normal operations. Figure 13 shows

three types of line graph.

Figure 13: Normal operations with varying latencies.

As previous studies have only tested a Raft cluster until 10

or 12 nodes, there seems to be no data available with an

increasing number of nodes and their impact on election

time with the leader being repeatedly downed by a faulty

link in the network. We tested this with our DES simulation

ranging from 5 nodes to 20 node clusters. We attempted to

simulate a smaller WAN with five geographically closer

nodes to a global network of 20. Because we were not using

an original network of nodes spread throughout the world,

we included a slightly increased latency for increments of

five nodes each. Therefore, for a 5-node cluster, the latency

is the lowest, whereas for a 20 node cluster, the latency is

the maximum.

Fig 14: Election times with varying number of nodes from 5 to 20 (with varying latencies)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 838–850 | 849

The graph in Figure 14 depicts the increase in election time

as the number of nodes increases (as well as the latency).

This difference can be compared to the graph in Figure 12.

We also tested varying election timeouts for followers and

repeatedly severed the link between the leader and a random

node. The blue line in the graph in Figure 12 shows the

normal election time with a latency of 10-30ms. We

maintained the same latency and tested both the leader

election and normal operation time, but the follower timeout

increased from the normal 150-300ms to 300-450ms and

450-600ms. From analyzing the graph in Figure 15, we

found that for a 5 node Raft cluster, there is no significant

change in election times, but there is a significant change

when the follower election timeout is increase to 450-

600ms. We found that the cluster remained stable with a

leader longer with longer follower timeouts than with

shorter timeouts. However, this is not true stability as the

leader might not be operational or the network partitioned.

With longer timeouts, it takes more time for the followers

to realize that there is no leader and start a round of voting.

Fig 15: Raft cluster of 5 nodes with varying follower timeouts.

The insights generated from the above results of the discrete

event simulation of the raft leader election process can help

programmers and system architects choose the parameters

for their raft implementation. Although our tests are run on

a simulation and not on real testbeds, our simulation results

might point to a general birds-eye view of Raft's fault

tolerance.

VII. CONCLUSION

In conclusion, this study presents a significant contribution

to understanding and improving the fault tolerance

capabilities of the Raft consensus algorithm. Through a

series of well-illustrated UML sequence diagrams, we

effectively dissect the algorithmic processes of Raft,

shedding light on its behaviour during various failure

scenarios. This paper illustrates edge cases where Raft's

liveness is challenged by network partitions. The study

illustrated the liveness issues of Raft, especially pertaining

to the leader election process, through the use of diagrams

and portrayed how the cluster functions even in the case of

failures through simulation. We depicted diagrammatically

how Raft tolerates failures (and comes back alive) and

tested Raft's promises of stability through our discrete event

simulation. We tested various corner and edge cases and

pushed the simulation to a larger number of nodes. We

applied Raft's leader election algorithm by increasing

various parameters, including the number of nodes.

Through illustrative examples and graphical simulation

results, we hope to contribute to the understanding of the

Raft consensus algorithm (especially the leadership

process), as the original premise of developing Raft is its

understandability and not necessarily performance and fault

tolerance.

REFERENCES

[1] P. J. Marandi, M. Primi, and F. Pedone, "Multi-ring

paxos," IEEEIFIP Int. Conf. Dependable Syst. Netw.

DSN 2012, p. 1—12.

[2] D. Ongaro and J. Ousterhout, "In search of an

understandable consensus algorithm," 2014 USENIX

Annu. Tech. Conf. USENIX ATC 14, p. 305—319.

[3] "etcd," etcd. [Online]. Available: https://etcd.io

[4] "CockroachDB." Accessed: Dec. 22, 2023. [Online].

Available: https://www.cockroachlabs.com/

[5] D. Huang et al., "TiDB: a Raft-based HTAP database,"

Proc. VLDB Endow., vol. 13, no. 12, pp. 3072–3084,

Aug. 2020, doi: 10.14778/3415478.3415535.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 838–850 | 850

[6] C. Gyorodi, R. Gyorodi, G. Pecherle, and A. Olah, "A

comparative study: MongoDB vs. MySQL," in 2015

13th International Conference on Engineering of

Modern Electric Systems (EMES), Oradea, Romania:

IEEE, Jun. 2015, pp. 1–6. doi:

10.1109/EMES.2015.7158433.

[7] V. M. Ionescu, "The analysis of the performance of

RabbitMQ and ActiveMQ," in 2015 14th RoEduNet

International Conference - Networking in Education

and Research (RoEduNet NER), Craiova, Romania:

IEEE, Sep. 2015, pp. 132–137. doi:

10.1109/RoEduNet.2015.7311982.

[8] D. Fernandes and J. Bernardino, "Graph Databases

Comparison: AllegroGraph, ArangoDB,

InfiniteGraph, Neo4J, and OrientDB:," in Proceedings

of the 7th International Conference on Data Science,

Technology and Applications, Porto, Portugal:

SCITEPRESS - Science and Technology Publications,

2018, pp. 373–380. doi: 10.5220/0006910203730380.

[9] Department of Computing and Informatics, Mazoon

College, Muscat, Sultanate of Oman., M. Nasar, M. A.

Kausar, and Department of Information Systems,

University of Nizwa, Nizwa, Sultanate of Oman.,

"Suitability Of Influxdb Database For Iot

Applications," Int. J. Innov. Technol. Explor. Eng.,

vol. 8, no. 10, pp. 1850–1857, Aug. 2019, doi:

10.35940/ijitee.J9225.0881019.

[10] K. Subramanian, "Introducing the Splunk Platform,"

in Practical Splunk Search Processing Language,

Berkeley, CA: Apress, 2020, pp. 1–38. doi:

10.1007/978-1-4842-6276-4_1.

[11] "RedPanda," RedPanda. Accessed: Jun. 21, 2024.

[Online]. Available: https://redpanda.com/

[12] S. Tian, F. Bai, T. Shen, C. Zhang, and B. Gong,

"VSSB-Raft: A Secure and Efficient Zero Trust

Consensus Algorithm for Blockchain," ACM Trans.

Sens. Netw., vol. 20, no. 2, pp. 1–22, Mar. 2024, doi:

10.1145/3611308.

[13] X. Wu, C. Wang, and Z. Liu, "Raft consensus

algorithm based on reputation mechanism," in

International Conference on Computer Network

Security and Software Engineering (CNSSE 2022),

SPIE, Oct. 2022, pp. 272–281. doi:

10.1117/12.2640755.

[14] Z. Zhan and R. Huang, "Improvement of Hierarchical

Byzantine Fault Tolerance Algorithm in RAFT

Consensus Algorithm Election," Appl. Sci., vol. 13,

no. 16, p. 9125, Aug. 2023, doi:

10.3390/app13169125.

[15] "Cloudflare etcd raft outage," Cloudflare etcd raft

outage. [Online]. Available:

https://blog.cloudflare.com/a-byzantine-failure-in-

the-real-world/

[16] "A byzantine failure in the real world (Nov 2020).," A

byzantine failure in the real world (Nov 2020).

[Online]. Available: https://blog.cloudflare.com/a-

byzantine-failure-in-the-real-world/

[17] C. Jensen, H. Howard, and R. Mortier, "Examining

Raft's behaviour during partial network failures," in

Proceedings of the 1st Workshop on High Availability

and Observability of Cloud Systems, Online United

Kingdom: ACM, Apr. 2021, pp. 11–17. doi:

10.1145/3447851.3458739.

