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Abstract: This paper delves into the robustness of the Raft consensus algorithm, particularly focusing on its fault tolerance capabilities 

and the challenges it faces under network partitions and node failures. This study provides a comprehensive analysis of Raft's mechanisms 

to ensure data consistency across distributed databases. Through detailed UML diagrams followed by simulations, this work effectively 

illustrates the leader election algorithmic processes and fault tolerance operations within the Raft. This paper focuses on edge-case failure 

scenarios and illustrates them with sequence diagrams and complimented by graphs of results from the discrete event simulation of Raft's 

leader election. Using a custom-built Discrete Event Simulator, we explored the space of Raft's lesser-known failure cases, thus 

complementing previous studies on consensus mechanisms. This study pushes the limits of Raft's liveness and provides a broader picture 

for better understandability. 
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I. INTRODUCTION 

Modern databases are designed to be distributed in nature 

from the get-go, as the liveness of the system depends on 

the availability of the database to service. This distributed 

nature ensures that even if one of the database servers is out 

of service, the other backup servers will pick up and process 

requests for applications. Ensuring that all the backup 

servers have identical data is the responsibility of the 

consensus mechanism employed by these distributed 

databases. These consensus modules are usually chosen 

from the existing list of consensus protocols, such as 

Paxos[1] and Raft[2], which are battle-tested and proven 

mathematically for correctness. They are usually state 

machine replication protocols that replicate a monotonically 

increasing log of commands from the clients to all backup 

servers or replicas. These replicas execute commands in the 

same sequence from the log, thus achieving the same state 

as the entire data store. The state machine, after this 

sequential execution of each of the nodes in the cluster, will 

have identical information and thus form a single source of 

truth for the entire application. 

These consensus protocols perform some of the core 

functions of a distributed database. To show the importance 

of these protocols for databases, we list some databases here 

and the type of consensus mechanisms they employ (Fig 1: 

Distributed Databases that use Raft and Paxos consensus 

mechanisms.). 

Databases that use the Raft consensus 

• etcd[3]-a key value data store that uses Raft to manage 

its highly available replicated log. 

• CockroachDB[4]–uses Raft in its replication layer to 

maintain data consistency, even when machines fail. 

Each data range has its own raft group. 

• TiDB [5] - uses Raft with its key value storage engine, 

TiKV, to ensure data replication and consistency. 

• YugabyteDB uses Raft for DocDB replication. 

• MongoDB[6]–uses a variant of the Raft protocol in its 

replication sets to ensure data consistency and automatic 

failure. 

• RabbitMQ [7] uses Raft to implement replicated durable 

FIFO queues. 

• Neo4j[8] is a graph database that uses Raft to ensure 

consistency and safety. 

• Influx DB[9] - uses Raft for high availability of its 

metadata nodes. 

• Splunk[10] used Raft in its Search Head Cluster (SHC) 

for consensus. 

• Redpanda [11] uses Raft for data replication. 

The core functionality of the raft consensus in these 

databases is to ensure that all data remain consistent across 

the cluster. This is crucial to maintaining the integrity of the 

database, particularly in the event of network partitions or 

node failures. Therefore, it is imperative that we understand 

the fault-tolerant features of Raft and how they contribute 

to the robustness of the system.  

One of the key fault-tolerant features of Raft is the concept 

of log matching, which ensures that if two logs contain an 
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entry with the same index and term, then the logs are 

identical in all entries through the index. This property is 

crucial for ensuring consistency across clusters after a 

leader changes. Another important aspect is the 

commitment to log entries. A log entry is committed when 

it is replicated safely on most nodes. 

 

Fig 1: Distributed Databases that use Raft and Paxos consensus mechanisms. 

Only committed entries apply to the state machine; 

therefore, even if a leader crashes after committing a log 

entry, the system can recover and maintain consistency. The 

new leader will pick up where the old leader left off, 

ensuring that no committed changes are lost. The heartbeat 

mechanism in Raft also plays a significant role in fault 

tolerance. These periodic messages are sent by the leader to 

all followers to maintain authority and prevent new 

elections. If followers stop receiving heartbeats, they will 

initiate a new election, potentially electing a new leader to 

continue their operations. This helps the system to self-heal 

in the face of network problems or leader failures, 

minimising downtime and maintaining availability. 

 Using Raft, these databases can provide strong consistency 

guarantees, which are essential for reliable and accurate 

applications that require transactions. 

As such, in this paper, we examine how fault tolerance 

works in raft consensus and how the cluster is not 

significantly affected, even when there are failures of the 

servers or network partitions. We illustrate this through a 

series of UML sequence diagrams explaining the 

algorithmic aspects of Raft and various scenarios that lead 

to failure situations. We also show how Raft cannot handle 

certain corner cases, and we provide alternative solutions to 

fix this. We simulated Raft consensus using a discrete event 

simulator written in Java. Furthermore, we present and 

discuss the results. 

II. BACKGROUND 

A. Raft Consensus Algorithm 

The Raft distributed consensus algorithm, which serves as 

the foundation for numerous distributed systems, including 

several distributed databases, is a single-leader state 

machine replication algorithm. Instead, consensus was 

achieved by managing a replicated log across the raft 

cluster. When the cluster starts with multiple nodes, one of 

them times out and becomes a candidate to become a leader 

by seeking votes from other nodes, such as followers. These 

follower nodes vote for a candidate with a higher term 

number and vote on a first-come-first-serve basis. A term is 

a monotonically increasing number that uniquely represents 

the leader’s reign. When a follower times out and becomes 

a candidate, it first increases its term number. After the 

candidate receives the majority vote, it becomes the leader 

and sends a message (RPC) called a heartbeat message. This 

message informs followers of who the leader is and the term 

in which it operates. This process is depicted in the election.  

 

 

Fig 2: Activity Diagram of Raft Leader Election 
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A Raft cluster operates as a single entity, although it may 

have many servers. An example is a simple key-value data 

store. When a client wants to store or retrieve a value for a 

key, it communicates through the leader, although the client 

is aware of all IP addresses of the cluster members. The 

leader accepts a client’s ‘set' request of a (key, value) pair. 

After receiving the command, the leader places this in a log 

of every increasing size. This process helps linearize the 

various commands from various clients. Once a client's 

command is written to the log (disk), this log, with its latest 

entries, is replicated exactly across the cluster with the 

followers. These followers acknowledge the latest entries of 

the replicated log and apply the command in the entries to 

their own state machine (data store). After receiving the 

majority of the acknowledgements from the followers, the 

leader also applies the command in the entry to its own data 

store and sends a success request to the respective client. 

This process is illustrated in Figure 3.  

 

Fig 3: Activity Diagram for Log Replication in Raft Consensus 

B. Attempts to improve Raft's fault tolerance 

Several enhancements to Raft fault tolerance have been 

proposed in the literature. For example, introducing a 

supervisor node and secret sharing can make the Raft 

Byzantine fault tolerant without requiring invisible trust 

between the nodes[12]. Combining Raft with a reputation 

mechanism can help identify and isolate malicious nodes 

[13]. Hierarchical Byzantine Fault Tolerance (HBFT) has 

also been integrated with Raft to improve its performance 

and fault tolerance in large-scale systems [14]. 

III. RAFT'S FAULT TOLERANCE 

The Raft consensus algorithm has many built-in features 

that make it live even when there are non-functioning 

servers or network link partitions. In the following cases, we 

discuss how Raft effectively handles these failure-inducing 

scenarios and how it recovers from them.  

A. Split Vote 

Raft is designed specifically to be tolerant of network node 

failures and network partitions. For a leader election, one of 

the followers must time out and become a candidate. 

However, each node randomly assigns a number to wait. 

This random timeout in milliseconds was set between 150 

and 300 ms, according to the original Raft paper. This is set 

by considering the network delay that naturally occurs. 

However, there is a chance that two followers might have 

the same or nearby timeouts, and they might wake up 

parallel and seek votes, giving rise to a split vote situation.  

Figure 4 illustrates this scenario, in which two servers wake 

up and try to seek votes simultaneously. An equal number 

of followers might vote for the two competing candidates. 

This results in two candidates getting equal votes, but no 

majority. No leader in this term. However, any of the cluster 

servers may timeout and start a new election with a new 

term number (term no. 3). Because there is no other 

candidate with this high term number, all candidates and 

follower nodes vote for this new candidate, and it 

subsequently becomes a leader.  

B. Fault Tolerance in Log Replication 

Raft follows a strict leader-follower architecture, where the 

leader has all the power, and the followers replicate the 

leader’s commands. Only with the failure of a leader do 

followers start the election process by giving a vote. 

However, even the way the log is structured and replicated 

allows a follower to pick up the commands from the leader 

and populate its state machine quickly.  
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Fig 4: Scenario where during Leader Election, split vote occurs, and Raft recovers from the split vote with another round 

of voting. 

In Fig 5: Even when the leader fails, because the log is up 

to date, any follower can contest and win to become a  if the 

leader fails, and committed entries are present in the logs of 

the majority of followers. Even if a follower becomes a 

candidate and then a leader, the cluster remains operational 

while maintaining consistency and integrity. This is 

possible because of the proper replication of the log. Even 

if a follower goes offline and returns, it seeks the most 

recent entries in the log. It will inform the leader of the 

status of its log and, accordingly, the leader will populate 

the followers' log until it is consistent with the leader’s log. 

Crashes and network faults can be overcome using this 

fault-tolerant design. 

IV. RAFT'S FAILURE SCENARIOS 

After the text editing was completed, the paper was ready for 

the template. Duplicate the template file using the Save As 

command and use the naming convention prescribed by the 

conference for the name of the paper. In this newly created 

file, highlight all the content and import the prepared text 

file. You are now ready to style your paper; use the scroll-

down window on the left of the MS Word Formatting 

toolbar. 

A. Network partitions 

There are situations where the Raft cluster is not alive for a 

significant portion of the time, and this issue is predicted but 

is considered a corner case and ignored for a long time. 

However, the Cloudflare[15], [16] incident brought this 

issue back to the forefront. The article [17] discussed this 

and reproduced the problem through emulation. These 

partial network partitions, though covered theoretically, are 

not given much importance because of the rarity of such 

real-world scenarios occurring in the real world.  
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Fig 5: Even when the leader fails, because the log is up to date, any follower can contest and win to become a leader. 

Here, we will explain a scenario where there is a partial 

network failure with a three-node cluster using the sequence 

diagram in Fig 6: Non-Transitive Rechability - where 

repeated elections happen because of network partition 

between two nodes. We assume that the leader election has 

already occurred and that a leader exists. When the leader 

receives a request from a client, it adds to its log the latest 

command as an entity. This log is replicated throughout the 

cluster using the AppendEntry RPC command. Obtaining a 

majority of AppendEntriesResponse would suffice, but 

generally all followers respond positively. Because there are 

three nodes in the cluster, the leader only needs one more 

vote from Follower1 apart from his own self-vote to commit 

the entry to its state machine and respond positively to the 

client. If there are any remaining followers who are yet to 

respond, the leader retries the AppendEntries command for 

all missing log entries of such followers. 

 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 838–850  |  843 

 

Fig 6: Non-Transitive Rechability - where repeated elections happen because of network partition between two nodes 

However, in the scenario described in Fig 6: Non-Transitive 

Rechability - where repeated elections happen because of 

network partition between two nodes, we see that a full 

network partition occurs between the leader and follower1. 

After a while, follower1 does not receive any heartbeats 

from the leader and assumes that the leader is not present. 

Follower1 times out and starts the election process by 

incrementing the term to two and seeking votes from the 

other followers. However, since there is no link between 

Follower1 and the leader, RequestVote does not reach the 

leader but reaches Follower2. Follower2, seeing the greater 

term number and an UpToDate log of Follower1 accepts its 

request and votes for Follower2 to become the new leader 

of term 2.  

When the old leader receives a client request, it attempts 

AppendEntries, which only reaches Follower2. However, 

Follower2 does not accept the AppendEnries, but sends 

back a 'no' answer with the new term number and the id of 

the new leader (which is Follower1). This caused the old 

leader to descend from its leadership position. However, 

after this, it does not receive any heartbeats from the new 

leader (aka Follower1), and it breaks and starts a new 

election with term 3. This process of repeated elections 

continues to occur until the partition is healed. This removes 

the operational time of the Raft cluster, as during the leader 

election, the entire cluster becomes non-responsive to the 

clients.  

B. Partial Network Partition 

Another type of network partition is possible, in which only 

partial communication occurs between a node and the rest 

of the Raft cluster. This may be due to a faulty or 

misconfigured network device. We illustrate this problem 

using a sequence diagram, as shown in the device. In a four-

node cluster, when a client requests a set operation, leader 

node 1 responds with an AppendEntries RPC to nodes 2,3, 

and 4. However, node 4 has a faulty network device 

between it, which prohibits receiving communication from 

any of the other nodes, including the leader. This, after a 

while, makes node 4 time out and starts the election process 

by incrementing the term number to two and seeking votes 
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from others. This RequestVote from node 4 goes to the other 

nodes because simplex communication is still possible. 

Because this is a higher term and the log is up to date, all 

nodes oblige and send a positive AppendEntriesResponse 

back to node 4. The leader (node 1) also steps down, seeing 

a larger number of terms. However, none of these responses 

is received by the new candidate node 4.  

While node 4 keeps waiting for AppendEntriesResponse, 

one node (node 3) is reactivated and starts its own election 

process by increasing its term to 3 and seeking votes. The 

nodes that can receive the communication respond 

positively to VoteRequest as this is a higher term, but node 

4 cannot receive it yet. Node 3 obtains the maximum 

number of votes from the cluster (nodes 1 and 2, including 

self-vote) and starts issuing AppendEntries to its followers.  

 

 

Fig 7: Asymmetric rechability - repeated leader election caused by a node isolated by a partially communicating network 

device. 

Candidate node 4 has received no votes yet and times out, 

and starts another election with an increased term number, 

term 3. This is received by the other nodes in cluster (1,2 

and 3) but because there is already a leader with term 3 and 
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with an updated log, all the nodes reject this VoteRequest. 

However, this RPC also did not reach the candidate (Node 

4). After a wait period, it times out and starts with an 

increased term, Term 4. With this new term number, 

VoteRequest may be accepted by the other nodes (1,2, and 

3) if no client request comes in between, and their logs are 

identical. If the logs are identical, nodes 1,2 and 3 grant 

votes to candidate 4. However, this also does not reach node 

4, and this cycle is repeated until the faulty network device 

is fixed. 

V.  SIMULATING CONSENSUS 

To simulate the Raft-distributed consensus to test for a 

leader election, we created a Discrete Event Simulator 

coded in Java. We chose to test the leadership algorithm 

through DES, as it can accurately model the sequence of 

events in a distributed system. We can simulate node 

failures, link failures, packet loss, etc. with precision. The 

simulator allowed us to customize the configuration of the 

network conditions, track the state of each node, and 

measure the time to reach a consensus. Through discrete 

event simulation, we can gain insight into the robustness of 

the Raft protocol, especially its leadership election process. 

The simulation also recorded statistics for analysis, 

highlighting potential areas for optimization and 

improvement.  

 

We implemented our own Raft algorithm in Java and 

subjected it to a simulator to verify that the algorithm 

adheres to the original specification.  

 

 

Fig 8: Activity Diagram for a Discrete Event Simulator 

However, a discrete event simulator differs from a normal 

network simulator. DES processes events in chronological 

order. It has its own simulated time, which is a 

nondecreasing number representing real-world time. The 

components of the simulation, such as nodes and links, are 

abstracted as entities, and the communication messages 

between these nodes through hardware links are abstracted 

as events. The internal timers were also events. A single 

thread (event queue) handles all of these events. This event 

queue is a priority queue that orders the events based on 

their scheduled time. Event handlers define how a system 

should respond to each type of event. Finally, the system 

state encompasses all the variables that represent the status 

of the nodes in the network. As with any simulation, we 

abstract only the necessary parameters relevant to the 

problem we are solving. Figure 8 shows an activity diagram 

to illustrate the general flow of control in a DES. 

 

When a node wants to send a message to another node, it 

sends it as an event with the sender's address, message, and 

time that it should be scheduled. The event queue registers 

(accepts) the event and places it in the queue. When the 
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simulation started, each event was popped and executed.  

Figure 9 presents a UML state diagram to better understand 

the internal structure of the DES. 

 

 

Fig 9: State Diagram for a Discrete Event Simulator 

This execution results in the calling of the appropriate event 

handler, depending on the type of event. In this case, a 

message is sent from one node to another. The receiving 

node receives the event through the event handler and starts 

processing. It updates the system state of the node. The 

receiving node can respond via another message event by 

registering the event in the event queue. This process was 

continued. This generation of new events by responding to 

previous events makes the simulation run indefinitely, given 

that events are continuously generated. Termination can be 

induced programmatically, either through the number of 

rounds or by stopping after a fixed time. This is a simple 

scenario of discrete event simulation occurring in the 

context of distributed systems. This simulation provides the 

complete behaviour of a system. The following sequence 

diagram illustrates the complex interactions of the processes 

in a DES: 

 

 

Fig 10: Sequence Diagram of Discrete Event Simulator 
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Figure 11: Class diagram of the discrete event simulator. 

We also provide a class diagram in Figure 11 for the discrete 

event simulator that we developed for a better 

understanding of our architecture.  

VI.  EXPERIMENT WITH RAFT LEADER 

ELECTION 

We tested our Raft leader election algorithm with the 

discrete event simulator that we developed, and the results 

are as follows. The work by Dr. Heidi Howard in her thesis 

"ARC: Analysis of Raft consensus" tested many parameters 

regarding leader election. The work includes testing with 

different parameters for the random timeout for the leader 

election, from 150ms to 300ms with varying intervals. In 

this section, we test the changes in different parameters with 

varying latencies. We tested those that were not covered in 

the above study, such as increasing the node count from 5 

to 25 and changing the latencies. 

 

Initially, we tested our Raft consensus in DES without any 

leader failure. Subsequently, we induced a link failure link 

attached to the leader to a follower. Because Raft assumes a 

one-to-one direct connection with each of the participants 

of the cluster, failure of one link causes a leader election 

initiated by the follower on the other side of the link failure. 

This scenario is illustrated in Figure 6 in Section IV. A 

(nontransitive repeatability).  

 

The median latency for a normal raft cluster was 30 ms. We 

tested with varying latencies for each link of the nodes in 

the cluster from 10-30ms, 20-40ms, and 30-50ms. We 

found that with increasing latencies, the election time also 

increased in proportion, as expected. However, anything 

more than 50 ms causing the cluster to not function 

properly, resulting in multiple leaders. We conducted this 

round of simulations with the leader heartbeat at 140ms, and 

the election timeout for each follower was randomly 

assigned between 150-300ms. The graph in Figure 12 

shows the variation in election times with changing 

latencies.  
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Fig 12: Varying election times with changing latencies. 

The median latency for a normal raft cluster was 30 ms. We 

tested with varying latencies for each link of the nodes in 

the cluster from 10-30ms, 20-40ms, and 30-50ms. We 

found that with increasing latencies, the election time also 

increased in proportion, as expected. However, anything 

more than 50ms causes the cluster to not function properly, 

resulting in multiple leaders. The random frequencies 

generated followed a normal distribution. We continued 

with our simulations and tested the effect of changing the 

latencies on the normal operation time of a cluster of five 

nodes. We found that there was a slight difference, but it did 

not significantly affect normal operations. Figure 13 shows 

three types of line graph. 

 

 

Figure 13: Normal operations with varying latencies. 

As previous studies have only tested a Raft cluster until 10 

or 12 nodes, there seems to be no data available with an 

increasing number of nodes and their impact on election 

time with the leader being repeatedly downed by a faulty 

link in the network. We tested this with our DES simulation 

ranging from 5 nodes to 20 node clusters. We attempted to 

simulate a smaller WAN with five geographically closer 

nodes to a global network of 20. Because we were not using 

an original network of nodes spread throughout the world, 

we included a slightly increased latency for increments of 

five nodes each. Therefore, for a 5-node cluster, the latency 

is the lowest, whereas for a 20 node cluster, the latency is 

the maximum.  

 

 

Fig 14: Election times with varying number of nodes from 5 to 20 (with varying latencies) 
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The graph in Figure 14 depicts the increase in election time 

as the number of nodes increases (as well as the latency). 

This difference can be compared to the graph in Figure 12. 

We also tested varying election timeouts for followers and 

repeatedly severed the link between the leader and a random 

node. The blue line in the graph in Figure 12 shows the 

normal election time with a latency of 10-30ms. We 

maintained the same latency and tested both the leader 

election and normal operation time, but the follower timeout 

increased from the normal 150-300ms to 300-450ms and 

450-600ms. From analyzing the graph in Figure 15, we 

found that for a 5 node Raft cluster, there is no significant 

change in election times, but there is a significant change 

when the follower election timeout is increase to 450-

600ms. We found that the cluster remained stable with a 

leader longer with longer follower timeouts than with 

shorter timeouts. However, this is not true stability as the 

leader might not be operational or the network partitioned. 

With longer timeouts, it takes more time for the followers 

to realize that there is no leader and start a round of voting.  

 

 

Fig 15: Raft cluster of 5 nodes with varying follower timeouts. 

The insights generated from the above results of the discrete 

event simulation of the raft leader election process can help 

programmers and system architects choose the parameters 

for their raft implementation. Although our tests are run on 

a simulation and not on real testbeds, our simulation results 

might point to a general birds-eye view of Raft's fault 

tolerance.  

VII. CONCLUSION 

In conclusion, this study presents a significant contribution 

to understanding and improving the fault tolerance 

capabilities of the Raft consensus algorithm. Through a 

series of well-illustrated UML sequence diagrams, we 

effectively dissect the algorithmic processes of Raft, 

shedding light on its behaviour during various failure 

scenarios. This paper illustrates edge cases where Raft's 

liveness is challenged by network partitions. The study 

illustrated the liveness issues of Raft, especially pertaining 

to the leader election process, through the use of diagrams 

and portrayed how the cluster functions even in the case of 

failures through simulation. We depicted diagrammatically 

how Raft tolerates failures (and comes back alive) and 

tested Raft's promises of stability through our discrete event 

simulation. We tested various corner and edge cases and 

pushed the simulation to a larger number of nodes. We 

applied Raft's leader election algorithm by increasing 

various parameters, including the number of nodes. 

Through illustrative examples and graphical simulation 

results, we hope to contribute to the understanding of the 

Raft consensus algorithm (especially the leadership 

process), as the original premise of developing Raft is its 

understandability and not necessarily performance and fault 

tolerance. 
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