

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2187–2198 | 2187

Streamlining Text Data Preparation and Label Consistency with

LexiCleanse and EmoLabel Mapper for Prompt-Based Sentiment and

Emotion Detection

1Mr. M. Yuvaraja, 2Dr. C. Kumuthini

Submitted: 07/03/2024 Revised: 27/04/2024 Accepted: 04/05/2024

Abstract— Prompt-Based Sentiment and Emotion Detection, an evolving area within Natural Language Processing

(NLP), employs a unique approach where sentiment and emotions are analyzed based on specific prompts. This paper

presents a comprehensive research methodology for streamlining text data preparation and ensuring label consistency in

prompt-based sentiment and emotion detection. Although this publication does not include experimental results, the

methodology provides valuable insights for researchers and practitioners in natural language processing (NLP). The

methodology begins with Data Collection and Preparation, covering data source identification, retrieval, structured storage,

and effective cleaning using the LexiCleanse algorithm. Model selection guidelines are then discussed, focusing on task

requirements, model capabilities, and resource constraints. Domain-Specific Sentiment and Emotion Fine-Tuning (DSEFT)

is introduced as a technique to enhance pre-trained language models' performance for specific domains. The methodology

also outlines the importance of optimizing prompts to guide models effectively. EmoLabel Mapper, a technique for mapping

model outputs to human-understandable labels, is introduced for result interpretation. While experimental results are not

included here, this methodology serves as a roadmap for future research, encouraging its application to real-world datasets

and further advancements in sentiment and emotion analysis in the evolving NLP landscape.

Keywords— Text Preparation, Label Consistency, LexiCleanse, EmoLabel Mapper, Sentiment Detection, Emotion

Detection, Data Streamlining, Prompt-Based Analysis, Data Cleaning, Label Mapping.

I. INTRODUCTION

In today's digital age, the exponential

growth of text data across various platforms and

domains has presented both unprecedented

opportunities and significant challenges for

businesses, researchers, and individuals alike.

Analyzing and extracting valuable insights from

this vast corpus of textual information requires

robust tools and methodologies to streamline data

preparation and ensure label consistency,

particularly when dealing with tasks such as

sentiment and emotion detection. As the demand

for automated text analysis continues to rise, there

is an increasing need for innovative solutions that

can enhance the efficiency and accuracy of text

data processing. In response to this growing

demand, LexiCleanse and EmoLabel Mapper

emerge as promising tools that offer

comprehensive solutions to address the

complexities of text data preparation and label

consistency in the context of prompt-based

sentiment and emotion detection.

The Text Data Challenge

Text data has become ubiquitous,

encompassing sources such as social media,

customer reviews, news articles, and more. This

textual information harbors valuable insights that

organizations can leverage to make informed

decisions, enhance customer experiences, and gain

a competitive edge. However, the sheer volume,

noise, and diversity of text data pose significant

challenges when it comes to analysis and

interpretation. One of the foremost challenges is

the need for effective text data preparation, which

includes tasks like cleaning, preprocessing, and

1M.C.A.,M.Phil., 1Ph.d Research Scholar

1Department of Computer Science

1Dr.N.G.P Arts and Science College

1Coimbatore

1Tamilnadu, India.

1yuvaraja0105@gmail.com

2 M.C.A., M. Phil., Ph.D.

2Professor,

Department of Computer Applications

2Dr.N.G.P Arts and Science College

2Coimbatore-641048

2Tamilnadu, India.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2187–2198 | 2188

normalization. Without a well-prepared dataset, the

accuracy and reliability of any subsequent analysis,

such as sentiment and emotion detection, are

jeopardized.

The Importance of Label Consistency

In addition to data preparation, maintaining

label consistency is paramount in tasks that involve

sentiment and emotion detection. Label

inconsistency can lead to erroneous results and

hinder the development of reliable models for

automatic text analysis. Ensuring that labels

assigned to text data are uniform and consistent

across different instances is a non-trivial task,

particularly when dealing with large datasets.

Manually annotating text data for sentiment and

emotion can be time-consuming, costly, and

subject to human bias, which further underscores

the need for automated solutions.

LexiCleanse: Streamlining Data Preparation

LexiCleanse is a cutting-edge text data

preparation tool designed to address the challenges

associated with noisy and unstructured text data.

Leveraging state-of-the-art natural language

processing (NLP) techniques, LexiCleanse

automates data cleaning and preprocessing tasks,

such as removing special characters, handling

misspellings, and normalizing text. This tool

significantly reduces the manual effort required for

data preparation, allowing researchers and

organizations to focus on the more critical aspects

of text analysis. By employing LexiCleanse, users

can achieve cleaner and more consistent text data,

which lays the foundation for more accurate

sentiment and emotion detection.

EmoLabel Mapper: Ensuring Label Consistency

EmoLabel Mapper complements

LexiCleanse by addressing the crucial aspect of

label consistency in sentiment and emotion

detection. This tool utilizes advanced machine

learning algorithms to automatically assign

sentiment and emotion labels to text data.

EmoLabel Mapper learns from existing labeled

datasets and generalizes its knowledge to label new

instances consistently. This not only saves

considerable time and effort in the annotation

process but also reduces the risk of human bias in

label assignment. The result is a more standardized

and reliable dataset, which enhances the overall

quality of sentiment and emotion analysis.

The Synergy of LexiCleanse and EmoLabel

Mapper

The combined use of LexiCleanse and

EmoLabel Mapper represents a powerful solution

for researchers and organizations seeking to

streamline text data preparation and ensure label

consistency in prompt-based sentiment and

emotion detection tasks. LexiCleanse addresses the

data preparation challenges, while EmoLabel

Mapper tackles the label consistency problem.

Together, these tools pave the way for more

efficient and accurate sentiment and emotion

analysis, enabling users to unlock deeper insights

from their textual data.

To sum up, with the ever-expanding volume

of text data, there is a growing need for efficient

and dependable text analysis tools. LexiCleanse

and EmoLabel Mapper present a hopeful resolution

to the issues related to data preparation and label

consistency in prompt-based sentiment and

emotion detection. Through the automation of these

pivotal facets of text analysis, these tools equip

researchers and organizations to fully leverage the

capabilities of textual data, thereby paving the way

for fresh opportunities in decision-making,

research, and innovation.

II. RELATED STUDIES

Li, Y., Chan, J., Peko, G., & Sundaram (2023)

underscore the growing reliance on deep learning

algorithms in various industries due to the rapid

advancement of artificial intelligence. However,

they also shed light on a significant challenge – the

inexplicability and black box nature of these

algorithms. This lack of transparency poses a

critical issue, particularly in the realm of emotion

analysis for business and public opinion

monitoring. Decision-makers often find it

challenging to trust results generated by seemingly

emotionless machines. To address this gap, the

authors propose an emotion analysis explanation

framework grounded in psychological theories,

with a specific focus on classic emotion theories'

stimulus aspects. This framework aims to elucidate

deep learning-based emotion analysis by delving

into the causes of emotions and visualizing the

triggering words. Their approach offers higher

credibility and theoretical support compared to

existing methods, providing intuitive visualizations

for better comprehension.

Ghosh, S., Priyankar, A., Ekbal, and

Bhattacharyya (2023) turn their attention to the

increasing presence of non-native English speakers

on social media platforms. They highlight the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2187–2198 | 2189

pressing need for sentiment and emotion analysis in

regional languages and code-mixed data,

particularly in the context of Hindi–English code-

mixed texts. To bridge this gap, the researchers

take action by creating an emotion-annotated

Hindi–English dataset through annotations on the

benchmark SentiMix dataset. Employing an end-to-

end transformer-based multitask framework,

leveraging the pre-trained cross-lingual embedding

model, XLMR, their approach outperforms existing

methods, showcasing the importance of integrating

emotion recognition into sentiment analysis.

Nevertheless, they acknowledge a challenge within

their dataset – the under-representation of certain

emotion classes, thereby pointing to potential

future research directions.

S. Senthilnathan (2023) explores the

applications of virtual journaling in fostering

introspection and personal development,

particularly in the realm of tracking daily emotions.

The author introduces a virtual journaling

application designed to comprehend and monitor

daily emotions using natural language processing

techniques. This innovative application offers

valuable visualizations that can identify emotional

patterns, facilitate goal-setting, track progress, and

provide personalized recommendations. However,

the author astutely highlights the need for further

research to determine the application's

effectiveness, discover the optimal NLP techniques

for extracting emotional information, and assess

user acceptance, thus unveiling yet another

research gap within this domain.

Prof. Shrikala Deshmukh et al. (2023) embark

on an exploration of sentiment analysis and

emotion detection, with a unique focus on

exceptional emotions rather than the traditional

positive, neutral, or negative sentiments. They

underscore the inherent complexity of emotion

detection in text due to the absence of tonal stress

and pitch parameters present in spoken language.

Their review of the field reveals various NLP

techniques, including keyword-based, machine

learning-based, and lexicon-based approaches. In

response to this complexity, the researchers

propose a hybrid model. Nonetheless, they

emphasize the persistent need for new datasets,

sphere adaptation techniques, deep learning

strategies, collaborative approaches, and cost-

effective techniques to reduce computing expenses,

thus highlighting multiple research gaps in this

domain.

Ankita Bhaumik et al. (2023) emphasize the

significance of emotion detection within the realm

of social media during significant events such as

elections and national conflicts. They propose a

generalized approach adaptable to the political

domain. However, they identify a significant

challenge – the lack of suitable emotion labels and

training datasets in this context. This challenge

accentuates the need for specialized emotion labels

and datasets, revealing a conspicuous research gap.

Bharti, S. K., Varadhaganapathy, S., Gupta,

R. K., Shukla, P. K., Bouye, M., Hingaa, S. K., &

Mahmoud, A. (2022) delve into the realm of

emotion detection in text, presenting a hybrid

model. They shed light on the limitations of

keyword- and lexicon-based approaches and

advocate for the exploration of advanced word

representation models and the incorporation of

emotion intensities. However, this call for

advanced models and the inclusion of emotion

intensities highlights a distinct research gap that

warrants further investigation.

Asghar, M. Z., Lajis, A., Alam, M. M.,

Rahmat, M. K., Nasir, H. M., Ahmad, H., Al-

Rakhami, M. S., Al-Amri, A., & Albogamy, F. R.

(2022) propose a deep learning model for emotion

categorization in social media texts. While they

manage to achieve improved results, the authors

acknowledge their use of limited emotion clues and

the exclusion of emotion intensities in their

approach. This recognition of limitations suggests

potential avenues for future research, underlining a

research gap within the realm of social media

emotion analysis.

B. Research Gap

Li et al. (2023) identified the need for more

interpretable deep learning algorithms for emotion

analysis to address the inexplicability of existing

models. Ghosh et al. (2023) emphasized the under-

representation of certain emotion classes in code-

mixed texts, stressing the importance of balanced

emotion datasets. Senthilnathan (2023) pointed to a

research gap in evaluating the effectiveness of

virtual journaling applications for tracking daily

emotions and optimizing natural language

processing techniques for emotional information

extraction. Prof. Shrikala Deshmukh et al. (2023)

highlighted the necessity for new datasets and

advanced techniques for emotion detection,

particularly for exceptional emotions. Ankita

Bhaumik et al. (2023) underscored the challenge of

lacking suitable emotion labels and training

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2187–2198 | 2190

datasets in the political domain, indicating a need

for specialized datasets. Bharti et al. (2022)

advocated for exploring advanced word

representation models and incorporating emotion

intensities into emotion detection, while Asghar et

al. (2022) acknowledged limitations in handling

limited emotion clues and excluding emotion

intensities in social media emotion analysis. These

research gaps encompass algorithm interpretability,

dataset balance, application effectiveness,

advanced techniques, domain-specific datasets, and

the integration of emotion intensities, aligning with

the objectives of our title.

III. DESIGN ELEMENTS AND TECHNICAL ASPECTS

A. Data Collection and Preparation:

• Collect a wide range of text inputs from various

sources, including social media, customer reviews,

news articles, and domain-specific datasets.

• Allow both manual and automated text labeling

techniques for flexibility and scalability.

• Implement various text labeling methods, including

rule-based labeling, text classification algorithms,

clustering algorithms, active learning, semi-

supervised learning, NLP models, named entity

recognition (NER) models, topic modeling, and

sentiment analysis.

B. Text Data Preparation for NLP (Using

LexiCleanse):

• Perform data cleaning and preprocessing to remove

noise, inconsistencies, and irrelevant information

from raw text data.

• Implement tokenization to break down text into

individual words or subword tokens.

• Remove special characters, punctuation marks, and

numbers that do not contribute to sentiment or

emotion analysis.

• Convert all text to lowercase for uniformity.

• Handle contractions to correctly tokenize words

with apostrophes.

• Apply stemming or lemmatization to reduce words

to their base or root forms, reducing word

variations.

C. Choosing the Right Pre-trained Language

Model:

• Select a pre-trained language model, such as BERT

or GPT-3, based on the specific sentiment analysis

and emotion detection tasks.

• Consider factors like model architecture, size, and

data nature.

• Choose a smaller model variant if computational

resources are limited.

• Utilize the Hugging Face Transformers library for

BERT or the OpenAI API for GPT-3 for easy

integration.

D. Fine-Tuning Pre-trained Models (Domain-

Specific Sentiment and Emotion Fine-Tuning -

DSEFT):

• Fine-tune the selected pre-trained model on

domain-specific sentiment or emotion datasets

aligned with research objectives.

• Use transfer learning techniques to adapt the model

to the specific task.

• Retain valuable knowledge gained during pre-

training while updating model weights with the

new dataset.

E. Optimizing Prompts for Sentiment Analysis and

Emotion Detection:

• Design effective prompts tailored to the task,

ensuring they are clear, concise, and provide

context.

• Experiment with different prompt styles, structures,

and lengths to optimize model performance.

• Perform hyperparameter tuning, including prompt

style and format adjustments.

F. Label Mapping and Consistency (EmoLabel

Mapper):

• Create clear and straightforward mapping templates

that link model outputs to human-understandable

sentiment or emotion labels.

• Specify how the model's numerical output

corresponds to specific sentiment or emotion

categories.

• Ensure label consistency throughout the dataset,

covering the entire spectrum of emotions or

sentiments intended for analysis.

• Consider using standard sentiment labels like

positive, negative, and neutral for sentiment

analysis.

• Maintain label consistency to prevent ambiguity

and confusion during model training and

evaluation.

These design elements and technical aspects

outline a comprehensive workflow for the idea,

including data collection, preparation, model

selection, fine-tuning, prompt optimization, and

label mapping for interpretable sentiment and

emotion analysis.

IV. RESEARCH METHODOLOGY

A. Data Collection and Preparation:

Data Collection and Preparation is a crucial step

in various data-driven tasks, including natural

language processing (NLP) and machine learning.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2187–2198 | 2191

It involves collecting raw data from various

sources, cleaning and preprocessing it to make it

suitable for analysis or modeling. Here's a high-

level algorithm for data collection and preparation:

Data Collection (Collection Phase):

• Define data sources: Identify the sources from

which you intend to collect data. These sources can

include websites, APIs, databases, social media

platforms, or any domain-specific data repositories.

• Data retrieval: Implement mechanisms to fetch or

extract data from the identified sources. This can

involve web scraping, API requests, database

queries, or manual data entry.

• Store raw data: Save the collected data in its raw

form, preserving its original structure and format.

Store data in a structured manner, such as

databases, files, or data lakes.

Data Cleaning and Preprocessing (Preparation

Phase):

• Data cleaning: Perform data cleaning to remove

inconsistencies, errors, and noise from the raw

data. Common cleaning tasks include:

• Handling missing values: Decide on a strategy for

dealing with missing data, such as imputation or

removal.

• Removing duplicates: Identify and remove

duplicate records or entries.

• Correcting inaccuracies: Correct any erroneous

data entries.

• Data transformation: Prepare data for analysis by

transforming it into a suitable format. This may

involve:

• Tokenization: Split text data into individual tokens

(words or subword units) for NLP tasks.

• Normalization: Standardize data by converting it to

a common format, such as converting text to

lowercase.

• Scaling and encoding: Scale numerical features and

encode categorical features for machine learning.

• Feature engineering: Create new features or derive

meaningful insights from existing ones.

• Data validation: Validate data integrity and quality

by performing checks to ensure it meets the

required standards.

• Data splitting: Split the dataset into training,

validation, and test sets for machine learning tasks.

Data Storage and Documentation:

• Store cleaned and preprocessed data in a structured

format suitable for analysis or modeling.

• Document data preprocessing steps,

transformations, and any relevant metadata to

maintain transparency and reproducibility

Pseudo Code: Pseudo-code representation of the

Data Collection and Preparation algorithm:

function

DataCollectionAndPreparation(data_sources):

 # Data collection phase

 raw_data = collect_data(data_sources)

 # Data preparation phase

 cleaned_data = clean_data(raw_data)

 preprocessed_data =

preprocess_data(cleaned_data)

 return preprocessed_data

function collect_data(data_sources):

 # Fetch or extract data from the specified

sources

 raw_data = []

 for source in data_sources:

 data = fetch_data_from_source(source)

 raw_data.extend(data)

 return raw_data

function clean_data(raw_data):

 # Data cleaning tasks

 cleaned_data =

perform_data_cleaning(raw_data)

 return cleaned_data

function preprocess_data(cleaned_data):

 # Data preprocessing tasks

 preprocessed_data =

perform_data_preprocessing(cleaned_data)

 return preprocessed_data

function perform_data_cleaning(raw_data):

 # Implement data cleaning tasks (e.g., handle

missing values, remove duplicates)

 cleaned_data =

cleaned_data_processing(raw_data)

 return cleaned_data

function

perform_data_preprocessing(cleaned_data):

 # Implement data preprocessing tasks (e.g.,

tokenization, normalization, feature engineering)

 preprocessed_data =

data_preprocessing_steps(cleaned_data)

 return preprocessed_data

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2187–2198 | 2192

Figure 1 : Flowchart of LexiCleanse and EmoLabel

Mapper for Prompt-Based Sentiment and Emotion

Detection

B. LexiCleanse:

Algorithm: LexiCleanse is a text data preparation

algorithm used to clean and preprocess raw text

data for natural language processing (NLP) tasks.

Its primary purpose is to ensure that text data is in a

format that is suitable for analysis by removing

noise, inconsistencies, and irrelevant information.

Pseudo Code:

Here is a simplified pseudo-code representation of

the LexiCleanse algorithm:

function LexiCleanse(text_data):

 cleaned_text = ""

 for sentence in text_data:

 tokens = tokenize(sentence)

 cleaned_tokens = []

 for token in tokens:

 cleaned_token = preprocess_token(token)

 if is_valid(cleaned_token):

 cleaned_tokens.append(cleaned_token)

 cleaned_sentence =

join_tokens(cleaned_tokens)

 cleaned_text += cleaned_sentence

 return cleaned_text

function tokenize(sentence):

 # Tokenization logic to split sentence into words

or subword tokens

 # e.g., "I love this product" -> ["I", "love",

"this", "product"]

 return tokens

function preprocess_token(token):

 # Preprocessing steps for individual tokens

 # e.g., removing special characters, lowercasing,

handling contractions, etc.

 return cleaned_token

function is_valid(token):

 # Check if a token is valid and relevant for

analysis

 # e.g., filter out stop words, unwanted symbols,

or specific criteria

 return valid

function join_tokens(tokens):

 # Reconstruct a sentence from cleaned tokens

 return joined_sentence

 The LexiCleanse algorithm takes raw text

data as input and processes it sentence by sentence.

For each sentence, it first tokenizes the text to split

it into individual words or subword tokens. Each

token is then preprocessed to remove noise and

inconsistencies. This preprocessing may include

tasks such as removing special characters,

converting text to lowercase, handling contractions,

and more. After preprocessing, tokens that are

considered valid and relevant for analysis are

retained, while irrelevant tokens (e.g., stop words

or unwanted symbols) are filtered out. Finally, the

cleaned tokens are joined back together to

reconstruct the cleaned sentence. This process is

repeated for all sentences in the input text data,

resulting in a cleaned and preprocessed text ready

for NLP tasks.

C. Choosing the Right Pre-trained Language

Model

Choosing the right pre-trained language model is a

crucial step in natural language processing (NLP)

and text analysis tasks. The choice of model

depends on various factors, including the specific

task, the size and nature of the dataset, and

available computational resources. Here's an

algorithmic approach to selecting the appropriate

pre-trained language model:

• Define Task Requirements: Clearly define

the NLP task you want to perform (e.g., sentiment

analysis, text classification, question answering,

language generation).

• Identify the specific requirements of the

task, such as:

• Task complexity: Is the task relatively

simple (e.g., sentiment analysis) or complex (e.g.,

machine translation)?

• Dataset size: Do you have a small,

medium, or large dataset available for training or

fine-tuning?

• Domain specificity: Is the task domain-

specific (e.g., medical text analysis, legal

documents)?

• Computation resources: Consider the

available computational power for model training

and inference.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2187–2198 | 2193

Survey Pre-trained Models:

• Conduct research to identify pre-trained

language models that are suitable for your task and

meet the defined requirements.

• Explore well-known pre-trained models

like BERT, GPT-3, RoBERTa, and others.

• Consider model variants, including base

models and smaller versions designed for

efficiency (e.g., DistilBERT, GPT-2).

Evaluate Model Capabilities:

Assess the capabilities of candidate models with

respect to your task:

• Model architecture: Understand the

underlying architecture (e.g., Transformer-based)

and its suitability for your task.

• Model size: Consider the size of the model

in terms of parameters, as larger models may

require more computational resources.

• Pre-training data: Investigate the diversity

and volume of data used for pre-training, which can

affect model generalization.

• Fine-tuning options: Check if the model

allows fine-tuning on domain-specific data, if

necessary.

Consider Model Performance:

• Review existing benchmarks and literature

to gauge the performance of candidate models on

tasks similar to yours.

• Look for model performance metrics,

including accuracy, F1 score, perplexity, and

BLEU score, depending on the task.

Evaluate Resource Constraints:

• Assess whether the computational

resources available to you align with the model's

requirements:

• Model size: Ensure that your hardware can

handle the model's size in terms of memory and

processing power.

• Inference speed: Consider the model's

inference speed, especially for real-time or latency-

sensitive applications.

• Training data and time: If fine-tuning is

required, estimate the time and resources needed

for training on your dataset.

Select the Most Suitable Model:

• Based on the task requirements, model

capabilities, performance, and resource constraints,

choose the pre-trained language model that best fits

your needs.

• Consider trade-offs between model

complexity and performance, especially if resource

limitations are a concern.

Pseudo Code: Pseudo-code representation of the

process for choosing the right pre-trained

language model:

function

ChooseRightLanguageModel(task_requirements,

available_models):

 suitable_models = []

 for model in available_models:

 if MeetsTaskRequirements(model,

task_requirements):

 suitable_models.append(model)

 selected_model =

SelectBestModel(suitable_models)

 return selected_model

function MeetsTaskRequirements(model,

task_requirements):

 meets_requirements = False

 if model.architecture is suitable for

task_requirements.complexity:

 if model.pre_training_data is diverse and

sufficient:

 if model.fine_tuning_options allow for

domain-specific data:

 meets_requirements = True

 return meets_requirements

function SelectBestModel(suitable_models):

 best_model = None

 for model in suitable_models:

 if ModelPerformance(model) is excellent:

 if ModelResourceConstraints(model) are

manageable:

 best_model = model

 return best_model

D. Domain-Specific Sentiment and Emotion

Fine-Tuning (DSEFT):

Domain-Specific Sentiment and Emotion Fine-

Tuning (DSEFT) is a technique used to adapt pre-

trained language models to specific sentiment

analysis and emotion detection tasks in a particular

domain. It involves fine-tuning a pre-trained model

on domain-specific sentiment or emotion datasets

to improve its performance and alignment with the

research objectives.

Pseudo Code: Pseudo-code representation of the

DSEFT algorithm:

function DSEFT(pretrained_model,

domain_dataset):

 # Load the pre-trained language model

 model =

load_pretrained_model(pretrained_model)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2187–2198 | 2194

 # Fine-tune the model on the domain-specific

sentiment or emotion dataset

 fine_tuned_model = fine_tune(model,

domain_dataset)

 return fine_tuned_model

function

load_pretrained_model(pretrained_model):

 # Load a pre-trained language model (e.g.,

BERT, GPT-3)

 return model

function fine_tune(model, domain_dataset):

 # Fine-tune the pre-trained model on the

domain-specific dataset

 for epoch in range(num_epochs):

 for batch in domain_dataset:

 input_data, labels =

preprocess_batch(batch)

 loss = model.forward(input_data, labels)

 model.backward(loss)

 model.update_parameters(learning_rate)

 return fine_tuned_model

function preprocess_batch(batch):

 # Preprocess a batch of data from the domain-

specific dataset

 # e.g., tokenization, padding, converting labels

to model-specific format

 return input_data, labels

DSEFT starts by loading a pre-trained language

model (e.g., BERT or GPT-3) that has been pre-

trained on a large corpus of text data. This pre-

trained model has a general understanding of

language but may not be optimized for specific

sentiment or emotion tasks in a particular domain.

The main part of DSEFT is the fine-tuning step,

where the loaded pre-trained model is further

trained on a domain-specific sentiment or emotion

dataset. This dataset should align with the specific

research objectives and contain labeled examples

of text data with sentiment or emotion annotations.

The fine-tuning process involves iterating over the

domain-specific dataset for a certain number of

epochs. In each epoch, the algorithm processes the

data in batches, preprocesses the data (e.g.,

tokenization, padding), and computes a loss based

on the model's predictions compared to the ground

truth labels. The model then performs backward

propagation and parameter updates using a

specified learning rate to optimize its performance

on the domain-specific task. This process continues

for the specified number of epochs until the model

converges or reaches a satisfactory performance

level. The result of the DSEFT algorithm is a fine-

tuned language model that has adapted to the

specific sentiment or emotion analysis

requirements of the chosen domain.

E. Optimizing Prompts for Sentiment Analysis

and Emotion Detection

 In the context of sentiment analysis and

emotion detection using pre-trained language

models, optimizing prompts plays a crucial role in

instructing the model to generate appropriate

responses. Effective prompts provide context and

cues that help the model understand the specific

sentiment or emotion analysis task. This

explanation covers the process of optimizing

prompts, including algorithms, pseudo code, and

examples.

Algorithm:

Optimizing prompts for sentiment analysis and

emotion detection involves crafting clear and

context-rich instructions that guide the pre-trained

language model to provide accurate results. Here's

an algorithmic approach to optimizing prompts:

Define the Task Requirements:

• Clearly define the sentiment analysis or

emotion detection task.

• Identify the specific emotion categories or

sentiment labels you want to detect (e.g.,

positive/negative, happy/sad).

Determine Prompt Styles:

• Select the appropriate prompt style based

on the nature of the task:

• For sentiment analysis: Prompts should

direct the model to analyze the sentiment of a given

text.

• For emotion detection: Prompts should

specify the expected emotion category (e.g., happy,

sad) and ask the model to detect that emotion.

Experiment with Prompt Structures:

• Create variations of prompts to discover

the most effective ones.

• Consider different prompt structures and

formats, such as:

• Asking the model to analyze the sentiment

or detect the emotion in a text.

• Providing context about the text's source

or context.

• Using explicit language to specify the

expected outcome (e.g., "Is the sentiment positive

or negative?").

• Varying the length and complexity of

prompts to find the optimal balance.

Include Context and Cues:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2187–2198 | 2195

• Ensure that prompts include sufficient

context and cues to guide the model's

understanding.

• Context can include information about the

source of the text, the situation, or any relevant

details.

• Cues can involve linguistic hints or

keywords that trigger the desired analysis (e.g.,

"detect," "analyze," "classify").

Fine-Tune Prompt Style:

• Fine-tune the prompt style based on the

model's responsiveness and the quality of results.

• Experiment with different linguistic cues

and phrasing to encourage accurate analysis.

• Pay attention to user instructions that the

model responds to effectively.

Evaluate Prompt Effectiveness:

• Assess the effectiveness of different

prompts by measuring the model's performance on

a validation dataset.

• Metrics may include accuracy, F1 score,

or confusion matrices, depending on the specific

task.

• Iterate and refine prompts based on

evaluation results.

Pseudo Code: Pseudo-code representation of the

process for optimizing prompts for sentiment

analysis and emotion detection:

function OptimizePrompts(task_requirements,

prompt_styles):

 effective_prompts = []

 for prompt_style in prompt_styles:

 prompts = GeneratePrompts(prompt_style,

task_requirements)

 optimized_prompt =

FindBestPrompt(prompts, task_requirements)

 effective_prompts.append(optimized_prompt)

 return effective_prompts

function GeneratePrompts(prompt_style,

task_requirements):

 prompts = []

 if prompt_style is "sentiment_analysis":

 prompts.append("Analyze the sentiment of the

following text: '...'")

 prompts.append("Is the sentiment of this text

positive or negative: '...'")

 if prompt_style is "emotion_detection":

 prompts.append("Detect the emotion in the

text: '...' – is it happy, sad, angry, etc.")

 return prompts

function FindBestPrompt(prompts,

task_requirements):

 best_prompt = None

 for prompt in prompts:

 if EvaluatePromptPerformance(prompt,

task_requirements) is excellent:

 best_prompt = prompt

 return best_prompt

function EvaluatePromptPerformance(prompt,

task_requirements):

 # Evaluate the prompt's performance using

validation data and metrics.

 performance_score =

MeasurePerformance(prompt, task_requirements)

 return performance_score

F. EmoLabel Mapper

EmoLabel Mapper is a technique used to map

model outputs, often numerical values or logits, to

human-understandable sentiment or emotion labels.

It provides a way to interpret the results of a

sentiment or emotion analysis model by defining

clear mapping templates that connect model

outputs to specific sentiment or emotion categories.

Pseudo Code:

pseudo-code representation of the EmoLabel

Mapper algorithm:

function EmoLabelMapper(model_output,

mapping_templates):

 # Map the model output to sentiment or emotion

labels

 mapped_labels =

map_model_output(model_output,

mapping_templates)

 return mapped_labels

function map_model_output(model_output,

mapping_templates):

 # Iterate through mapping templates to find the

matching label

 for template in mapping_templates:

 condition, label = template

 if evaluate_condition(model_output,

condition):

 return label

 # Return a default label if no condition matches

 return default_label

function evaluate_condition(model_output,

condition):

 # Evaluate the condition to determine if it

matches the model output

 # This can involve comparisons, thresholds, or

other logic

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2187–2198 | 2196

 return condition_satisfied

EmoLabel Mapper is used to interpret the output of

a sentiment or emotion analysis model, which often

produces numerical values or logits that represent

the model's confidence or prediction scores for

different sentiment or emotion categories. The

algorithm starts by taking the model's output,

which is a numerical value or a set of values, as

input. It then proceeds to map this model output to

specific sentiment or emotion labels using

predefined mapping templates. These mapping

templates consist of pairs of conditions and

corresponding labels. Each condition defines a rule

or criterion based on which the model output is

associated with a label. The map_model_output

function iterates through the mapping templates

and evaluates each condition to determine if it

matches the model output. Conditions can involve

comparisons, thresholds, or other logic, depending

on the nature of the model's output. When a

condition is satisfied, meaning it matches the

model output, the corresponding label is assigned

to the output. If no condition matches, a default

label can be assigned.

Example: Mapping Sentiment Scores to

Sentiment Labels Suppose you have a sentiment

analysis model that produces sentiment scores

ranging from -1 to 1, where -1 represents very

negative sentiment, 0 represents neutral sentiment,

and 1 represents very positive sentiment. You want

to map these scores to sentiment labels.

Here is how EmoLabel Mapper can be applied:

1. Mapping Templates: Define mapping

templates that link sentiment scores to sentiment

labels. For example:

• Condition: score <= -0.5, Label: "Very

Negative"

• Condition: -0.5 < score <= -0.1, Label:

"Negative"

• Condition: -0.1 < score <= 0.1, Label:

"Neutral"

• Condition: 0.1 < score <= 0.5, Label:

"Positive"

• Condition: score > 0.5, Label: "Very

Positive"

2. Model Output: Let's say your sentiment

analysis model produces a sentiment score of 0.3

for a given text.

3. EmoLabel Mapper: Apply the EmoLabel

Mapper algorithm to map the model output (score

of 0.3) to a sentiment label based on the defined

mapping templates.

4. Mapped Label: The algorithm evaluates the

conditions in the mapping templates and

determines that the condition -0.1 < score <= 0.1 is

satisfied because 0.3 falls within this range.

Therefore, the mapped sentiment label for the

model output of 0.3 is "Neutral."

In this example, EmoLabel Mapper helps interpret

the model's sentiment score by assigning it a

human-understandable sentiment label, making it

easier to understand and interpret the sentiment

analysis results.

V. CONCLUSION

In this research paper, we have presented a

comprehensive methodology for sentiment analysis

and emotion detection on user-generated text data

from social media platforms. While we have

refrained from including specific experimental

results in this journal paper, the methodology we

have outlined covers essential steps from data

collection and preparation to fine-tuning pre-

trained language models and optimizing prompts

for NLP tasks. Additionally, we introduced the

concept of EmoLabel Mapper to interpret model

outputs, providing human-understandable

sentiment and emotion labels. This research

methodology serves as a valuable guide for

researchers and practitioners seeking to perform

sentiment and emotion analysis on diverse textual

datasets. Our methodology encompasses data

collection and preparation, which are fundamental

steps in any data-driven task. We emphasize the

significance of maintaining data integrity, quality,

and transparency throughout the process. The

LexiCleanse algorithm contributes to text data

preparation by effectively removing noise and

inconsistencies, ensuring that the data is in a format

suitable for NLP tasks.

The process of choosing the right pre-

trained language model is a pivotal decision in

sentiment analysis and emotion detection. We have

introduced a systematic approach to evaluate and

select pre-trained models based on task

requirements, model capabilities, performance

metrics, and resource constraints. The chosen

model plays a crucial role in the accuracy and

efficiency of subsequent analyses. Furthermore, we

explored Domain-Specific Sentiment and Emotion

Fine-Tuning (DSEFT), a technique that tailors pre-

trained language models to domain-specific

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2187–2198 | 2197

sentiment and emotion tasks. This step enhances

the model's adaptability to the particular

requirements of our research objectives. We have

highlighted the importance of fine-tuning and its

impact on model performance.

The optimization of prompts is another

critical aspect of our methodology, as it provides

clear instructions to pre-trained language models

for sentiment and emotion analysis. Effective

prompts significantly influence the quality of

results, and we have outlined a structured process

to create and refine prompts based on task

requirements and model responsiveness.

REFERENCES

[1] Li, Y., Chan, J., Peko, G., & Sundaram, D.

(2023). An explanation framework and method

for AI-based text emotion analysis and

visualization. Decision Support Systems,

114121.

[2] Ghosh, S., Priyankar, A., Ekbal, A., &

Bhattacharyya, P. (2023). Multitasking of

sentiment detection and emotion recognition in

code-mixed Hinglish data. Knowledge-Based

Systems, 260, 110182.

[3] S. Senthilnathan. (2023). A Virtual Journaling

Understanding and Tracking Daily Emotions.

International Journal of New Innovations in

Engineering and Technology, 22(1), 11-17.

[4] Prof. Shrikala Deshmukh et al. (2023).

AUTOMATIC DETECTION OF EMOTION

THROUGH TEXT COMMANDS AND

FACIAL EXPRESSIONS. Eur. Chem. Bull.,

12(4), 15636-15643.

[5] Ankita Bhaumik et al. (2023). Adapting

Emotion Detection to Analyze Influence

Campaigns on Social Media. Proceedings of

the 13th Workshop on Computational

Approaches to Subjectivity, Sentiment, &

Social Media Analysis, 1(1), 441-451.

[6] Bharti, S. K., Varadhaganapathy, S., Gupta, R.

K., Shukla, P. K., Bouye, M., Hingaa, S. K., &

Mahmoud, A. (2022). Text-Based Emotion

Recognition Using Deep Learning Approach.

In V. Kumar (Ed.), Computational Intelligence

and Neuroscience, 2022, 1–8.

[7] Asghar, M. Z., Lajis, A., Alam, M. M.,

Rahmat, M. K., Nasir, H. M., Ahmad, H., Al-

Rakhami, M. S., Al-Amri, A., & Albogamy, F.

R. (2022). A Deep Neural Network Model for

the Detection and Classification of Emotions

from Textual Content. In M. Ahmad (Ed.),

Complexity, 2022, 1–12.

[8] Dr. Bhaludra R Nadh Singh et al. (2023).

Stress Based Detection on Social Interactions

in Social Networks. International Journal of

Scientific Research in Computer Science,

Engineering and Information Technology,

10(2), 78-81.

[9] Jasleen Kaur and Jatinderkumar R. Saini.

(2014). Emotion Detection and Sentiment

Analysis in Text Corpus: A Differential Study

with Informal and Formal Writing Styles.

International Journal of Computer

Applications, 101(9), 1-9.

[10] María Lucia Barron-Estrada et al. (2018).

Emotion Recognition for Education using

Sentiment Analysis. Research in Computing

Science, 148(5), 71-80.

[11] Acheampong, F. A., Wenyu, C., & Nunoo‐

Mensah, H. (2020). Text‐ based emotion

detection: Advances, challenges, and

opportunities. In Engineering Reports, 2(7).

[12] Shannee Ahirwar et al. (2023). SENTIMENT

ANALYSIS-EMOTION DETECTION.

International Research Journal of

Modernization in Engineering Technology and

Science, 5(11), 93-99.

[13] Machová K, Szabóova M, Paralič J and Mičko

J (2023) Detection of emotion by text analysis

using machine learning. Front. Psychol., 14,

1190326.

[14] Dhruvi D. Gosai et al. (2018). A Review on a

Emotion Detection and Recognization from

Text Using Natural Language Processing.

International Journal of Applied Engineering

Research, 13(9), 6745-6750.

[15] Er. Sanjeet Kumar et al. (2022). A Review on

Text Based Emotion Detection. International

Journal of Research Publication and Reviews,

3(12), 2783-2791.

[16] E. Poonguzhali et al. (2020). SENTIMENT

ANALYSIS AND RUMOUR DETECTION

IN ONLINE PRODUCT REVIEWS.

International Research Journal of Engineering

and Technology (IRJET), 7(3), 285-289.

[17] Braig, N., Benz, A., Voth, S., Breitenbach, J.,

& Buettner, R. (2023). Machine Learning

Techniques for Sentiment Analysis of COVID-

19-Related Twitter Data. In IEEE Access, 11,

14778–14803. Institute of Electrical and

Electronics Engineers (IEEE).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2187–2198 | 2198

[18] Jeong, E., Kim, G., & Kang, S. (2023).

Multimodal Prompt Learning in Emotion

Recognition Using Context and Audio

Information. In Mathematics, 11(13), 2908.

[19] David Griol et al. (2015). Fusion of Sentiment

Analysis and Emotion Recognition to Model

the User’s Emotional State. 18th International

Conference on Information Fusion

Washington, 1(1), 814-822.

[20] Shanmugavadivel, K., Sathishkumar, V. E.,

Raja, S., Lingaiah, T. B., Neelakandan, S., &

Subramanian, M. (2022). Deep learning based

sentiment analysis and offensive language

identification on multilingual code-mixed data.

In Scientific Reports, 12(1).

[21] F. A. Acheampong, C. Wenyu and H. Nunoo-

Mensah (2020). Text-Based Emotion

Detection: Advances, Challenges and

Opportunities, Engineering Reports, 201;00,

1–29.

[22] Xie, G., Liu, N., Hu, X., & Shen, Y. (2023).

Toward Prompt-Enhanced Sentiment Analysis

with Mutual Describable Information Between

Aspects. In Applied Artificial Intelligence,

37(1).

