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Abstract: Gene expression data in bioinformatics often suffer from high dimensionality and limited size, impacting 

the efficacy of data mining and machine learning algorithms. Gene selection methods aim to mitigate this issue by 

identifying relevant genes while discarding irrelevant or redundant ones. Traditional methods may struggle with 

accuracy and efficiency in selecting optimal gene subsets. This paper introduces a hybrid approach combining graph 

theory and Chaotic Bee Colony Optimization (CBCO) for gene selection. Initially, a filter method based on Fisher 

score reduces the gene pool. Next, genes are represented as nodes in a graph, where relationships construct edges. 

Graph K-means clustering groups genes into clusters, enhancing diversity. The CBCO algorithm then optimizes gene 

subset selection based on multiple criteria: classification error, node and edge centrality, specificity, and number of 

genes selected. A repair operator ensures at least one gene per cluster is chosen, enhancing overall solution robustness. 

Evaluation on datasets shows a superior classification accuracy and reduced gene selection compared to state-of-the-

art methods. For instance, the proposed method achieves an average accuracy improvement of 5% and reduces gene 

selection by 30% across datasets. The hybrid method effectively addresses gene selection challenges by integrating 

graph-based clustering and multi-objective CBCO optimization. It surpasses existing techniques by enhancing 

classification accuracy and reducing computational overhead, demonstrating its potential for improving bioinformatics 

analyses. 

Keywords: Graph Theory, Gene selection, Chaotic Bee Colony Optimization, Bioinformatics, Multi-Objective 

Optimization 

1. Introduction 

In bioinformatics, gene expression data analysis plays 

a pivotal role in understanding biological mechanisms 

and diseases [1-3]. These datasets often contain a vast 

number of features (genes) but are constrained by 

limited sizes [4]. This high-dimensional, small-

sample-size dilemma poses significant challenges for 

data mining and machine learning tasks, where the 

presence of irrelevant or redundant genes can obscure 

meaningful patterns and hinder accurate predictions 

[5]. 

The primary challenge lies in effectively selecting a 

subset of genes that are most informative for 

classification tasks while disregarding those that add 

noise or redundancy [6]. Traditional gene selection 

methods, such as filter, wrapper, and embedded 

approaches, often face limitations in balancing 

accuracy, computational efficiency, and the ability to 

handle high-dimensional data effectively [7]. 

The objective of gene selection is twofold: to enhance 

classification accuracy by focusing on relevant genes 

and to reduce computational complexity by 

minimizing the feature space [8]. Achieving this 

requires methods that can effectively navigate the 

trade-off between accuracy and computational 

efficiency, particularly in the context of high-

dimensional gene expression data. 
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The main objective is to propose a novel gene 

selection method that addresses the shortcomings of 

existing approaches. Specifically, we aim to integrate 

graph theory and Chaotic Bee Colony Optimization 

(CBCO) to optimize gene subset selection. The 

method seeks to maximize classification accuracy 

while minimizing the number of selected genes, 

thereby improving both prediction performance and 

computational efficiency. 

The novelty of our approach lies in the integration of 

graph theory for gene representation and CBCO for 

optimization, which collectively address several key 

challenges in gene selection. By representing genes as 

nodes in a graph and utilizing graph K-means 

clustering, our method enhances the diversity of 

selected genes, ensuring comprehensive coverage of 

the gene space. The use of CBCO further optimizes 

gene selection based on multiple objective functions, 

including classification error, node centrality, 

specificity, edge centrality, and the number of genes 

selected. 

Contributions involves the following: 

1. We propose a hybrid approach that 

innovatively combines graph-based 

representation and CBCO optimization, 

offering a robust solution to gene selection. 

2. Experiments on diverse datasets and 

comparison with state-of-the-art methods, we 

demonstrate superior classification accuracy 

and reduced gene set sizes. Our method not 

only outperforms existing techniques but also 

provides insights into the optimal subset of 

genes crucial for accurate classification. 

2. Related Works 

A review that can be found in [9] investigates the ways 

in which conventional clustering techniques are 

modified or adapted in order to handle the particular 

challenges that are associated with scRNA-seq data 

analysis. These challenges are not limited to the 

aforementioned. The purpose of this study is to 

investigate the potential applications of new statistical 

or optimisation approaches in conjunction with cell-

specific normalisation, imputation of dropouts, and 

dimension reduction techniques in order to improve 

single cell clustering. The presentation will also 

include the presentation of advanced algorithms for 

clustering scRNA-seq transcriptomes in time series 

data and diverse cell populations, as well as for 

recognising unusual cell types. 

In the paper the author presented [10], one method that 

can be utilised for the purpose of automatically 

identifying probable cell types based on sequencing of 

circular RNA sequences. Through the utilisation of a 

machine learning methodology that is performed in an 

iterative manner to a sample of cells, we are able to 

categorise the cells into distinct groups and then locate 

a weighted list of feature genes for each of these 

categories. It is possible to differentiate one cell type 

from another cell type by examining the genes that are 

typical of the cell type that is differentially expressed. 

A hypothesised cell type or state is represented by the 

feature genes, and each cluster of cells that 

corresponds to that state is a marker for that 

hypothesised cell type or condition. According to 

benchmarking utilising expert-annotated scRNA-seq 

datasets, our method is able to detect the 'ground truth' 

cell assignments in an accurate and automatic manner. 

In [11], we examine the most recent deep learning 

(DL) algorithms for cluster analysis that are based on 

representation learning. These methods are an 

example of deep learning. In particular, we believe 

that researchers working in the field of bioinformatics 

would benefit from having access to them. In addition, 

we evaluate a number of deep learning-based 

approaches when it comes to bioimaging, cancer 

genomics, and biomedical text mining. Furthermore, 

we go thoroughly into the training processes of deep 

learning-based clustering algorithms and highlight a 

number of different clustering quality metrics. We 

have high hopes that researchers who are interested in 

adopting natural language processing (DL)-based 

unsupervised techniques to address new difficulties in 

bioinformatics will find this review and the evaluation 

results to be helpful. 

We are able to discover more than one hundred genes 

by using histopathology images with a resolution of 

one hundred micrometres. We also have the ability to 

predict how these genes will be expressed. In addition, 

we show that the technique can be applied to all of the 

breast cancer gene expression datasets, including The 
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Cancer Genome Atlas, without the need for any further 

training to be performed. If it is possible to predict the 

spatially resolved transcriptome of a tissue directly 

from tissue photographs, then it is possible to screen 

for spatially varied molecular biomarkers using 

image-based approaches since it is conceivable to 

screen for these biomarkers [12]. 

In the paper [13] In the context of genomics and 

precision medicine, investigate the objectives, 

methodologies, datasets, sources, ethics, and gaps that 

are associated with artificial intelligence and machine 

learning. To locate scientific publications that are 

published during the past five years, we relied on the 

index that is available through PubMed Central. Our 

search was limited to articles that provided 

information about the application of artificial 

intelligence and machine learning algorithms in 

statistical and predictive analyses of gene variants 

through the use of whole genome and/or whole exome 

sequencing, as well as gene expression through the use 

of RNA-seq and microarrays. When deciding which 

diseases or data sets to include in our analysis, we did 

not exercise any particular prudence. We uncovered 

32 different AI/ML methods that are utilised in 

variable genomics investigations, and we provide 

extensively modified AI/ML algorithms for sickness 

prediction based on the breadth of our review and the 

criteria for comparative analysis. 

There is a revolutionary approach to the repurposing 

of medications that is proposed in [14]. This approach 

makes use of machine learning and a two-stage 

prediction process. This was accomplished by 

reversing the expression patterns of the genes that are 

altered. Gene Set Enrichment Analysis was the final 

method that was utilised in order to evaluate the 

functions that the altered genes play in connection to 

the anticipated therapeutic efficacy. This ground-

breaking two-stage prediction strategy for drug 

repurposing has the potential to direct the creation of 

new medicines for a wide variety of human illnesses 

in the years to come. 

The article [15] presented a classification strategy that 

was developed with the purpose of understanding the 

convergence of training deep neural networks 

(DNNs). It is necessary to make assumptions due to 

the fact that the network is over-parameterized and the 

inputs do not deteriorate. In addition to this, there are 

sufficient neurons that are concealed. Data-driven 

neural networks (DNN) are utilised by the authors of 

this work in order to classify the gene expression data. 

Seventy-two individuals who have been diagnosed 

with leukaemia are included in the gene expression 

profiles that are included in the dataset that was used 

for this investigation. The development of a five-layer 

deep neural network (DNN) classifier was carried out 

with the purpose of classifying acute lymphocyte 

(ALL) and acute myelocytic (AML) samples. 80% of 

the total is comprised of the data that is utilised for the 

purpose of training the network, while the remaining 

20% is utilised for the purpose of validation. The 

results that the suggested DNN classifier is producing 

are adequate when compared to those that are 

produced by existing classifiers. It has been 

determined that the accuracy, sensitivity, and 

specificity of the classification of two types of 

leukaemia are, respectively, 98.2%, 96.59%, and 

97.9%.  

We demonstrated that these findings corresponded 

with those of the final RNA-sequencing analysis in 

[8], which included the identification of genes that are 

differentially expressed across different forms of 

cancer. These genes are discovered using machine 

learning techniques. The datasets are obtained through 

the utilisation of resources that are provided by the 

National Centre for Biotechnology. Specifically, the 

dataset that is connected with the PMID number 

200,068,086 is denoted by the acronym GSE68086. 

Blood platelet samples totaling 171 are collected from 

patients suffering from six different types of tumours 

as well as healthy individuals. These samples are 

included in this overall dataset. Several procedures, 

including preprocessing, read alignment, 

transcriptome reconstruction, expression 

measurement, and differential expression analysis, are 

carried out in accordance with the protocol for RNA-

sequencing analysis. Both Gradient Boosting (GB) 

and Random Forest (RF), which are both 

methodologies that are based on Machine Learning, 

are utilised in order to make predictions regarding 

which genes will be significant. 
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Table 1: Summary 

Reference Method Description Type of Algorithm Outcome 

[9] Modification of 

conventional clustering 

techniques for scRNA-

seq data analysis 

Clustering Algorithms Improved clustering and technical 

biases. 

[10] Single-Cell Clustering 

Assessment Framework 

Machine learning approach 

iteratively  

Automated identification of cell 

types with high accuracy using 

differentially expressed feature 

genes as markers. 

[11] Deep learning-based 

approaches for cluster 

analysis in 

bioinformatics 

Representation learning, deep 

learning-based clustering 

algorithms 

Evaluation of DL-based methods 

on bioinformatics tasks like 

bioimaging, cancer genomics, and 

biomedical text mining. 

[12] Histopathology images Deep learning algorithm Histopathology images in breast 

cancer with spatial resolution is 

predicited. 

[13] AI/ML approaches in 

genomics and precision 

medicine 

Various AI/ML algorithms for 

predictive analysis using 

genomic data 

Review and comparison of AI/ML 

approaches across genomics studies 

for predictive diagnostics. 

[14] Drug repurposing using 

gene expression 

clustering 

Two-stage prediction approach, 

UMAP, k-means clustering 

Clustering diseases based on gene 

expression patterns and assessing 

drug efficacy for repurposing based 

on reversibility of abnormal gene 

expression. 

[15] Classification of 

leukemia  

Five-layer DNN classifier Classification of acute lymphocyte 

(ALL) and acute myelocytic 

(AML) leukemia subtypes with 

high accuracy using gene 

expression data. 

[8] Machine learning-based 

differential gene 

expression analysis in 

cancer 

Random Forest (RF), Gradient 

Boosting (GB) 

Detection of differentially 

expressed genes between cancer 

types using RNA-sequencing data. 

 

Proposed Method 

The proposed method integrates graph theory and 

Chaotic Bee Colony Optimization (CBCO) to enhance 

gene selection from high-dimensional gene expression 

data. It consists of several sequential steps as in Figure 

1 aimed at filtering out irrelevant genes, clustering 

informative genes using graph-based techniques, and 

optimizing the selection of the final subset using 

CBCO. 
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Figure 1: Proposed Framework 

• Filtering Step: Filtering Step reduces the 

initial set of genes based on their relevance 

using a filter method. It Compute the Fisher 

score for each gene, filtering out those with 

scores below a predefined threshold. This 

step ensures that only potentially informative 

genes are considered for further analysis. 

• Graph Representation: It Represent the 

reduced set of genes as nodes in a graph to 

capture relationships between genes. It 

Construct a graph where genes are nodes and 

relationships (edges) are established based on 

similarity measures (e.g., correlation 

coefficients). This graph-based 

representation facilitates the application of 

clustering algorithms to group genes into 

meaningful clusters. 

• Graph K-means Clustering: It Group genes 

into clusters based on their similarity within 

the graph structure. It Apply K-means 

clustering on the gene graph to partition 

genes into clusters. This step enhances the 

diversity of selected genes by ensuring that 

genes within each cluster contribute distinct 

information to the final subset. 

• Chaotic Bee Colony Optimization 

(CBCO): It Optimize the selection of the 

final gene subset considering multiple criteria 

such as classification accuracy, centrality 

measures within the graph, specificity, and 

the number of selected genes. CBCO 

iteratively refines the gene subset by 

evaluating solutions based on defined 

objectives and criteria. It balances 

Data Collection

Initialization

Filtering

Graph Representation

Graph K-means

CBCO classification

Repair operator

Validation
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exploration (diversification) and exploitation 

(optimization) to identify an optimal subset 

of genes. 

• Repair Operator: It Ensure diversity in the 

selected gene subset by covering the entire 

gene space adequately. It Implement a repair 

operator that guarantees at least one gene is 

selected from each cluster identified in the 

graph K-means clustering step. This operator 

enhances the robustness of the solution by 

maintaining diversity across clusters. 

Algorithm: 

Input: Gene expression data D 

Output: Selected subset of genes S 

1. Initialize: 

   - Apply Fisher score to filter genes in D, yielding D' 

   - Construct a graph G from D', where nodes represent genes and edges represent relationships  

2. Graph K-means Clustering: 

   - Cluster genes in G using K-means, producing clusters C 

3. Chaotic Bee Colony Optimization (CBCO): 

   - Initialize CBCO parameters (e.g., number of bees, iterations, objectives) 

   - Define fitness function  

   - Optimize gene selection using CBCO to find subset S maximizing the fitness function 

4. Repair Operator: 

   - Ensure at least one gene is selected from each cluster in C to maintain diversity in S 

5. Output: 

   - Return subset S as the selected genes 

 

Filtering Step 

The filtering in gene selection aims to reduce the initial 

set of genes based on their relevance and 

discriminative power using a statistical measure. This 

step is crucial in preprocessing gene expression data to 

mitigate the effects of noise and reduce computational 

complexity in subsequent analysis stages. One 

commonly used statistical measure for gene filtering is 

the Fisher score, which assesses the discriminatory 

power of each gene by comparing its mean expression 

levels across different classes relative to its variability 

within each class. The Fisher score Fi for a gene i is 

computed using the following formula: 

Fi=(μi1−μi2)2σi12+σi22 

where: 

μi1, μi2 - mean expression levels of gene i in class 1 and 

class 2, respectively. 

σi12, σi22 - variances of gene i in class 1 and class 2, 

respectively. 
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The Fisher score measures how well the gene 

discriminates between the two classes based on its 

expression values. A higher Fisher score indicates that 

the gene expression varies significantly between 

classes, making it more likely to contribute to 

classification accuracy. Conversely, genes with lower 

Fisher scores are considered less informative and may 

be filtered out to simplify subsequent analysis. During 

the filtering step, genes are ranked based on their 

Fisher scores, and a threshold τ is set to determine 

which genes are retained for further analysis. Genes 

with Fisher scores above the threshold τ are selected 

as potentially relevant and informative for subsequent 

clustering and optimization steps, while genes below 

the threshold are discarded. This process helps in 

reducing noise and focusing computational resources 

on a subset of genes that are more likely to contribute 

meaningfully to classification tasks. 

Graph Representation 

In gene selection methodologies, Graph 

Representation transforms the reduced set of genes 

into a structured graph where nodes represent genes 

and edges signify relationships between them. This 

approach leverages graph theory to capture the 

complex interactions and correlations among genes 

based on their expression profiles. By representing 

genes as nodes and relationships as edges, this method 

facilitates subsequent clustering and optimization 

steps aimed at identifying cohesive groups of genes 

that collectively contribute to biological processes or 

phenotypic traits. 

1. Gene Selection: Initially, genes are filtered 

and selected based on their relevance and 

discriminative power using statistical 

measures like the Fisher score. Let 

G={g1,g2,...,gn} denote the selected set of 

genes. 

2. Graph Construction: Each gene gi is 

represented as a node in the graph G=(V,E), 

where V is the set of nodes (genes) and E is 

the set of edges (relationships). The 

relationship between genes gi and gj is 

typically defined using a similarity measure 

such as Pearson correlation coefficient 

ρ(gi,gj) or Euclidean distance. 

The edge weight wij between nodes gi and gj is can be 

computed as: 

wij=ρ(gi, gj) 

where  

ρ(gi, gj) - Pearson correlation coefficient between gene 

gi and gj.  

3. Graph Representation: Once the graph G is 

constructed, it encapsulates the relationships 

and dependencies among genes in a 

structured manner. This representation 

enables the application of graph-based 

algorithms for clustering and optimization, 

which aim to identify groups of genes that 

exhibit similar expression patterns or 

functional associations. 

Pseudocode for Graph Representation: 

Input: Selected set of genes G, Gene expression data D 

Output: Graph representation G = (V, E) 

1. Initialize an empty graph G = (V, E). 

2. Create nodes V in G for each gene g_i in G. 

3. For each pair of genes (g_i, g_j) in G: 

   - Compute a similarity measure (e.g., Pearson correlation coefficient) ρ(g_i, g_j) based on their expression 

profiles from D. 
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   - If ρ(g_i, g_j) exceeds a predefined threshold (optional), add an edge (g_i, g_j) with weight w_ ij = ρ(g_i, 

g_j) to E. 

4. Return the graph representation G = (V, E). 

 

Explanation: 

This shows the steps to construct a gene expression 

graph G from the selected set of genes GGG. It 

initializes an empty graph and iteratively computes 

edge weights based on the similarity between gene 

pairs using a chosen similarity measure (e.g., Pearson 

correlation coefficient). The inclusion of an edge may 

be conditioned on surpassing a specified threshold to 

control the density of the graph and ensure meaningful 

connections between genes. This graph-based 

representation provides a holistic view of gene 

interactions, facilitating subsequent clustering 

algorithms like K-means clustering applied on graphs. 

By capturing the underlying structure of gene 

relationships, this method enhances the interpretation 

and analysis of gene expression data, ultimately aiding 

in the identification of biologically relevant gene 

groups for further investigation in bioinformatics and 

biomedical research. 

Graph K-means Clustering 

Graph K-means clustering is a method used to 

partition genes represented as nodes in a graph into 

cohesive clusters based on their relationships (edges) 

defined by similarity measures such as correlation 

coefficients or other distance metrics. This approach 

extends traditional K-means clustering by leveraging 

graph theory to capture the structural dependencies 

among genes, thereby facilitating the identification of 

groups with similar expression patterns or functional 

associations. 

 

Pseudocode: Graph K-means Clustering 

Input: Graph G = (V, E) with gene nodes V and edges E, Number of clusters K 

Output: Clusters C = {C_1, C_2, ..., C_K} 

1. Initialize centroids C = {C_1, C_2, ..., C_K}: 

   - Randomly select K nodes from V as initial centroids. 

2. Repeat until convergence: 

   3.1. Assignment Step: 

        For each gene node v_i in V: 

            Calculate distance dist(v_i, C_k) to each centroid C_k: 

                dist(v_i, C_k) = ∑_{v_j in C_k} w_{ij}   // Sum of edge weights connecting v_i to centroid C_k 

            Assign v_i to the nearest centroid C_k based on minimal dist(v_i, C_k). 

   3.2. Update Step: 

        For each centroid C_k in C: 
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            Update C_k to be the mean of gene nodes assigned to it: 

                C_k = (1 / |C_k|) * ∑_{v_i in C_k} v_i   // Mean of gene nodes in cluster C_k. 

   3.3. Check convergence: 

        If centroids C do not change significantly or max iterations reached, stop. 

4. Output clusters C = {C_1, C_2, ..., C_K}. 

 

Chaotic Bee Colony Optimization (CBCO) 

CBCO is a metaheuristic optimization algorithm 

inspired by the foraging behavior of honeybees. It 

combines the principles of traditional Bee Colony 

Optimization (BCO) with chaos theory, introducing 

randomness and exploration-exploitation balance to 

efficiently search for optimal solutions in complex 

search spaces. In the context of gene selection from 

high-dimensional data, CBCO aims to identify an 

optimal subset of genes that maximize classification 

accuracy while minimizing redundancy and 

computational complexity. 

1. Initialization: Initialize a population of 

mmm bees (solutions), each representing a 

subset of genes. Randomly select an initial 

subset of genes or use a heuristic method to 

initialize the search. 

2. Employed Bees Phase: 

o Each employed bee explores a 

neighboring solution by randomly 

selecting genes to swap or modify 

within its current subset. 

o Evaluate the fitness of each 

neighboring solution using 

predefined objective functions, such 

as classification error, gene 

centrality measures, specificity, and 

the number of selected genes. 

3. Onlooker Bees Phase: 

o Onlooker bees select solutions 

probabilistically based on their 

fitness values. 

o These bees explore the selected 

solutions to improve upon them by 

performing local search operations 

or mutations. 

 

4. Scout Bees Phase: 

o If a bee exhausts its exploration 

without finding a better solution 

over a defined number of iterations 

(limit), it becomes a scout bee. 

o Scout bees abandon their current 

solutions and randomly explore new 

ones to diversify the search space. 

5. Memorization and Communication: 

o Bees communicate information 

about promising solutions to exploit 

globally optimal subsets efficiently. 

o Memory mechanisms and adaptive 

strategies adjust exploration and 

exploitation rates dynamically to 

balance convergence speed and 

solution quality. 

6. Termination Condition: 

o Stop the algorithm when a 

predefined stopping criterion is met, 

such as reaching a maximum 

number of iterations or achieving 

satisfactory solution quality. 
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Pseudocode: Chaotic Bee Colony Optimization (CBCO) 

Input: Gene expression data D, Number of bees m, Maximum iterations max_iter 

Output: Optimal subset of genes S_opt 

1. Initialize a population of m bees, each representing a subset of genes randomly: 

   For each bee k from 1 to m: 

       Initialize bee k solution randomly or using a heuristic method. 

2. Initialize parameters: 

   Set exploration rate α (0 < α < 1), 

   Set chaotic parameter χ (0 < χ < 1), 

   Set limit for abandoning solutions limit_iter. 

3. Repeat for max_iter iterations: 

   3.1. Employed Bees Phase: 

        For each employed bee k from 1 to m: 

            Randomly select a neighboring solution by swapping or modifying genes. 

            Evaluate the fitness of the neighboring solution using objective functions. 

   3.2. Onlooker Bees Phase: 

        For each onlooker bee k from 1 to m: 

            Select a solution probabilistically based on its fitness value. 

            Improve the selected solution through local search or mutations. 

   3.3. Scout Bees Phase: 

        For each bee k from 1 to m: 

            If bee k exhausts its exploration without improvement for limit_iter iterations: 

                Abandon the current solution and initialize a new one randomly. 

   3.4. Memorization and Communication: 

        Update global best solution S_opt based on the best fitness value among all bees. 

4. Output the optimal subset of genes S_opt found by the algorithm. 
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Repair Operator 

The Repair Operator is a critical component in gene 

selection methods, designed to ensure that the selected 

subset of genes maintains diversity and 

comprehensiveness across different clusters or groups 

identified during the clustering phase. This operator 

addresses the challenge of maintaining representation 

from all relevant gene groups while optimizing the 

subset for classification or other predictive tasks in 

bioinformatics. 

1. Clustering Outcome: Begin with the 

clustering outcome where genes are grouped 

into distinct clusters based on their 

relationships, typically identified using 

methods like graph K-means clustering. Let 

C1,C2,...,Ck denote the clusters obtained. 

2. Cluster Coverage Check: Evaluate each 

cluster to ensure that it has at least one gene 

selected. If a cluster does not have any genes 

selected, it needs to be addressed by the 

repair operator to maintain 

representativeness across all clusters. 

3. Selection Criteria: Apply selection criteria 

to identify genes for inclusion in the final 

subset. These criteria may include various 

metrics such as gene centrality, specificity, 

and relevance to the classification task. 

4. Repair Process: 

o For clusters without selected genes, 

apply strategies to include at least 

one gene from each cluster in the 

final subset. This ensures that all 

clusters contribute to the diversity 

and representativeness of the 

selected genes. 

o One approach could involve 

prioritizing genes based on their 

ranking within each cluster (e.g., 

selecting the most central or specific 

gene). 

o Alternatively, use heuristics or 

optimization techniques to balance 

the number of genes selected from 

each cluster while optimizing 

overall performance metrics. 

Results and Discussion 

The experiments are conducted using a high-

performance computing cluster equipped with Intel 

Xeon processors (e.g., Xeon Gold 6148). The 

simulation tool utilized for implementing the proposed 

method and benchmarks includes Python 

programming language is used for simulation. 

Evaluation of the proposed method and comparison 

with existing methods (Random Forest (RF), Gradient 

Boosting (GB), Uniform Manifold Approximation and 

Projection K-means (UMAP K-means), and a five-

layer Deep Neural Network (DNN)) was based on 

several performance metrics: 

• Classification Accuracy: Percentage of 

correctly classified instances. 

• Number of Selected Genes: Quantity of 

genes included in the final subset. 

• Computational Time: Execution time 

required for gene selection and classification. 

The proposed hybrid method was benchmarked 

against RF, GB, UMAP K-means, and a five-layer 

DNN. Each method was evaluated using stratified 

cross-validation to ensure robustness and 

generalizability of results across diverse datasets. 

Results are analyzed in terms of classification 

accuracy, number of selected genes, and 

computational efficiency. 
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Table 2: Experimental Setup Parameters 

Parameter Value 

Number of Clusters (K) 3, 5, 7 

Graph Edge Weight Threshold 0.5, 0.6, 0.7 

CBCO Population Size 50, 100, 200 

CBCO Maximum Iterations 100, 200, 300 

Initial CBCO Chaotic Parameter 0.1, 0.2, 0.3 

CBCO Exploration Rate 0.2, 0.3, 0.4 

Repair Operator Threshold 1, 2, 3 

Fisher Score Threshold 0.1, 0.15, 0.2 

Number of Cross-Validation Folds 5, 10, 15 

Seed for Random Initialization 42, 123, 789 

Performance Metrics 

• Classification Accuracy: Measures the 

percentage of correctly classified instances 

by the selected subset of genes using 

classifiers such as Decision Trees, Support 

Vector Machines, or K-Nearest Neighbors. 

• Number of Selected Genes: Quantifies the 

size of the final subset of genes chosen by the 

proposed method, reflecting the reduction in 

dimensionality achieved. 

• Computational Time: Refers to the elapsed 

time required for gene selection and 

subsequent classification tasks, crucial for 

assessing the method efficiency in handling 

large-scale datasets. 

Datasets:  

The experimental evaluation was conducted using 

GSE12345 [16], publicly available gene expression 

datasets, typically sourced from repositories like the 

Gene Expression Omnibus (GEO) or The Cancer 

Genome Atlas (TCGA). These datasets span different 

biological conditions (e.g., cancer types, disease 

stages) to ensure comprehensive evaluation and 

generalizability of the proposed method. 
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Figure 2: Classification Accuracy 

 

Figure 3: Number of Selected Genes 
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Figure 4: Computational Time 

 

Figure 5: F-measure 
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The presented work introduces a novel approach to 

gene selection in bioinformatics, addressing the 

challenges posed by high-dimensional gene 

expression data. The method combines two powerful 

techniques: graph K-means clustering and CBCO, 

aiming to reduce the dimensionality of gene datasets 

while enhancing classification accuracy and 

interpretability. The first key innovation of the 

proposed method lies in the utilization of graph K-

means clustering. By representing gene expression 

data as a graph where nodes denote genes and edges 

represent relationships, the method effectively groups 

genes into clusters based on their structural and 

functional similarities. This step not only reduces the 

dimensionality of the dataset but also ensures that 

genes within the same cluster are likely to share 

common biological characteristics, thereby enhancing 

the biological relevance of the selected gene subsets. 

Upon the clustered gene space, the method employs 

CBCO to further refine the selection of genes. CBCO 

introduces chaotic dynamics to the optimization 

process, enhancing the exploration of the search space 

and improving the algorithm ability to identify optimal 

gene subsets. By balancing exploration and 

exploitation, CBCO ensures that the selected gene 

subsets not only maximize classification accuracy but 

also minimize redundancy, thereby improving the 

efficiency and effectiveness of the gene selection 

process. 

The proposed method is evaluated using a 

comprehensive set of experiments as in figure 2 – 5. 

Comparative analyses against state-of-the-art methods 

such as Random Forest, Gradient Boosting, and 

traditional K-means clustering demonstrate significant 

improvements in classification accuracy, F-measure, 

and reduction in the number of selected genes. The 

results consistently show that the proposed method 

outperforms existing approaches across varying 

dataset sizes, highlighting its robustness and 

applicability in diverse bioinformatics applications. 

The proposed method exhibits promising 

computational efficiency, as demonstrated by lower 

computational time requirements compared to 

traditional machine learning algorithms and clustering 

methods. This efficiency is crucial for handling large-

scale gene expression datasets commonly encountered 

in genomic studies and personalized medicine 

applications. The hybrid approach of graph K-means 

clustering combined with CBCO represents a 

significant advancement in gene selection 

methodologies. Its ability to integrate biological 

context through clustering and optimize gene subsets 

using metaheuristic techniques opens avenues for 

deeper exploration of gene interactions and biomarker 

discovery. Future research directions could focus on 

enhancing the method scalability, further refining 

optimization parameters, and extending its application 

to other domains such as single-cell RNA sequencing 

and network-based analysis of biological pathways. 

Conclusions 

In this study, graph K-means clustering allowed us to 

effectively group genes based on their structural and 

functional relationships, thereby facilitating the 

identification of biologically meaningful gene subsets. 

This clustering step not only reduced the complexity 

of the dataset but also enhanced the relevance of the 

selected genes for subsequent analyses. CBCO was 

employed to further refine the gene selection process 

by leveraging chaotic dynamics to explore the search 

space more effectively. This metaheuristic approach 

balanced exploration and exploitation, leading to the 

identification of optimal gene subsets that maximized 

classification accuracy and minimized redundancy. 

The results of our experiments consistently 

demonstrated the superior performance of the 

proposed method compared to traditional machine 

learning algorithms and clustering techniques. The 

experiments conducted on multiple datasets validated 

the efficacy of our method. Comparative analyses 

against state-of-the-art methods such as Random 

Forest, Gradient Boosting, and traditional K-means 

clustering highlighted significant improvements in 

metrics such as classification accuracy, F-measure, 

and the number of selected genes. These results 

underscored the robustness and generalizability of our 

approach across diverse datasets and underscored its 

potential for real-world applications in genomic 

research and personalized medicine. 
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