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Abstract: Sign language interpretation via real-time vision-based systems presents a complex challenge due to the intricate nature of sign 

language gestures and the variability in human motion. Effective interpretation requires robust systems that can handle the nuances of 

visual data and translate them into comprehensible text or speech. This study explores the efficacy of various deep learning architectures 

in improving the accuracy and reliability of sign language interpretation. Specifically, the application of Long Short-Term Memory (LSTM) 

and Gated Recurrent Unit (GRU) alongside simpler Artificial Neural Networks (ANN) with different activation functions such as Rectified 

Linear Unit (ReLU) and Leaky ReLU (LReLU). Through experiments, research shows that LSTM and GRU are particularly effective for 

continuous frame data due to their ability to process temporal sequences, simpler ANNs with targeted hyperparameter tuning for static 

frames. The study provides a comparative analysis, revealing that GRU outperforms LSTM in handling short sequences, and that there is 

negligible performance difference between ANNs using ReLU and LReLU for single-frame interpretation. Findings contribute to the 

ongoing efforts to refine and enhance technological solutions for the deaf and mute communities, ensuring more accessible and effective 

communication tools. The research underscores the importance of clean input data and highlights specific preprocessing techniques that 

aid in focusing on relevant data points, thus significantly boosting the performance of vision-based sign language interpretation systems. 
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1. Introduction: 

In the realm of communication, sign language stands as a 

vital conduit for the deaf and hard-of-hearing 

communities. Despite its importance, persistent barriers 

in automated sign language interpretation have limited its 

accessibility and integration into digital communication 

platforms. Recent advances in deep learning and 

computer vision have opened new avenues for addressing 

these challenges, providing the potential to revolutionize 

how sign language is interpreted in real-time. This study 

explores the development of a deep learning-based 

system designed to enhance the accuracy and speed of 

vision-based sign language interpretation. By leveraging 

state-of-the-art neural network architectures, recurrent 

neural networks (RNNs), this system aims to decode 

complex sign language gestures from video input with 

high precision. The integration of these technologies 

addresses critical issues such as varying lighting 

conditions, diverse signer backgrounds, and a wide range 

of signing speeds. Furthermore, this approach 

underscores the importance of scalable and adaptable 

models that can learn from a vast dataset of sign language 

gestures, ensuring inclusivity and robustness.  

Through a detailed examination of model architecture, 

training processes, and real-world application scenarios, 

this study aims to contribute significantly to the field of 

accessible communication technologies, bridging the gap 

between technological advances and community needs. 

Real-time vision-based sign language interpretation using 

deep learning has emerged as a pivotal technology to 

bridge communication gaps between the deaf community 

and the hearing majority. This approach leverages 

advanced deep learning techniques to accurately and 

efficiently translate sign language into text or speech, 

significantly enhancing accessibility and inclusivity. 

Traditional methods of sign language interpretation, 

which rely heavily on human interpreters or sensor-based 

systems, face limitations such as high costs, limited 

availability, and user-unfriendliness (Aloysius & Geetha, 

2020). 

Recent advancements in deep learning and computer 

vision have enabled the development of robust models 

capable of interpreting sign language with high accuracy. 

Recurrent neural networks (RNNs) have been particularly 

effective in recognizing and translating sign language 

gestures. For instance, the transformer model combined 

with ResNet50 embeddings has outperformed traditional 

sequence-to-sequence models in translating German, 

American, and Chinese sign languages (Ananthanarayana 

et al., 2021). Moreover, integrating sensor fusion 
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techniques with deep learning has proven to be a 

promising approach. By combining inertial measurement 

units (IMUs), researchers have achieved impressive 

recognition rates for dynamic ASL gestures, 

demonstrating the potential for real-time applications 

without the constraints of visual angles (Lee, Chong, & 

Chung, 2020). The deployment of these deep learning 

models in real-time environments has been facilitated by 

tools such as the MediaPipe library and LSTM 

algorithms, which have shown substantial accuracy in 

recognizing motion-based ASL phrases and can be 

integrated into mobile applications for practical use (Ru 

& Sebastian, 2023). In addition to the advancements in 

deep learning models for static and dynamic sign 

language recognition, research has shown the benefits of 

employing hybrid approaches. These approaches 

combine multiple deep learning techniques to improve 

overall system performance. For instance, hybrid models 

utilizing both Long Short-Term Memory (LSTM) 

networks for capturing temporal dynamics for spatial 

feature extraction have demonstrated remarkable 

accuracy and robustness in recognizing continuous sign 

language sequences (Cui, Liu, & Zhang, 2017). 

Sensor-based methods integrated with deep learning have 

addressed several challenges associated with vision-

based systems. By employing inertial measurement units 

(IMUs), researchers have achieved high recognition rates 

for dynamic ASL gestures, thus offering solutions that are 

not constrained by visual angles and environmental 

factors (Lee, Chong, & Chung, 2020). This sensor fusion 

approach demonstrates the potential for developing smart 

wearable systems that can provide real-time sign 

language interpretation in diverse settings. The 

development and deployment of real-time sign language 

interpretation systems have been facilitated by advanced 

software libraries and frameworks. For instance, the use 

of the MediaPipe library combined with LSTM 

algorithms has enabled the creation of mobile 

applications capable of recognizing motion-based ASL 

phrases with substantial accuracy (Ru & Sebastian, 2023). 

These applications highlight the feasibility of integrating 

deep learning models into user-friendly platforms for 

practical use. Another notable advancement in the field is 

the use of transfer learning and vision transformers. These 

techniques have been particularly effective in recognizing 

complex sign languages, such as Arabic Sign Language 

(ArSL). Transfer learning models, such as ResNet and 

InceptionResNet, along with vision transformers like ViT 

and Swin, have demonstrated high accuracy and 

efficiency in classifying sign language gestures, thus 

showcasing the potential for applying these methods to 

low-resourced languages (Alharthi & Alzahrani, 2023).  

A comprehensive review of significant research on 

enhancing real-time vision-based sign language 

interpretation using deep learning approaches. The 

studies cover various techniques, including sensor fusion, 

recurrent convolutional neural networks, and transfer 

learning. These studies collectively contribute to the 

advancement of accurate and efficient sign language 

recognition systems as shown in table1. 

Table 1: Summary of Research studies on Deep Learning Approaches for Sign Language Interpretation 

Title Authors Year Summary 

Understanding Vision-Based 

Sign Language Recognition Aloysius & Geetha 2020 

Examines traditional and vision-based 

methods for sign language recognition, 

highlighting limitations and potential. 

Deep Learning Methods for Sign 

Language Translation Ananthanarayana et al. 2021 

Compares various deep learning 

models like CNNs and sequence-to-

sequence models for sign language 

translation. 

Sensor Fusion of Motion-Based 

Sign Language Interpretation Lee, Chong, & Chung 2020 

Utilizes sensor fusion combining 

IMUs with CNNs to recognize 

dynamic ASL gestures, achieving high 

accuracy. 

Real-Time American Sign 

Language (ASL) Interpretation Ru & Sebastian 2023 

Employs MediaPipe and LSTM 

algorithms to create a mobile app for 

recognizing motion-based ASL 

phrases. 

Recurrent Convolutional Neural 

Networks for Continuous Sign 

Language Recognition Cui, Liu, & Zhang 2017 

Uses RCNNs for continuous sign 

language recognition, translating sign 

sequences into text or speech. 

Vision Transformers and 

Transfer Learning Approaches 

for Arabic Sign Language Alharthi & Alzahrani 2023 

Applies transfer learning and vision 

transformers to recognize Arabic Sign 

Language gestures, demonstrating 

high efficiency. 
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The studies summarized in this table1 shows the 

significant advancements made in the field of vision-

based sign language interpretation through deep learning 

approaches. The integration of various techniques, such 

as sensor fusion, recurrent convolutional neural networks, 

and transfer learning, has demonstrated substantial 

improvements in the accuracy and efficiency of sign 

language recognition systems. 

Indian Sign Language (ISL) interpretation is a crucial 

means of communication for the deaf and mute 

community in India. It involves the use of visual-manual 

modality to convey meaning, as opposed to the auditory-

verbal communication used by hearing individuals. ISL 

interpretation enables people who are deaf or hard of 

hearing to access information, education, and engage in 

everyday communication, thereby playing a vital role in 

their social inclusion and equal participation in society. 

Sign language interpretation remains a vital and evolving 

field in the realm of communication technologies, 

particularly for the hearing and vocally impaired 

community. Recent advancements have focused on 

leveraging spatial-temporal models and neural networks 

to enhance the accuracy and effectiveness of Indian Sign 

Language (ISL) interpretation. The integration of these 

advanced computational models promises to bridge 

communication gaps and offer new avenues for 

interaction and understanding.  

Research on a Deep Convolution Neural Network Model 

for ISL Classification highlights the significant progress 

in solving image classification problems. This model, 

evaluated on a large dataset of sign images, demonstrates 

high accuracy, showcasing the model's efficiency in 

recognizing various static signs (Dangarwala & Hiran, 

2020). Wadhawan and Kumar (2020) focused on the 

recognition of static signs in ISL using deep learning-

based convolutional neural networks. Launching public 

awareness campaigns to dispel myths and stereotypes 

about deafness and sign language, highlighting the 

capabilities and achievements of the deaf community. 

Fostering partnerships between governmental bodies, 

non-governmental organizations (NGOs), educational 

institutions, and the private sector to support and promote 

ISL and deaf culture. Mittal et al. (2019). This research 

proposes a modified LSTM model for continuous sign 

language recognition, focusing on sequences of 

connected gestures in Indian Sign Language. 

The journey towards fully realizing the potential of Indian 

Sign Language interpretation is ongoing. It requires the 

collective effort of the government, private sector, 

educational institutions, and the community.  

2.Literature Review  

The relationships between different sign languages, 

suggesting that, despite lateral transmission and 

interference, some sign languages, like ASL and French 

Sign Language (FSL), descend from common ancestors. 

This concept is essential for tracing the historical roots of 

ISL and its connections to other sign languages (Reagan, 

2021). Sign languages naturally emerge wherever there 

are deaf people. The history of ASL, for example, sheds 

light on how sign languages develop and gain recognition 

over time. This context is crucial for understanding the 

evolution of ISL and its place within the global sign 

language family (Fischer, 2015). Historical linguistics 

offers insights into the development of sign languages, 

with research often focusing on how these languages have 

evolved over time. Although the direct history of ISL 

might not be extensively documented, the study of sign 

languages from a historical perspective is crucial for 

understanding the evolution of ISL (Ruben, 2005). 

2.1 Early methods of ISL communication and their 

evolution. 

The theory that language evolved from manual gestures, 

with evidence from signed languages sharing essential 

linguistic characteristics with spoken languages, supports 

the notion of sign languages' deep-rooted history. This 

perspective is essential for understanding the 

foundational aspects of ISL's development (Corballis, 

2008). Advances in technology have enabled the 

development of sign language recognition systems, 

aiming to bridge the communication gap for deaf and 

mute individuals. Early methods focused on recognizing 

binary positions of fingers to convert signs into text, 

demonstrating the evolving nature of ISL communication 

methodologies (Rajam & Balakrishnan, 2011). The 

evolution of the manual alphabet, tracing back to the 

monks of the seventh century, played a significant role in 

the development of sign languages, including ISL. The 

adaptation of these systems over centuries underscores 

the historical depth of sign language communication 

(Padden & Gunsauls, 2003). Literature reviews on ISL 

recognition systems highlight the field's growth, 

reflecting on the natural evolution of sign languages 

within communities and the complexity of developing 

recognition systems for ISL compared to other sign 

languages. This body of work emphasizes the uniqueness 

and challenges of ISL's evolution (Dour & Sharma, 

2015). 

2.2 Technological Advancements in ISL Interpretation 

Recent advancements have significantly improved the 

efficacy and accessibility of ISL interpretation. Peguda et 

al. (2022) developed a model that converts speech into 

ISL for six regional Indian languages, addressing the 

communication barriers faced by the hearing-impaired 

and mute individuals by displaying corresponding 

gestures as outputs. This model represents a significant 

step towards making spoken languages accessible to the 

https://consensus.app/papers/convolution-neural-network-model-indian-sign-language-dangarwala/963c3a21676b5d5998909d8c63a6b884/?utm_source=chatgpt
https://consensus.app/papers/convolution-neural-network-model-indian-sign-language-dangarwala/963c3a21676b5d5998909d8c63a6b884/?utm_source=chatgpt


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 993–1012  |  996 

deaf community. Dutta et al. (2015) introduced a system 

that captures double-handed ISL as a series of images, 

processing them to generate speech and text. This 

innovation provides a voice for the speechless, further 

bridging the gap between the deaf-mute community and 

the hearing world. Goyal et al. (2013) proposed a sign 

language recognition system employing the SIFT 

algorithm for feature extraction from real-time images, 

achieving a 95% accuracy rate for certain alphabets. This 

system demonstrates the potential of machine learning in 

enhancing sign language recognition accuracy. Dias et al. 

(2022) developed SignEnd, an ISL system that recognizes 

alpha-numeric hand signs of users with both five and six 

fingers, translating them into text equivalents. The system 

showcases the use of custom datasets and advanced 

machine learning models to accommodate the diverse 

needs of the deaf-mute community with an average 

accuracy of 90%. 

2.3 Milestones in the development of ISL 

interpretation technologies. 

Initial research efforts in ISL recognition highlighted the 

complexity of sign language, distinguishing between 

single and double-handed signs and the importance of 

developing systems that could accurately interpret these 

signs. Early systems relied on methods like Artificial 

Neural Networks (ANN), Support Vector Machine 

(SVM), and Hidden Markov Models (HMM) for sign 

recognition (Nair & Bindu, 2013). The development of a 

novel vision-based gesture recognition system marked a 

significant advancement, offering a signer-independent 

model capable of recognizing both static and dynamic 

gestures from live video feeds. This technology 

demonstrated improved accuracy rates for recognizing 

finger spelling alphabets and single-handed dynamic 

words, signifying a step forward in real-time ISL 

interpretation (Athira, Sruthi, & Lijiya, 2019). Efforts to 

develop real-time ISL recognition systems have been 

crucial in making ISL interpretation more accessible and 

immediate for the deaf and mute communities. These 

systems utilize skin segmentation and machine learning 

algorithms to recognize signs from live video, allowing 

for more natural and fluid communication. 

Integrating neural networks with optimization algorithms 

like Genetic Algorithm (GA), Evolutionary Algorithm 

(EA), and Particle Swarm Optimization (PSO) has 

significantly improved the accuracy of ISL gesture 

recognition. This approach has resulted in systems that 

not only recognize ISL gestures more effectively but also 

do so with a high degree of precision, demonstrating the 

potential for further advancements in the field (Hore et 

al., 2015). The application of deep learning-based 

convolutional neural networks (CNN) to recognize ISL 

gestures, especially for static signs, marks a leap forward 

in the accuracy and efficiency of interpretation systems. 

By collecting a vast dataset of sign images and evaluating 

the system across numerous CNN models, researchers 

have achieved unprecedented levels of accuracy, 

showcasing the effectiveness of deep learning in ISL 

interpretation (Sharma & Singh, 2021). Advances in 

wearable technology, integrating sensor fusion for sign 

language interpretation, represent an innovative approach 

to ISL recognition.  

The development of gesture recognition algorithms for 

translating ISL into English represents a milestone in 

making ISL more comprehensible to the non-signing 

public. By utilizing a combination of data acquisition, 

pre-processing, and template matching techniques, these 

systems translate ISL gestures into English text or speech, 

facilitating easier communication between deaf 

individuals and those unfamiliar with sign language. Such 

technologies play a crucial role in breaking down 

communication barriers and fostering more inclusive 

interactions. Vision-based recognition systems have 

emerged as a powerful tool for interpreting ISL, enabling 

efficient human-computer interaction and helping bridge 

the communication gap between hearing-impaired 

individuals and the broader society. Such systems utilize 

hand tracking, segmentation, feature extraction, and 

classification techniques to interpret hand gestures 

accurately (Ghotkar & Kharate, 2014). Machine learning 

algorithms, including Artificial Neural Networks (ANN) 

and Support Vector Machine (SVM) classifiers, have 

been extensively applied to ISL recognition, achieving 

remarkable accuracy rates. These developments 

underscore the potential of machine learning in enhancing 

the efficiency and reliability of ISL interpretation systems 

(Ekbote & Joshi, 2017). The integration of Internet of 

Things (IoT) technology with ISL interpretation systems 

has opened new avenues for communication aids for the 

deaf and mute. By leveraging IoT, these systems offer 

enhanced connectivity and accessibility, enabling more 

effective communication solutions for individuals with 

hearing and speech impairments. 

Leveraging image processing and machine learning 

techniques has proven effective in creating reliable 

communication interpretation programs for ISL. These 

technologies enable the conversion of sign language 

gestures into readable outputs, bridging the 

communication gap between deaf-mute individuals and 

those unfamiliar with sign language. The use of image 

processing for gesture recognition, combined with 

machine learning for gesture classification, highlights the 

interdisciplinary approach to enhancing ISL 

interpretation (Apoorv, S. et al., 2020). Developing 

systems that can translate speech to ISL represents a 

significant leap towards making information and services 

more accessible to the hearing-impaired. These 

translation systems aim to eliminate the need for written 
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texts as the sole mode of communication, thereby 

facilitating an educational tool for learning ISL and 

improving overall access to information. This 

advancement is particularly crucial in bridging the 

communication divide, offering a platform for anyone to 

communicate without prior knowledge of ISL (Kulkarni 

et al., 2021). The application of Artificial Neural 

Networks (ANN) for the recognition of Indian sign 

language emphasizes the role of advanced computational 

techniques in enhancing the accuracy of sign language 

interpretation. By focusing on fingerspelling and word-

level signs, ANN-based methods provide a robust 

framework for automatically recognizing and interpreting 

ISL, thereby facilitating smoother communication for the 

deaf-dumb community and reducing their dependence on 

interpreters (Adithya et al., 2013). 

3. Methodology  

This study concentrates on translating Indian Sign 

Language (ISL) into text and spoken language. It employs 

advanced deep learning models, including LSTM, GRU, 

RNN. Specifically, the GRU and ANN models are 

selected for training using a ReLu optimizer. A 

specialized dataset has been developed from video 

recordings for this purpose as given link 

https://github.com/Irfanali-shaikh/ISL/tree/main 

Despite the promising advances in the field, the 

interpretation of sign language involves several 

significant challenges that must be meticulously 

addressed to guarantee the accuracy and reliability of the 

communication systems developed. These challenges 

encompass issues such as inadequate lighting conditions, 

limited availability of comprehensive datasets, the 

necessity for continuous frame analysis, network latency, 

and interference from noisy backgrounds. Each of these 

factors can adversely affect the performance of sign 

language recognition systems, thereby complicating the 

interaction between deaf-mute individuals and the general 

populace. 

This study addresses the persistent communication 

barriers that individuals with hearing and speech 

impairments face, particularly through the lens of Indian 

Sign Language. By delving into a variety of innovative 

solutions, this research aims to contribute significantly to 

the development of more accessible and dependable 

methods of communication. The study provides a 

thorough examination of both the prevailing state of 

research and the challenges encountered in the field of 

sign language interpretation. Central hypothesis posits 

that by utilizing sophisticated deep learning algorithms 

coupled with precise data preprocessing techniques, it is 

possible to markedly enhance the accuracy of sign 

language interpretation. This enhancement will not only 

benefit the deaf and mute community by making 

communication tools more accessible but also facilitate 

smoother interaction with the general population. 

Motivated by the critical need to bridge the 

communication gap for individuals with hearing and 

speech impairments, this research contributes to the 

academic and practical fields by presenting cutting-edge 

solutions, tackling prevalent challenges, and advancing a 

hypothesis with the potential to revolutionize sign 

language interpretation. Through these efforts, research 

aim to foster a more inclusive and effective 

communicative environment for all individuals, 

particularly those within the deaf and mute communities. 

3.1 3D Sign Language Detection 

Utilizing the advancements in 3D data acquisition, this 

approach employs a 9-camera motion capture system to 

capture comprehensive sign language gestures. 

Traditional deep learning architectures such as Hidden 

Markov Models (HMM), Long Short-Term Memory 

(LSTM), and have been adapted to process this 3D data 

effectively. This system employs angular velocity 

between joints, utilizing Joint Angular Velocity Maps 

(JAVM) to enhance recognition accuracy, which has 

achieved an impressive average accuracy of 95.65%. 

3.2 A-SLR using SVM 

This method focuses on recognizing specific characters 

from American Sign Language (ASL) amidst challenging 

environments and noisy backgrounds. By employing 

HSV skin color segmentation and Principal Component 

Analysis (PCA), this approach uses Support Vector 

Machines (SVM) for the recognition process. The system 

achieves a remarkable accuracy rate of 99.4% for 

characters B, D, F, L, and U, with significant 

improvements facilitated by a self-prepared dataset and 

sophisticated noise removal algorithms. 

3.3 C-SLR Based on Video Sequence 

This approach is tailored for recognizing Chinese hand 

gestures, leveraging Bidirectional Long Short-Term 

Memory (BLSTM) and residual networks. The 

methodology involves segmenting the region of interest, 

extracting spatiotemporal features, and classifying video 

sequences. The B3D ResNet technique, which combines 

BLSTM and 3D residual networks, plays a crucial role in 

interpreting sign language, achieving an average accuracy 

of 88.35% on two datasets. 

3.4 Modified LSTM for Continuous SLR Using Leap 

Motion 

Utilizing Leap Motion sensors for capturing 3D hand 

motion, this method employs a modified 4 Gated LSTM 

model to process isolated sign words and sentences. The 

data is trained using CONV2D, and the modified model 

demonstrates superior performance compared to 

https://consensus.app/papers/speech-indian-sign-language-translator-kulkarni/54f420291eef5fa1ab8fdda07e258294/?utm_source=chatgpt
https://consensus.app/papers/speech-indian-sign-language-translator-kulkarni/54f420291eef5fa1ab8fdda07e258294/?utm_source=chatgpt
https://consensus.app/papers/artificial-network-based-method-sign-language-v/9a51cb99b12f5e8093ce586dbfbdbc9a/?utm_source=chatgpt
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traditional LSTM, with accuracy rates of 89.50% for sign 

words and 72.30% for sign sentences. 

3.5 C-SL Alphabet Based on Random Forest 

This unique approach utilizes surface Electromyography 

(sEMG) data from the forearms to recognize muscle 

motion related to alphabet characters. Employing the 

Random Forest algorithm, this method achieves a notable 

accuracy rate of nearly 95.48%, surpassing the 

performance of other algorithms such as Support Vector 

Machine (SVM) and Artificial Neural Network (ANN). 

3.6 LSTM-HMMs to Discover Sequential Parallelism 

in SLV 

Focusing on the dual attributes of hand and lip 

movements in sign language, this methodology combines 

Long Short-Term Memory (LSTM) and Hidden Markov 

Models (HMMs). Utilizing the RWTH-PHOENIX 

weather 2014 dataset, the approach achieves an average 

accuracy of 73%, demonstrating its potential in 

recognizing sequential parallelism in sign language 

videos. 

3.7 Vision-Based Continuous Sign Language 

Recognition 

Aiming to enhance accuracy in vision-based sign 

language recognition, this research explores various 

methodologies, including graph-based models and 

Dynamic Time Warping (DTW). The study also addresses 

the challenges associated with noisy backgrounds, 

motion, relocations, and lighting issues, emphasizing the 

importance of data size in achieving reliable recognition 

results. 

3.8 Virtual Sign Channel for Deaf and Mute Users 

This innovative approach facilitates sign-to-text and 

textual-to-sign language conversion, accommodating 

users of different European sign languages. The 

integration of gloves with gyroscopic sensors and 

Microsoft Kinect for skeleton data extraction has yielded 

a remarkable accuracy rate of 86%, showcasing the 

potential of virtual channels in bridging communication 

gaps. The architectural framework and operational 

workflow of proposed sign language interpretation 

system, designed to transform sign language into 

comprehensible text or speech.  

 

Fig 1. Architecture of Proposed Method 

 

The architecture, depicted in Figure 1, elaborates on each 

step involved in the process, from frame acquisition to the 

final interpretation. 

I. Frame Acquisition 

The process begins with the acquisition of frames or sets 

of frames captured by a camera module connected to the 

local system. This stage is crucial as it forms the 

foundation for all subsequent processing stages by 

providing the raw visual data necessary for sign language 

recognition. 

II. Pre-processing 

Once the frames are captured, they undergo a series of 

pre-processing steps. This includes the elimination of 

background noise and the extraction of critical facial and 

hand points from the frames. The extraction is facilitated 

by advanced tools such as mediapipe, which are 

instrumental in isolating and highlighting the features 

essential for accurate sign language interpretation. 
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III. Feature Extraction 

The third step involves the extraction of features from the 

pre-processed frames. This includes the normalization of 

pixel values within the frames to standardize the data 

input into the machine learning models. Normalization is 

key to ensuring that the system can effectively interpret 

the sign language gestures irrespective of varying lighting 

conditions and other environmental factors. 

IV. Data Set and Pattern Recognition 

This step is divided into two interconnected components: 

the Dataset and Pattern Recognition. During the model 

training phase, a set of sample data, which could be static 

images or video sequences, is used to teach the system 

how to recognize patterns associated with different signs. 

This phase is critical for developing the system’s ability 

to autonomously recognize and interpret sign language 

from new input. 

V. Interpretation 

The final step in the system’s workflow involves 

interpreting the patterns recognized in the previous phase. 

This interpretation could be at the level of characters, 

words, or sentences, depending on the input  

frame's complexity. For example, in a phrase like "Nafis 

is a good boy," character interpretation might be used for 

recognizing individual letters in "Nafis," while word 

interpretation could be applied to "good" and "boy." 

Moreover, sentence framing, which involves more 

complex Natural Language Processing (NLP) techniques, 

could be utilized to construct meaningful sentences, 

although NLP is considered beyond the current scope of 

this study. 

System Deployment 

The entire system is designed to operate on a server, 

allowing for the processing of frames captured through 

any mobile computing device. This server-based 

processing enables the system to return interpreted sign 

language in the form of text or speech to the user. Focus 

is on implementing this system on local devices, 

providing a robust and accessible platform for real-time 

sign language interpretation. 

3.9 Models and Data Collection 

For practical implementation, developed two distinct 

models: one based on a set of frames (video) for word 

recognition and another based on a single frame for 

character recognition. Different datasets have been 

collected to tailor the training process to specific needs 

and requirements of sign language interpretation. 

This structured approach not only highlights the evolution 

of sign language recognition techniques but also 

emphasizes the importance of efficient feature extraction, 

noise reduction, and the use of advanced technology to 

enhance the accuracy and accessibility of sign language 

interpretation systems. 

A. Dataset for Sign Language Word 

When this project commenced, encountered difficulties in 

sourcing a suitable video dataset for sign language 

recognition. Available datasets often exhibited 

inconsistencies and variable frame lengths, which 

compromised their utility for specific requirements. To 

address this issue, we opted to construct own dataset, 

prioritizing control and consistency. Stored the data in 

.npy format to minimize storage size. Below is a 

description of the dataset configuration:  

The dataset is organized into folders corresponding to 

nine specific words: ['-‘, 'Hello’, 'Good’, 'Afternoon’, 

'Sad’, 'Marriage’, 'Home’, 'Blind’, 'Thanks']. Each word 

folder in the training set contains 40 sub-folders labeled 

from 0-39. Each sub-folder includes 30 .npy files 

representing the facial, pose, left hand, and right-hand 

data points, effectively serving as frames per video. The 

individual file shape is (1662,), resulting in a total shape 

per video of (30,1662). For each word, the collective 

dataset shape is (40,30,1662). 

Similarly, for the testing set, each word folder contains 10 

sub-folders labeled from 0-9, with each folder containing 

30 .npy files. The shape for each testing video is also 

(30,1662), and the total shape for each word in the testing 

set is (10,30,1662). 

Table 2: Shape of Word Datasets 

Data Set Shape of Each 

video 

shape of all videos 

Training Set (40,30,1662) (360,30,1662) 

Testing Set (10,30,1662) (90,30,1662) 

The breakdown of the data structure used in our sign 

language interpretation study as shown in table 2. For the 

training set, each video comprises 30 frames with 1662 

data points each, arranged into 40 series, resulting in a 
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total shape of (360,30,1662) for all videos. The testing set 

follows a similar structure but with 10 series, culminating 

in a total shape of (90,30,1662) for all videos. This 

organization is critical for training and evaluating our 

models with consistent and structured input data as shown 

in Figure 2. 

 

 

Fig 2. Shape of Word Datasets 

B. Dataset for Sign Language Character 

Encountering similar challenges with the video dataset for 

characters, also decided to create a dedicated dataset for 

sign language characters, focusing on data points from the 

left and right hands. Stored this data in .npy files to ensure 

efficient storage. The dataset is segmented into 28 folders, 

including each alphabet character, 'Space', and 'Reset'. For 

training purposes, collected 800 frames for each 

character, with each frame having a shape of (126,). 

Collectively, each character in the training set has a shape 

of (800,126). For the testing data, gathered 200 frames per 

character, maintaining the same individual frame shape. 

 

Table 3: Shape of Character Datasets 

Data Set Shape of Each 

Character 

Shape of All 

Characters 

Training Set (800,126) (22400,126) 

Testing Set (200,126) (5600,126) 

The structure of the datasets used for character-level sign 

language recognition as shown in table 3. The training set 

includes data for each character structured in 800 frames, 

each with 126 data points, resulting in a collective shape 

of (22400,126) across all characters. The testing set is 

similarly structured but consists of 200 frames per 

character, aggregating to a total shape of (5600,126). This 

setup facilitates the detailed analysis and training of our 

neural network models as shown in Figure 3. 
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Fig 3. Shape of Character Datasets 

C. Model Training 

Training has been conducted on two models as previously 

discussed: one for word level (9 words) and another for 

character level (26 characters plus "Reset" and "Space"). 

The word-level model utilizes a set of frames and is 

trained using a Recurrent Neural Network, employing 

both Long Short-Term Memory (LSTM) and Gated 

Recurrent Neural Network (GRU) techniques. For the 

character-level recognition, a dense neural network is 

used, employing different activation functions (ReLU vs. 

Leaky ReLU) to optimize performance. This two-tiered 

approach allows for tailored handling of different aspects 

of sign language recognition, catering to the distinct 

demands of word and character interpretation. 

4. Result and Discussion 

This provides a comparative analysis of two prominent 

Recurrent Neural Network architectures used in study for 

word-level sign language recognition: Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU). 

A. Long Short-Term Memory Vs Gated Recurrent 

Unit – Word Level 

Long Short-Term Memory (LSTM): 

LSTM networks are a type of Recurrent Neural Network 

(RNN) designed to address the vanishing gradient 

problem associated with standard RNNs. This capability 

makes them particularly suited for modeling time-series 

data where long-term dependencies are crucial. In study, 

the LSTM model incorporated multiple layers,  

including dropout layers to manage outliers effectively as 

shown in below table 1. Below are some specific 

attributes of the LSTM model used: 

Advantages of LSTM:  

Minimization of the vanishing gradient problem due to its 

gated architecture. Presence of three gates (input, output, 

and forget gates), enhancing the model's ability to 

regulate information flow. 

Disadvantages of LSTM: 

High computational burden due to a large number of 

training parameters. 

Greater memory requirement and slower operation 

compared to GRU. 

Gated Recurrent Unit (GRU): 

GRU, like LSTM, is designed to help capture 

dependencies in sequence data more effectively than 

standard RNNs. However, it simplifies the model 

architecture by using two gates (update and reset gates), 

which allows for faster training times and reduced 

memory usage. Here are the GRU model specifics: 

Advantages of GRU: 

Fewer training parameters, making the network more 

efficient in terms of memory and speed. 

Generally, GRUs are faster and use less memory 

compared to LSTMs due to their simpler structure. 

Disadvantages of GRU: 

While GRUs are effective at addressing the vanishing 

gradient problem, they may not perform as well in tasks 

where long-term dependencies are more significant due to 

the reduced number of gates. 

Model Summaries and Training Parameters: 

Layer (type) Output Shape Param # 

lstm (LSTM) (None, 30, 256) 1,965,056 

dropout (Dropout) (None, 30, 256) 0 

lstm_1 (LSTM) (None, 30, 512) 1,574,912 
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dropout_1 (Dropout) (None, 30, 512) 0 

lstm_2 (LSTM) (None, 256) 787,456 

dropout_2 (Dropout) (None, 256) 0 

dense (Dense) (None, 256) 65,792 

dropout_3 (Dropout) (None, 256) 0 

dense_1 (Dense) (None, 128) 32,896 

dense_2 (Dense) (None, 9) 1,161 

Total params: 4,427,273 

Trainable params: 4,427,273 

non-trainable params: 0 

This table4 provides a detailed view of the LSTM model architecture, illustrating the layers and configurations used in 

training. 

Model: “sequential_1” 

Layer (type) Output Shape Param # 

gru_3 (GRU) (None, 30, 256) 1,474,560 

dropout_4 (Dropout) (None, 30, 256) 0 

gru_4 (GRU) (None, 30, 512) 1,182,720 

dropout_5 (Dropout) (None, 30, 512) 0 

gru_5 (GRU) (None, 256) 591,360 

dropout_6 (Dropout) (None, 256) 0 

dense_3 (Dense) (None, 256) 65,792 

dropout_7 (Dropout) (None, 256) 0 

dense_4 (Dense) (None, 128) 32,896 

dense_5 (Dense) (None, 9) 1,161 

Total params: 3,348,489 

Trainable params: 3,348,489 

Non-trainable params: 0 

Model: "sequential_1" 

Layer (type) Output Shape Param # 

gru_3 (GRU) (None, 30, 256) 1,474,560 

dropout_4 (Dropout) (None, 30, 256) 0 

gru_4 (GRU) (None, 30, 512) 1,182,720 

dropout_5 (Dropout) (None, 30, 512) 0 

gru_5 (GRU) (None, 256) 591,360 

dropout_6 (Dropout) (None, 256) 0 

dense_3 (Dense) (None, 256) 65,792 

dropout_7 (Dropout) (None, 256) 0 
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dense_4 (Dense) (None, 128) 32,896 

dense_5 (Dense) (None, 9) 1,161 

Total params: 3,348,489 

Trainable params: 3,348,489 

non-trainable params: 0 

Fig 6. Summary of GRU Model 

 

This figure shows the GRU model layout, highlighting its 

simpler architecture relative to LSTM. 

 

 

Table 4: Training Size of Algorithms for Word 

Algorithm Total Parameters for Training 

LSTM 4,427,273 

GRU 3,348,489 

The total parameters involved in training each model, 

emphasizing the more lightweight nature of GRU in 

comparison to LSTM as shown in table4. 

Through these analyses, it is evident that the choice 

between LSTM and GRU for a specific application 

should consider the trade-offs between computational 

efficiency and the ability to handle long-term 

dependencies. This discussion not only highlights the 

technical distinctions between the two models but also 

aligns their theoretical advantages and disadvantages with 

practical outcomes observed during their application in 

sign language recognition. 

B. Artificial Neural Network (ReLU Vs LReLU) – 

Character Level 

Artificial Neural Networks (ANNs) are computational 

models inspired by the biological neural networks found 

in animal brains. In this part of study, the activation 

functions within these networks, specifically comparing 

the Rectified Linear Unit (ReLU) and Leaky Rectified 

Linear Unit (LReLU). ReLU is defined as f(x)=max(0,x), 

which effectively sets all negative values to zero, 

allowing the network to learn faster and more effectively 

by introducing non-linearity. LReLU modifies the ReLU 

function by allowing a small, non-zero gradient when the 

unit is not active and x is less than zero. 

f(x)=max(0.01x,x). This slight slope for negative values 

helps to keep the gradient flow alive during the training 

process, which can prevent the neurons from dying out. 

The models using these activation functions were 

designed with identical parameters to isolate the effect of 

the activation function in experimental analysis. 

Model: "sequential_5" 

Layer (type) Output Shape Param # 

dense_7 (Dense) (None, 128) 16256 

dropout_5 (Dropout) (None, 128) 0 

dense_8 (Dense) (None, 128) 16512 

dropout_6 (Dropout) (None, 128) 0 

dense_9 (Dense) (None, 64) 8256 

dropout_7 (Dropout) (None, 64) 0 

dense_10 (Dense) (None, 32) 2080 

dropout_8 (Dropout) (None, 32) 0 

dense_11 (Dense) (None, 28) 924 

Total params: 44,028 

Trainable params: 44,028 

non-trainable params: 0 
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Fig7. Summary of Designed Model for ReLu and LReLU 

This figure provides a visual representation of the ANN 

model architecture, highlighting the configuration of 

layers and the placement of ReLU and LReLU functions. 

C. Model Training Accuracy and Loss - Word Level 

In experiments, the training accuracy and loss metrics 

were used to gauge the performance of the models. 

Accuracy measures how well the model performs, while 

the loss value indicates the model's error rate after each 

optimization iteration. The results for LSTM and GRU 

models trained over 10 epochs are documented in below 

Figure 4(a), 4(b) and Figure 5(a), 5(b). 

 

 

Fig 4(a). Accuracy of LSTM 

 

Fig 4(b). Accuracy of GRU 

 

Fig 5(a). Loss of LSTM 

 

Fig 5(b). Loss for GRU 
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Table 5: Training Accuracy 

Algorithm Accuracy 

LSTM 0.8666 

GRU 0.9777 

The accuracy table 5 highlights the superior performance 

of GRU in this setup, potentially due to its efficiency and 

lower complexity compared to LSTM. 

Results Metrics and Visualization 

In addition to accuracy and loss, calculated F1, precision, 

and recall scores to provide a comprehensive evaluation 

of the model performance. These metrics are crucial for 

understanding the balance between precision and recall, 

and the F1 score provides a harmonic mean of the two as 

shown in Figure 6(a) and 6(b). 

 

Fig 6(a): Confusion Matrix using GRU 

This visualization provides insights into the true 

positives, true negatives, false positives, and false 

negatives classified by the GRU model. 

 

Fig 6(b). Confusion Matrix using LSTM 

Table 6: Score Analysis Table - Word 

Scores Precision Recall F1 

Words LSTM GRU LSTM GRU LSTM GRU 

Afternoon 0.77 1 1 1 0.87 1 

Blind 0.83 1 1 1 0.91 1 

Good 1 1 1 1 1 1 
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Hello 0.83 0.83 1 1 0.91 0.91 

Home 0.67 1 0.6 1 0.63 1 

Marriage 0.91 1 1 1 0.95 1 

Sad 1 1 0.7 1 0.82 1 

Thanks 0.83 1 0.5 0.8 0.62 0.89 

- 1 1 1 1 1 1 

 

This table 6 typically detail the precision, recall, and F1 

scores for both LSTM and GRU, providing a numeric 

representation of the models' classification accuracy. 

 

Fig 7. Score Analysis Graph - Word 

This graph visualizes the comparative score analysis, 

offering a clear depiction of how each model performs in 

terms of precision, recall, and F1 score across different 

classes or labels as shown in Figure 7. 

Model Training Accuracy and Loss – Character Level 

This section delves into the performance metrics for 

Artificial Neural Networks using two types of activation 

functions: Rectified Linear Unit (ReLU) and Leaky 

Rectified Linear Unit (LReLU), specifically tailored for 

character recognition tasks in sign language 

interpretation. The model's performance is quantified 

using accuracy and loss metrics, which are crucial 

indicators of effectiveness and efficiency during the 

training process. Monitored these metrics over a course of 

10 epochs to determine how well each model 

configuration performs and adapts during iterative 

training.  

 

0
0.2
0.4
0.6
0.8

1

ISL Word Analysis Report

Precision LSTM Precision GRU Recall LSTM Recall GRU F1 LSTM F1 GRU
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Fig 8(a). Accuracy of ReLU 

 

 

Fig 8(b). Accuracy of LReLU 

 

Fig 9(a). Loss of ReLU 

 

Fig 9(b). Loss of LReLU 
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The performance in terms of accuracy and loss does not 

show substantial differences when switching between the 

ReLU and LReLU activation functions as shown in 

Figure 8(a), 8(b) and Figure 9(a), 9(b). This observation 

indicates that, at least for the tasks and data at hand, the 

choice between these two activation functions does not 

markedly impact the outcome.  

Score Analysis and Visualization 

To further evaluate the models, used additional metrics 

and visualizations: 

Table 7: Score Analysis Table - Character 

Characters Precision  Recall F1  

 ANN-ReLU ANN-

LReLU 

ANN-ReLU ANN-

LReLU 

ANN-ReLU ANN-

LReLU 

A 0.77 0.87 1 0.87 0.87 0.93 

B 1 0.98 0.97 0.97 0.98 0.98 

C 0.97 1 0.97 0.87 0.98 0.98 

D 0.79 0.73 1 0.68 0.88 0.84 

E 0.8 0.97 0.73 1 0.83 0.98 

F 0.98 0.98 0.98 0.99 0.98 0.99 

G 1 0.99 1 0.97 1 0.98 

H 1 0.99 0.99 0.97 0.99 0.98 

I 1 1 1 1 1 1 

J 1 1 1 1 1 1 

K 1 1 0.98 1 0.99 1 

L 1 0.99 0.99 0.97 0.99 0.98 

M 0.99 0.99 0.99 0.84 0.99 0.87 

N 0.98 0.98 0.98 0.98 0.98 0.98 

O 0.98 0.97 0.98 0.98 0.98 0.98 

P 1 1 0.99 0.99 0.99 0.99 

Q 1 1 1 1 1 1 

R 0.98 0.99 1 1 0.99 0.99 

S 1 1 0.99 0.99 0.99 0.99 

T 1 1 0.98 0.97 0.99 0.99 

U 0.95 1 0.95 0.93 0.95 0.97 

V 1 1 0.97 0.99 0.98 0.99 

W 1 1 0.97 0.99 0.98 0.99 

X 0.99 1 1 1 1 1 

Y 1 1 0.99 0.97 0.99 0.98 

Z 0.99 1 0.97 0.99 0.98 0.99 

SPACE 1 0.95 0.99 0.99 1 0.97 

RESET 0.95 0.95 0.86 0.85 0.9 0.9 

This table 7 would typically list detailed performance 

metrics such as precision, recall, and F1 scores for both 

the ReLU and LReLU models. These metrics provide a 

deeper understanding of each model's ability to classify 

correctly and balance false positives and negatives. 
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Fig 10. Score Analysis Graph – Character 

This graph compares the precision, recall, and F1 scores 

between the two models, offering a visual representation 

of their comparative performance across different 

character recognition tasks as shown in Figure 10. 

Confusion Matrices 

Confusion matrices provide a straightforward way to 

visualize the performance of classification models by 

showing the actual versus predicted classifications: 

Fig 11(a): Confusion Matrix using ReLU 
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Fig 11(b): Confusion Matrix using LReLU 

These visualizations and metrics collectively furnish a 

comprehensive overview of the models' training accuracy 

and loss, providing insights into the subtle effects of 

activation function choices on neural network 

performance in character-level sign language recognition 

as shown in Figure 11(a) and Figure 11(b). 

Final Result Testing 

In the final phase of study, focused on evaluating the 

practical application of the selected models based on the 

comprehensive testing and analysis conducted previously. 

The decision to select specific models was driven by their 

performance in earlier phases, aiming to optimize the 

accuracy and reliability of Indian Sign Language (ISL) 

interpretation at both the word and character levels. 

Model Selection: 

GRU for ISL Word-Level Interpretation: The choice of 

the Gated Recurrent Unit (GRU) over Long Short-Term 

Memory (LSTM) was influenced by GRU's demonstrated 

efficiency and higher performance metrics in handling 

word-level ISL data. GRU's ability to achieve similar or 

better results with less computational overhead made it 

the preferable option for this application. 

ANN-ReLU for ISL Character-Level Interpretation: 

Although both ReLU and Leaky ReLU (LReLU) 

performed comparably well, the Artificial Neural 

Network (ANN) using the ReLU activation function was 

chosen for character-level interpretation. This decision 

was based on the simplicity and robustness of ReLU, 

which, despite the minimal performance difference, 

generally requires less parameter tuning and offers a 

slight advantage in terms of computational efficiency. 

Results Visualization: 

The effectiveness of these models in real-world scenarios 

is showcased in the figures below, which provide visual 

examples of the models’ ISL interpretation capabilities. 

These examples not only illustrate the models' practical 

utility but also highlight their precision in interpreting 

complex sign language components into readable text.

 

Fig 12. Final Result of ISL Word Level Interpretation 
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Fig 13. Final Result of ISL Character Level Interpretation 

The final testing phase confirms the efficacy of the chosen 

models in a real-world setting, reinforcing the importance 

of selecting appropriate machine learning techniques for 

specific tasks within the domain of sign language 

interpretation. The examples depicted in the figure 12 and 

figure 13 serve as a testament to the potential of these 

models to significantly enhance communication 

accessibility for the deaf and mute community, bridging a 

crucial gap with effective technological solutions. 

Conclusion 

Sign language interpretation poses considerable 

challenges for real-time vision-based systems. However, 

as discussed in the introductory sections of this study, 

these challenges can be effectively addressed through 

various techniques and meticulous data preprocessing to 

ensure the accuracy of results. Crucially, providing the 

system with clean input data for both training and testing 

phases is essential for achieving the desired performance 

levels. The importance of proper system tuning and 

preprocessing to reach the expected levels of accuracy. 

Specifically, for vision-based continuous frame 

interpretation, it is necessary to employ neural networks 

that can maintain memory of previous data and integrate 

it with current frame analysis. In this context, Long Short-

Term Memory (LSTM) and Gated Recurrent Unit (GRU) 

networks are preferred because of their capability to 

handle long sequences of data which simple Artificial 

Neural Networks (ANN) may not effectively process. 

Experiments indicated that real-time frame interpretation 

is often compromised by noise, leading to incorrect 

results. Discovered that certain preprocessing techniques 

are beneficial in isolating relevant features within a frame, 

focusing on specific points of interest. Findings suggest 

that a simpler ANN, with careful hyperparameter tuning, 

may achieve comparable, if not superior, results under 

certain conditions. In some instances, the use of gloves 

was necessary to enhance feature recognition. 

Comprehensive experimental analysis reveals that for 

spatiotemporal data involving short sequences, GRU 

demonstrates superior performance compared to LSTM. 

For single-frame data, simple ANNs equipped with either 

ReLU or Leaky ReLU activation functions perform well, 

with no significant differences noted between these two 

activation types. 
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