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Abstract: The growing need for electrical energy is making distributed generation (DG) more significant. Reducing distribution system 

loss is one of the main goals of distributed generation planning. The ideal placement and scale of distributed generation (DG) are crucial 

for minimizing losses. This work uses an optimization problem to study the optimal DG placement and sizing, with the objective as 

reduction of active power losses. These issues are expressed using the Sequential Quadratic Programming (SQP) approach as constrained 

linear optimization problems. In order to solve the optimal position and sizing problem of distributed generators, the proposed method is 

extensively proven on IEEE-15 bus and IEEE-33 bus radial distribution systems. Simulation results using the DG demonstrate 

satisfactory improvements in terms of power loss reduction and voltage profile enhancement. 

Keywords: Optimal Location, Distributed Generation (DG), Sequential Quadratic Programming method (SQP), Voltage profile 

enhancement. 

1. Introduction 

The electric power sector is one of the world's biggest 

consumer markets. For example, in the United States, 

purchases of electric energy account for 3% of GDP and 

are growing at a faster rate than the country's economic 

growth. An estimated 50% of the cost of energy goes 

toward fuel, 20% goes into generation, 5% goes toward 

transmission, and 25% goes toward distribution [1]. Every 

customer's service entrance must receive energy from 

distribution networks at the proper voltage rating. In 

comparison to transmission levels, distribution levels have 

a lower X/R ratio, which results in more losses and also 

reduction in voltage magnitude. Literature [2] has shown 

that at the distribution level, real power losses account for 

about 13% of the total power produced. The financial 

problems and general effectiveness of distribution utilities 

are directly impacted by such non-negligible losses. 

Distribution power losses are typically reduced by using 

various voltage control devices to properly dispatch 

reactive power control devices [3]. 

Distributed generation (DG) units generally have 

advantages like decrease in system losses, improvement in 

voltage profile. However, DG deployment should be 

optimally done to appropriately use these advantages. This 

study aims to handle the optimal distribution network DG 

location and sizing challenge. The optimizations tasks are 

resolved by applying the deterministic Sequential 

Quadratic Programming (SQP) technique. 

The aim of the single-objective optimization problem is to 

minimize the total real power losses in order to determine 

the best location and amount of distributed generation. In 

this paper, the effects of integrating single and multiple 

DGs are also examined. To validate the suggested 

techniques, two distribution test network topologies - 

radial and meshed - are chosen, and the outcomes are 

shown.  

2. Problem Formulation 

Minimization of the total power losses in the system forms 

the single-objective function. 

   (1) 

Where the complete active power loss will be represented 

using the following equation: 
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Based in nonlinear load flow equations, power balance is 

determined by subtracting power flows taken out of a bus 

and adding up all of the complicated power flows that are 

injected into each bus in the distribution system.  This 

forms the equality constraint of the optimization. 
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where, 
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The limits on the line flows are expressed using their 

thermal limits. This forms one of the inequality constraints. 

max
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where, 

 

The output power of DG has minimum and maximum 

bounds and the power should be less than substation 

power, and it forms another inequality constraint. 
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The magnitudes and angles of bus voltages also need to be 

between defined limits, this is another inequality 

constraint.  
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3. Sequential Quadratic Programming 

The nature of optimization objective and its constraints are 

nonlinear in nature. The Sequential Quadratic 

Programming (SQP) method [4-6], is chosen here to solve 

the DG optimization problem, owing to its correctness, 

efficiency, and high percentage of successfully solved test 

problems. 

The basic idea behind SQP is to use Taylor's expansion to 

create linear models of the constraints and a quadratic 

model of the objective function in order to design the 

optimizing expressions at the present point, x(k). These are 

then resolved at every iteration in order to identify a fresh 

search direction (d) and an improved solution x(k+1). This 

approach to unconstrained reduction is quite similar to 

Newton's method [7]. When we solve the general 

optimization problem using Taylor's expansion, we obtain: 
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Thus, the QP sub problem will have the form: 
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In order to apply the Lagrangian multipliers method, the 

SQP first converts the constrained optimization problem 

into a Lagrangian function. Next, iteratively solves the 

unknown variables using the Quasi-Newton method, while 

also satisfying conditions known as the Karush-Khun-

Tucker (KKT) conditions. The expression for this 

Lagrangian function is given as: 
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where,  

 

The formulation of the QP sub-problem is:  

Minimize: 
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where,   

 

This results in the SQP method becoming locally 

converged after applying Newton’s method:  

( )
( )
( )

0

,,

=
















kA

k

kkk

xg

xh

xL 

 (21) 

By resolving the Quasi-Newton, the QP sub-problem 

solution can be found as follows: 
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For the kth iteration, 
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Rearranging, 
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Each iteration of the QP subproblem requires the 

calculation of the Lagrangian function's Hessian. Rather 

than computing the Hessian matrix (B), the Quasi-Newton 

approach estimates it. The BFGS update formula 

(Broyden, Fletcher, Goldfarb, and Shanno formula) is 

considered here for the solution as follows.  
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Then we can update Bk+1 using, 
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4. Simulation Results Of Ieee-15 & Ieee-33 Bus Systems 

A. Radial Distribution System (IEEE-15 BUS)  

An IEEE-15 bus radial distribution feeder operating at a 

voltage level of 12.66 KV, consisting of 14 branches has 

been considered as the first test system. It has 3802 kW of 

active and 2694 kVAR of reactive loads in the system. The 

following figure represents the single line diagram of the 

IEEE-15 bus radial distribution system. 

 

Fig 1:  15-bus radial distribution system single-line 

diagram 

Case I: Installing One DG  

By placing a DG at each candidate bus in a 15-bus radial 

distribution system, the suggested approach was 

implemented. The ideal size of the DG and the related real 

power losses are displayed in Table 1, and the voltage 

magnitude at each system bus is displayed in Table 2. The 

active power losses have decreased by approximately 

2.3%, from 376.3 kW to 289.1 kW, after the installation of 

the 467 KVA DG at bus 13. The voltage profile improved 

after the placement of D and the same is represented in 

Figure 2.  

Table 1: Real and Reactive power losses without and with 

single DG 

Branch 

No. 

P Loss 

without 

DG 

(kW) 

P Loss 

with 

DG 

(kW) 

Q Loss 

without 

DG 

(kVAR) 

Q Loss 

with 

DG 

(kVAR) 

2 235.1 182.4 230.0 178.4 

3 70.2 44.9 68.7 43.9 

4 15.2 6.2 14.9 6.1 

5 0.3 0.3 0.2 0.2 

6 0.9 0.9 0.6 0.6 

7 0.2 0.2 0.1 0.1 

8 22.0 21.9 14.8 14.8 

9 5.9 5.9 4.0 4.0 

10 2.9 2.9 2.0 2.0 

11 13.5 13.4 9.1 9.0 

12 3.7 3.7 2.5 2.5 

13 0.5 0.5 0.3 0.3 

14 1.3 1.4 0.9 1.0 

15 4.5 4.5 1.8 1.8 

Total 376.3 kW 
289.1 

kW 

349.9 

kVAR 

264.7 

kVAR 

Table 2: Voltages before and after the DG Placement 

Bus 

No. 

Voltages 

without DG 

(pu) 

Voltages 

with DG 

(pu) 

% Voltage 

Improvement 

1 1 1 0.00 
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Bus 

No. 

Voltages 

without DG 

(pu) 

Voltages 

with DG 

(pu) 

% Voltage 

Improvement 

2 0.9815 0.9838 0.23 

3 0.9721 0.9764 0.44 

4 0.9684 0.9742 0.60 

5 0.9677 0.9735 0.60 

6 0.9745 0.9768 0.24 

7 0.9721 0.9744 0.24 

8 0.9727 0.9750 0.24 

9 0.9803 0.9826 0.23 

10 0.9797 0.9820 0.23 

11 0.9675 0.9718 0.44 

12 0.9647 0.9690 0.45 

13 0.9638 0.9681 0.45 

14 0.9668 0.9759 0.94 

15 0.9659 0.9716 0.59 

 

 

Fig 2: Comparison of Voltage magnitudes with and 

without DG for IEEE-15 bus system 

Case II: Installing Two DGs  

Two DGs were installed in order to implement the 

suggested method. The DG optimum size and associated 

real power losses are displayed in Table 3. SQP determines 

that the best place for DG is between buses 4 and 6 with 

capacities of 760.1 kW and 466.4 kW. The apparent 

power losses at these buses decreased by approximately 

5.9% after the DG was installed. Table 4 illustrates how 

the voltages have improved with the integration of DG at 

Bus Numbers 4 and 6. The results obtained are verified, 

and voltage profiles at buses 4 and 6 are also improved to 

1.84 % and 1.12 %, respectively. 

Table 3: Real and Reactive power without and with DGs 

 

P Loss 

without 

DG 

(kW) 

P Loss 

with 

DG 

(kW) 

Q Loss 

without 

DG 

(kVAR) 

Q Loss 

with 

DG 

(kVAR) 

2 235.1 90.2 230.0 87.2 

3 70.2 9.5 68.7 9.2 

4 15.2 1.8 14.9 1.7 

5 0.3 0.3 0.2 0.3 

6 0.9 0.9 0.6 0.9 

7 0.2 0.2 0.1 0.2 

8 22.0 25.8 14.8 22.8 

9 5.9 8.8 4.0 7.9 

10 2.9 3.2 2.0 2.2 

11 13.5 0.3 9.1 0.3 

12 3.7 3.7 2.5 3.2 

13 0.5 0.5 0.3 0.4 

14 1.3 1.6 0.9 1.3 

15 4.5 2.8 1.8 2.2 

TOTAL 
376.3 

kW 

149.7 

kW 

349.9 

kVAR 

139.9 

kVAR 

Table 4: Voltages (P.U) before and after placement of DG 

BUS 

No. 

Voltages 

(P.U) 

without DG 

Voltages 

(P.U) 

with DG 

% Voltage 

Improvement 

1 1 1 0.00 

2 0.9815 0.9852 0.38 

3 0.9721 0.9821 1.03 

4 0.9684 0.9862 1.84 

5 0.9677 0.9812 1.40 

6 0.9745 0.9854 1.12 

7 0.9721 0.9833 1.15 

8 0.9727 0.9833 1.09 

9 0.9803 0.9869 0.67 

10 0.9797 0.9847 0.51 

11 0.9675 0.9812 1.42 

12 0.9647 0.9852 2.13 

13 0.9638 0.9864 2.34 

14 0.9668 0.9884 2.23 

15 0.9659 0.9883 2.32 

 

 

Fig 3: Voltages of IEEE-15 bus system after placing two 

DGs 

B. Meshed Distribution System (33-BUS)  

A meshed distribution system with 33 buses and 37 

branches, operating at a voltage level of 12.66 kV is 

considered as the second case study. This system has 2300 

kVAR and 3715 kW of reactive and active loads, 
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respectively. Figure 4 displays the single line of the 

meshed distribution system.  

 

Fig 4: 33-bus meshed distribution system single-line 

diagram 

Case I: Installing One DG  

The ideal DG sizing issue for installing a single DG was 

resolved for each of the 33 busses. The cumulative active 

power loss is decreased from 2.02 MW, without DG, to 

1.18 MW by placing the DG at bus 23 with a capacity of 

4370 kVA, with an approximate reduction of 6.5% in 

active power losses. Voltage profiles are also improved 

across all the buses, as Figure 5 illustrates. 

 

Fig 5:  The 33-Bus radial distribution system's voltage 

profile comparison 

Case 2: Installing two DGs 

For the installation of two DGs, the ideal DG site and 

sizing challenge was resolved. The outcomes are displayed 

in Table 4.9, which also displays the matching total real 

and reactive power losses for each system bus when 

installing an ideal DG size. The best place for DG, as 

assessed by SQP, is between buses 14 and 30. With the 

two DGs placed at busses 14 and 30, respectively, with a 

power output of 508 kW and 838 kW. Additionally, bus 

14 and bus 30 have improved voltage profiles to 8.18% 

and 8.44%, respectively. 

 

Fig 6:  Voltage profile of 33-Bus radial distribution system 

5. Conclusion  

With the ability to minimize costs, reduce power losses, 

improve voltage profiles, and reduce complexity, 

interdependencies, and inefficiencies associated with 

onsite power generation, transmission, and distribution 

networks, distributed generation (DG) systems are the 

ideal solution for today's and tomorrow's power generation 

and distribution systems. These systems can meet the 

demanding needs of consumers in an environmentally 

responsible and cost-effective manner.  

This paper looked into the best locations and sizes for 

distributed generation (DG) within distribution networks. 

The goal of the single-objective optimization issue was to 

use total real power losses to estimate the ideal location 

and size of a distributed generator (DG). Sequential 

quadratic programming (SQP) is used to minimize this 

objective. The two case studies having varying 

configurations, 15-bus radial and 33-bus meshed systems 

are used to study single and two DG installation instances. 

A case without DG was contrasted with the outcomes. It 

was demonstrated that selecting the right DG location and 

size significantly affects reducing power losses and 

enhancing voltage profiles.  
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