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Abstract: Medical image fusion has emerged as a crucial tool in modern healthcare, facilitating comprehensive analysis by integrating 

different image modalities into a single image. This fused image aids physicians in disease diagnosis and treatment planning. Despite the 

advancements in fusion methodologies, effectively merging medical images without compromising any information remains a significant 

challenge, leading to the exploration of novel methodologies. This study introduces a novel approach for image fusion that utilizes the 

Modified Grey Wolf Optimization (MGWO) algorithm and the Enhanced Wavelet Transform (EWT). Source images are processed using 

EWT to extract high- and low-frequency subbands. The low-frequency subbands are fused using the Local Energy Maxima (LEM) 

criterion.High-frequencysubbandsundergo denoisingusingan enhanced thresholding technique, followed by the application of MGWO to 

determine adaptive weights for integrating high-frequency subbands for a medical image fusion. An inverse wavelet transform 

reconstructs the fused image from fused low-frequency and high-frequency subbands. Numerous datasets are tested, wherein the 

quantitative and qualitative evaluation confirms the effectiveness of the proposed method. Compared to standard models, the proposed 

technique performed well in experiments, highlighting its potential for enhancing medical image fusion and advancing diagnostic 

capabilities in healthcare applications. 

Keywords: Medical image fusion, Enhanced wavelet transform, Modified grey wolfoptimization algorithm, Local energy maxima, 

Computed tomography. 

1. Introduction 

Biomedical imaging system plays a pivotal role inthe 

non-invasive monitoring and diagnosis of internal body 

organs. These systems are essential for detecting a range 

of diseases, including tumors, cancer, tuberculosis, 

diabetic foot ulcers, and COVID-19. Several methods for 

understanding the interior body organ are shown in these 

images[1]. To get particular medical data on an organ, 

there are several imaging methods accessible [2], 

including Computed Tomography (CT), Magnetic 

Resonance Imaging (MRI), sonography, X-ray, Positron 

Emission Tomography (PET), and Single Photo 

Emission Computed Tomography (SPECT). Each 

modality offers unique insights into different aspects of 

the body. For example, a CT scan excels in making 

skeletal structures, aiding in the detection of internal 

injuries, broken bones, blood clots, and brain tumors. On 

the other hand, MRI specializes in capturing soft tissue 

characteristics of organs like the pancreas, liver, and 

abdomen. Metabolism information is gleaned through 

PET and SPECT scans. However, no single modality can 

offer significant and accurate information [3].  

To diagnose a disease, physicians typically analyze dense 

structures and soft tissue separately, which tends to be 

tedious and time-consuming. Therefore, medical image is 

desirable. To tackle such an issue and enhance diagnostic 

accuracy, image fusion is employed. Image fusion 

merges complementary information from multiple 

imaging modalities, resulting in images that contain 

richer data and are more effective for disease diagnosis 

[4]. Furthermore, fused imagesnot only reduce the time 

required for analysis but also improve overall accuracy, 

facilitating more efficient disease diagnosis and surgical 

planning [5].There are several levels at which image 

fusion may be used, including pixel-based [6], feature-

based [7], and decision-based [8]. While feature-level 

fusion gathers and unifies important characteristics from 

each modality, such as edges, forms, and boundaries, 

pixel-level fusion combines information from the input 

directly. A high-level summary showing the objective is 

provided via decision-level fusion. 

Despite the introduction of numerous medical image 

fusion methods, there remains room for improvement in 

the quality of fused images. Some methods produce 

unsatisfactory results, especially around the boundaries 
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of areas defined by the original images, which may result 

in an inaccurate diagnosis. Fused images may suffer 

from poor contrast, noise, and poor quality. To tackle 

these shortcomings, this paper presents an innovative 

framework to fuse medical images by employing 

Enhanced Wavelet Transform (EWT) and a metaheuristic 

algorithm. The proposed method utilizes MGWO to 

optimize weights for fusing subbands, effectively 

transferring source image textural properties to the 

combined image. Using a fitness function, the source 

image and fused image peak signal-to-noise ratio 

(PSNR) is maximized. Weights are adaptive and 

calculated separately for each high-frequency sub-band, 

improving fusion flexibility and accuracy. Additionally, 

the Local Energy Maxima (LEM)low-frequency bands 

are fused using a technique that takes into account the 

source images' maximum energy.The proposed method is 

evaluated using a variety of images gathered from the 

Brain atlas comprising carious CT and MRI images [9]. 

The inverse transform of the fused low-frequency and 

high-frequency sub-bands gives the fused image.The 

proposed method is analyzed both quantitatively and 

qualitatively and compared with other benchmark 

methods. The following are some significant 

contributions made using the suggested method: 

❖ To address the drawbacks of pixel-level fusion 

and include the benefits of both approaches in the fusion 

process, a novel fusion method combining EWT and 

MGOA is developed. 

❖ The low- and high-frequency subbands of the 

source images are retrieved using the suggested method's 

EWT. The suggested approach does away with the 

negative aspects of pixel-level fusion, namely noise 

sensitivity and blurring effects, with the use of enhanced 

thresholding.  

❖ To integrate high-frequency sub-bands and 

retain information from both source images in the fused 

image, an MGOA is utilized to generate adaptive 

weights. 

❖ Using the LEM fusion rule, the proposed 

method preserves the required complementary results 

such as edges, borders, and texture information in the 

low-frequency subbands. 

❖ Compare the performance of the EWT-MGWO 

with other methods. 

The remaining parts of the paper are as follows: An 

overview of related studies is presented in Section 2. The 

suggested image fusion approaches are explained in 

Section 3. Section 4 presents experimental findings and 

remarks. Section 5 covers the conclusion and future 

work. 

2. Literature Review 

In recent decades, a wide range of image fusion 

techniques have been created [3], [10],[11]. 

Transformational and spatial image fusion methods are 

available. In their original spatial domain, spatial domain 

algorithms integrate source image pixels. Spatial 

domains are easy to implement. However, these methods 

might not effectively handle noise present in the input 

image, and brighteners distortion.Transform domain 

methods convert source images to a different domain 

using techniques like Fourier Transform (FT), wavelet, 

and pyramid. Transform domain-based methods provide 

better image quality of fused images.  

Kaur and Kaur [12]implemented Independent 

Component Analysis (ICA) and wavelet to create an 

image fusion technique. Wavelet transform was used to 

separate the source images into high-frequency and low-

frequency subbands. Independent Component Analysis 

(ICA) based fusion was done. They found that the ICA-

based fusion enhances the quality of the fused image. 

However, ICA-based fusion is sensitive to noise. 

Bhateja et al.[13] devised a transform domain-based 

method for medical image fusion. Using the Stationary 

Wavelet Transform (SWT), the source images were 

divided into their approximate and detailed subbands. 

Following the use of inverse SWT, these coefficients 

were aggregated by PCA. The acquired images were 

converted utilizing the maximal fusion rule to fuse the 

coefficients after the images were changed using a non-

sampled contourlet Transform (NSCT). Lowering the 

combined image's spatial resolution.  

In [14], Ullah et al. proposed a non-down sampling shear 

wave transform-based technique for image fusion. Using 

this technique, by extracting important feature 

information from the source images, the fused image's 

quality was enhanced. Nevertheless, this approach is 

unable to reflect edge data. 

Li and Li introduced a brain image fusion technique 

based on erroneous texture reduction [15]. This method 

involved a two-layer decomposition process to create 

low and high-frequency subbands. To easily detect high-

frequency subband details, a feature identification 

technique based on gradient difference and entropy was 

presented. A random walk was used to combine 

coefficients. This approach is tested only on brain 

images, necessitating further investigation.      

Kumar et al.[16] implemented a multimodal image 

fusion technique by integrating Discrete 

CurveletTransform (DCuT) and metaheuristic 

algorithm.Using Fast DCuT, the scientists separated the 

original images into high- and low-frequency subbands. 

The low-frequency components were combined through 
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an averaging fusion rule, while the high-frequency 

components were merged using fuzzy entropy optimized 

by the Adaptive Electric Fish Optimization Algorithm 

(AEFOA). While this method yielded improved results, 

it is noted for its drawback of introducing distortion in 

the resulting fused image. 

Asha et al. [17] combined Chaotic Grey Wolf 

Optimization (CGWO) and NSST bands to fuse medical 

images. In this approach, source images were divided 

into low-frequency and high-frequency using NSST. 

Max Fusion Rule was used to fuse low-frequency bands, 

while CGWO was used to fuse high-frequency bands.  

Tawfik et al. [18] suggested a hybrid approach that 

combined Principal Component Analysis (PCA) with the 

Discrete Wavelet Transform (DWT). Input images were 

divided into approximation and detailed subbands. 

Approximation bands were fused using the max rule 

while detailed bands were fused using PCA. 

Kaur and Singh [19] implemented a deep neural network 

for medical image fusion. Source images were divided 

into subbands via Non-subsampled Contourlet Transform 

(NSCT). Following this, to calculate features from 

source images, Xception was used. Optimal features 

were chosen using a differential evolution algorithm.  

Polinati et al. [20] investigated the power of Variational 

Mode Decomposition (VMD) in medical image fusion. 

Input images were divided into multiple Intrinsic Mode 

Functions (IMFs) and then fused using the LEM fusion 

rule. Shilpa et al. [21] used the Enhanced JAYA (EJAYA) 

optimization algorithm for merging medical images in 

the NSST domain. Using NSST to separate medical 

images into low- and high-frequency bands, weights 

optimized by the EJAYA algorithm were then used to 

fuse the images. 

3. Proposed Methodology 

Enhancing the features of both soft and hard tissues in 

the fused image is the main driving force behind the 

suggested approach. The suggested technique is to 

enhance the quality of the fused images while preserving 

all relevant details from the original images. To achieve 

this, a blend of EWT and MGOA is employed, 

leveraging the strengths of each technique while 

mitigating the weakness of Discrete Wavelet Transform 

(DWT).   

 

Fig 1.Method for fusing medical images proposed 

Though DWT's multi-scale feature has made it popular 

for application in image fusion, it has some limitations in 

detecting smoothness along edges and contours. In 

contrast, MGOA is introduced to prevent the limitation 

inherent in DWT. Therefore, To get the benefits of 

MGOA and get around the drawbacks of DWT, the 

suggested approach combines the two approaches. The 

recommended medical image fusion technique is 

depicted sequentially in Figure 1. Fusion of MRI and CT 

is suggested. The EWT decomposition, LEM integration 

of low-frequency bands, MGOA integration of high-

frequency bands, and inverse wavelet application of the 

combined image are crucial stages. 

3.1. EWT decomposition 

Each input image is processed by DWT to extract low- 

and high-frequency subbands.The source image is shown 

at a coarser resolution in the low-frequency band. It may 

be thought of as a downsampled and smoothed version of 

the original. Consequently, with the low-frequency 

subband, the majority of the data from the source images 

is preserved. High-frequency subbands encapsulate the 

finer details like edges, curves, and region boundaries. 

Medical images are typically affected by noise during the 

acquisition process. After decomposition, noise data is 

present in detailed coefficients. The presence of noise in 

high-frequency subbands can adversely affect the fusion 
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process, resulting in unwanted distortions in the fused 

image. Denoising helps to mitigate these artefacts, 

producing a more visually pleasing and clinically 

relevant fused image. By denoising high-frequency 

subbands before fusion, the fusion image can more 

accurately represent key features present in MRI and CT 

scans. This improves diagnostic accuracy, leading to 

more reliable treatment decisions. Hence, a new 

thresholding technique is proposed. The proposed 

threshold function can be expressed as, 

𝑤̂𝑖,𝑗 = 𝑓(𝑥) =

{
 
 

 
 
(|𝑤𝑖,𝑗| (|𝑤𝑖,𝑗| −

𝑇

𝛾
𝛼(√|𝑤𝑖,𝑗| 𝑇−1⁄ )

)) , |𝑤𝑖,𝑗| < 𝑇

0, |𝑤𝑖,𝑗| ≥ 𝑇

 

 (1) 

𝑇 = 𝜎𝑖
√2𝑙𝑜𝑔𝑛𝑖

√𝑛𝑖
     

  (2) 

𝜎𝑖 =
𝑀𝐴𝐷(𝐷𝑖)

0.6745
     

  (3) 

Mean Absolute Deviation (MAD) = median(|Dj −

median(Dj)|) (4) 

Where, α and γ- controlling parameters, n- sub-band 

image size,𝜎𝑖-standard deviation 

3.2. Subband fusion 

 

Fig 2.Intensity profile of source image and corresponding low- and high-frequency sub-bands 

Figure 2 shows how the various image components' 

normalized intensities vary. More specifically, a 

progressive change in pixel intensity is seen in the low-

frequency subband, resulting in a smoother appearance 

compared to the input image while preserving most 

intensity details. Conversely, the high-frequency subband 

captures finer details, manifesting in regions where pixel 

intensity changes occur more rapidly and intensities are 

lower. Consequently, utilizing unique fusion methods is 

essential for these subbands to effectively preserve 

relevant information. Failure to do so may lead to 

residual artefacts and high contrast. Hence, the proposed 

method uses unique fusion rules to accommodate the 

specific characteristics of each subband. 

3.2.1. Low-frequency subband fusion 

To emphasize and extract pertinent features in the fused 

image, it is imperative to employ appropriate fusion 

rules. Several fusing rules including minima, maxima, 

and averaging, have been extensively investigated for 

image fusion. Maxima and minima can introduce 

brightness distortions, and the averaging rule tends to 

blur the image. To address these concerns. LEM-based 

fusion rule is adopted in this work. The complete 

procedure of LEM is outlined in Table.1 
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Table1.LEM fusion rule 

Input: Low-frequency subbands of source images, LFA, LFB 

Output: Fused low-frequency subband, LFAB   

Step1: Compute the local information of LFA and LFB           

LEMA(x, y) = ∑ ∑ [LFA(x + i, y + j)]
2 ∗  w(i, j)N

j=1
M
i=1 (5) 

LEMB(x, y) = ∑ ∑ [LFB(x + i, y + j)]
2 ∗  w(i, j)N

j=1
M
i=1 (6) 

w(i, j) = [
1 1 1
1 1 1
1 1 1

](7) 

Step2:Select the maximum value from the LEMA and LEMB local information 

LIA(x, y) = max{LEMA(x + i, y + j)|1 ≤ i, j ≤ 3}(8) 

 LIB(x, y) = max{LEMB(x + i, y + j)|1 ≤ i, j ≤ 3}(9) 

Setp3: Compute decision weight maps 

WL1(x, y) = {
1, 𝑖𝑓 LIA(x, y) > LIB(x, y)

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(10) 

WL2(x, y) = {
1, 𝑖𝑓 LIB(x, y) > LIA(x, y)

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(11) 

Setp4: Combine the subbands of low-frequency 

LFAB(x, y) = wL1(x, y) ∗ LFA(x, y) + wL2(x, y) ∗ LFB(12) 

 

3.2.2. high-frequency subband fusion 

The Grey Wolf Optimization (GWO) algorithm is a 

novel form of Swarm Intelligence (SI) algorithm, 

introduced by Mirjalili [22], drawing inspiration from the 

natural hierarchy and hunting behaviors of grey wolves. 

The algorithm accomplishes optimization by 

mathematically replicating the procedures of tracking, 

encircling, hunting, and attacking that grey wolf 

populations undergo. The grey wolf’s hunting procedure 

encompasses three key phases: establishment of a social 

hierarchy, encirclement of the prey, and the actual attack 

on the prey. Grey wolves, as social canids, occupy a 

prominent position in the ecological food chain and 

adhere to a well-defined social structure. Within this 

hierarchy, the most optimal solution is designated as the 

alpha (α), followed by the beta (β) and delta (δ) 

solutions, which represent the next two levels of 

optimality. The remaining solutions are categorized as 

omega (ω). The encircling of prey is mathematically 

represented as follows: 

𝑦⃗(𝑡 + 1) = 𝑦⃗𝑝(𝑡) − 𝐴. |𝐶. 𝑦⃗𝑝(𝑡) − 𝑦⃗(𝑡)| 

 (13)     

𝐴 = 2. 𝑎⃗. 𝑟1 − 𝑎⃗(14) 

 𝐶 = 2. 𝑟2 (15)  

𝑎⃗ = 2 − 2
𝑡

𝑡𝑚𝑥
  (16) 

The prey and wolf positions are yp and y, respectively, 

during the tth iteration.  𝐴 and 𝐶 are coefficient vectors. 

A is the distance control parameter,𝑟1, 𝑟2 are random 

values [0,1], and its value decreases from 2 to 0 over the 

course of iteration, and tmx represents the maximum 

iteration. 

𝑦⃗1 = 𝑦⃗𝛼 − 𝐴1. |𝐶1. 𝑦⃗𝛼 − 𝑦⃗|                                                       

(17) 

𝑦⃗2 = 𝑦⃗𝛽 − 𝐴2. |𝐶2. 𝑦⃗𝛽 − 𝑦⃗|                                                      

(18) 

𝑦⃗3 = 𝑦⃗𝛿 − 𝐴3. |𝐶3. 𝑦⃗𝛿 − 𝑦⃗|                                                       

(19) 

𝑦⃗(𝑡 + 1) =
𝑦⃗⃗1(𝑡)+𝑦⃗⃗2(𝑡)+𝑦⃗⃗3(𝑡)

3
   

            (20)               

Where, 𝑦⃗𝛼,𝑦⃗𝛽 and 𝑦⃗𝛿  are the position of the α, β and δ 

respectively. 

Equation (14) reveals that the attenuation factor, directly 

impacts A, influencing the trade-off between GWO’s 

exploration and exploitation capacity. When a exceeds 1, 

the grey wolves engage in both searching and hunting 

activities, while when a is less than 1, they primarily 
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focus on hunting. In the standard GWO, the distance 

control parameter demonstrates a linear decrease from 2 

to 0 as the number of repetitions increases. However, it is 

important to note that the individual behavior of the grey 

wolf during its prey-searching process does not follow a 

linear pattern. Therefore, the linear reduction of the 

control parameter does not completely capture the true 

dynamics of the optimization search process. Equation 

(14) is replaced by using Equation (21).  

𝑎⃗ = 2 ∗ 𝑐𝑜𝑠 (
𝜋

2
∗

𝑡

𝑡𝑚𝑥
)  (21) 

In this work, by maximizing the fitness function, the 

MGWO method is utilized to compute the adaptive 

weights for high-frequency subbands. 

3.3. Reconstruction 

By using the inverse wavelet transform, the integrated 

image is reconstructed by using the combined low and 

high-frequency components. 

4. Results and Discussion 

This section outlines the experimental configuration, 

assessment metrics, outcomes, and examination of the 

suggested approach for combining medical imaging data. 

The efficacy of the method is confirmed through 

thorough verification of numerous medical image pairs 

sourced from the Brain Atlas [8], a Harvard Medical 

School dataset that is accessible to the general public [8]. 

For experimental purposes, CT and MRI scans from 

various diseases are taken from the database. The dataset 

includes diverse image modalities listed in Table2. 

Sample images are shown in Figure3. 

 Notably, all images share the same spatial resolution of 

512 X 512 pixels with 256 grayscale levels. The prime 

objective of this work is to fuse these images to produce 

fused images imbued with enhanced information content 

for accurate analysis and diagnosis. which contain more 

significant information to analyze and make accurate 

diagnoses. Experiments are conducted using MATLAB 

on a laptop equipped with an intel® core i5 processor, 

CPU at 2.4 GHZ with 12 GB RAM, and Windows 11. 

Table 2.Details of the medical images used for experimentation 

Dataset No. of images Type of source images Disease 

Set 1 46 CT-MRI-T1 Fatal stroke 

Set 2 52 CT-MRI-T2 Meningioma 

Set 3 46 CT-MRI-T1 Sarcoma 

Set 4 48 CT-MRI-T2 Speech arrest 

 

  

(a) Fatal stroke (b) Meningioma 

  

(c) Sarcoma (d)Speech arrest 

Fig 3.Sample database: (a) Fatal stroke, (b) Meningioma,(c) Sarcoma, and  (d)Speech arrest 
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4.1. Evaluation metrics 

 The assessment of image fusion performance primarily 

revolves around examining the informative attributes 

transformed from the original images to the combined 

image that is produced. For quantitative assessment, a 

few commonly used fusion quality metrics are 

considered, including  Normalized Mutual Information 

(NMI),Edge intensity (EI), Structural Similarity Index 

Measure (SSIM), standard deviation (STD),and 

Correlation (C)[23], [24], [25]. 

4.2. Result Analysis 

The suggested fusion method's efficacy is examined 

using two distinct approaches: (1) a qualitative study; 

and (2) a quantitative analysis. 

4.2.1.Qualitative analysis 

Radiologists see visual inspection as a critical component 

in evaluating medical image fusion. The dense structures 

and soft tissue information from the source images 

should be included in an efficient fusion of CT and MRI 

images. Figure 4, Figure 5, Figure 6, and Figure 7 depict 

the visual results of the recommended approach.The first 

experiment involves the fusion of a CT image and an 

MRI-TI image of a fatal stroke. The CT scan in Figure4 

displays bone structure, while the MRI-T1 scan reveals 

soft tissue. The fused image in Figure4 presents 

enhanced anatomical information compared to the 

individual CT and MRI-T1 images. Remarkably, the 

essential elements of the CT and MRI-T1 images are 

effectively preserved in the fused image by the suggested 

technique. 

    

(a)MRI (b)CT (c) NSST-CGWO (d)DWT-PCA 

    

(e)NSST-Xception (f)VMD (g)EJAYA-NSST (h)Proposed 

Fig 4.Qualitative outcomes of fatal stroke (CT-MRI-T1) 

The second experiment involves examining  CT and 

MRI-T2 images of meningioma. As depicted in Figure 5, 

CT highlights bone structures, while MRI-T2 offers soft 

tissue contrast. Fusing these modalities enhances the 

visualization of both the soft tissue features of the 

meningioma and its relationship with neighboring bone 

structures. Additionally, integrating these images to 

generate a single, higher-quality image is necessary to 

capture complementary information in a single image, 

thereby enhancing its utility for clinical diagnosis. 

Combining the complementary data from both 

modalities, Figure 5 presents a fused image, resulting in 

enhanced quality and comprehensive evaluation. 

    

(a)MRI (b)CT (c) NSST-CGWO (d)DWT-PCA 
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(e)NSST-Xception (f)VMD (g)EJAYA-NSST (h)Proposed 

Fig 5.Qualitative outcomes of meningioma (CT-MRI-T2) 

The third experiment involves CT and MRI-T1 imaging 

of sarcoma. The fusion of these modalities presents a 

pivotal opportunity for accurate identification of the 

sarcoma, capturing its full extent across bone and soft 

tissue. This comprehensive visualization not only 

facilitates precise localization of the sarcoma but also 

plays a vital role in formulating surgical strategies aimed 

at minimizing damage to healthy tissues during tumor 

resection. The resultant fused image in Figure.6, serves 

as compelling evidence of the efficacy of fusing CR and 

MRI-T1 images.Notably, the fused version preserved all 

intricate anatomical details and bone structures, without 

compromising any pertinent information. This fusion 

ensures that no crucial details are lost during the fusion 

process, thereby enabling radiologists to make correct 

decisions based on a comprehensive and precise 

representation of the sarcoma’s anatomy. 

    

(a)MRI (b)CT (c) NSST-CGWO (d)DWT-PCA 

    

(e)NSST-Xception (f)VMD (g)EJAYA-NSST (h)Proposed 

Fig 6.Qualitative outcomes of sarcoma (CT-MRI-T1) 

In the fourth experiment,the fusion of CT and MRI-T2 

concerning speech arrest is explored. Speech arrest can 

arise from lesions or abnormalities in various brain 

regions. Fusing CT and MRI-T2 images allows for 

precise localization of these lesions within the brain, 

facilitating accurate diagnosis and treatment planning. 

Additionally, the fusion of these images enables a more 

comprehensive characterization of speech arrest. This 

comprehensive assessment aids in determining the 

underlying cause of speech arrest and guiding 

appropriate interventions. Figure7 fused image 

demonstrated that the suggested approach retained all 

pertinent data extracted from both modalities, ensuring 

that no important details are lost in the fusion process. 

    

(a)MRI (b)CT (c) NSST-CGWO (d)DWT-PCA 
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(e)NSST-Xception (f)VMD (g)EJAYA-NSST (h)Proposed 

Fig 7.Qualitative outcomes of speech arrest (CT-MRI-T2) 

4.2.2. Quantitative Analysis 

Using four distinct datasets, several tests were carried out 

to evaluate the efficacy of the suggested fusion 

procedure: fatal stroke, meningioma, sarcoma, and 

speech arrest. Performance comparison was done 

between the proposed EWT-MGOA and other 

benchmark models. These models are NSST-CGWO 

[17], DWT-PCA [18], NSST-Xception [19], VMD [20], 

and  EJAYA-NSST [21]. Quantitative analysis was 

conducted using various metrics and the outcomes across 

different fusion techniques are reported in Table3 to 

Table6 corresponding to each dataset. The overall 

performance of all images is summarized, with the EWT-

MGOA method consistently ranking highest among the 

compared fusion methods across almost all datasets.  

As shown in Table.3, NSST-CGWO exhibited relatively 

high values for EI and NMI, showing good preservation 

of edges and similarity to source images. However, its 

STD, C, and SSIM values are slightly lower compared to 

the proposed method. DWT-PCA method attained lower 

values across all metrics compared to other methods, 

indicating poorer performance compared to other 

methods. NSST-Xception performed similarly to NSST-

CGWO, demonstrating better results in terms of EI and 

NMI but falls short in other metrics compared to the 

proposed method. VMD method showed moderate 

performance across all metrics, with slightly lower 

values compared to NSST-CGWO and NSST-Xception 

methods. EJAYA-NSST method performed well but 

slightly behind NSST-CGWO. All measurements showed 

that the suggested strategy performed better than any 

other option. It received the best ratings possible on 

every parameter, indicating superior performance in 

preserving edges, retaining information, reducing 

variability, improving contrast, and maintaining 

structural similarity. 

Table 3.Comparison of quantitative outcomes across various methods for fatal stroke (CT-MRI-T1) 

Methods EI NMI STD C SSIM 

NSST-CGWO 82.76 0.906 68.66 0.855 0.821 

DWT-PCA 62.10 0.756 57.19 0.698 0.586 

NSST-Xception 70.83 0.838 67.79 0.850 0.715 

VMD 64.22 0.803 54.92 0.835 0.661 

EJAYA-NSST 76.21 0.849 68.42 0.854 0.717 

Proposed 84.84 0.987 71.85 0.973 0.985 

As reported in Table4, NSST-CGWO achieved a high EI, 

suggesting good preservation and enhancement of edges. 

However when compared to the suggested technique, its 

NMI, C, STD, and SSIM scores were lower. While the 

DWT-PCA method yielded moderate scores across all 

metrics, it lagged in terms of EI, NMI, and SSIM 

compared to the proposed method. Similarly, NSST-

Xception exhibited moderate performance across most 

metrics. VMD performed well across all metrics, with 

slight scores compared to the proposed method in terms 

of EI, NMI, and SSIM. The EJAYA-NSST method 

demonstrated competitive performance, but its scores 

were slightly lower compared to the proposed method. 

Ultimately, the proposed method achieved the highest 

scores across all metrics, indicating superior performance 

in preserving edges and maintaining structural similarity 

compared to other methods. It showed excellent 

performance compared to other methods in terms of all 

metrics, making it the most effective choice for fusing 

CT and MRI-T2 scans for meningioma diagnosis. 
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Table 4.Comparison of quantitative outcomes across various methods for meningioma (CT-MRI-T2) 

Methods EI NMI C STD SSIM 

NSST-CGWO 80.73 0.893 68.25 0.807 0.753 

DWT-PCA 64.51 0.813 55.48 0.726 0.514 

NSST-Xception 64.95 0.831 60.35 0.795 0.660 

VMD 67.04 0.862 66.77 0.803 0.743 

EJAYA-NSST 76.83 0.876 67.11 0.806 0.747 

Proposed 85.80 0.986 70.19 0.927 0.949 

 

Table5 highlights that the NSST-CGWO method attained 

notable EI and NMI values, indicating good edge 

preservation. However, it showed lower values for other 

metrics compared to the proposed method. DWT-PCA 

method displayedthe lowest EI values among all 

methods, suggesting weaker edge preservation. NSST-

Xception showed slightly higher values compared to 

DWT-PCA for NMI and SSIM. VMD performed well 

across all metrics, with slightly lower values compared to 

NSST-CGWO and the proposed method for EI, NMI, 

and SSIM. EJAYA-NSST achieved good scores for EI, 

NMI, and SSIM, comparable to NSST-CGWO and 

VMD. However, its STD and C values were slightly 

lower compared to the proposed method. When fusion 

approaches for sarcoma diagnosis were examined, the 

suggested method performed the best overall. This was 

achieved by combining CT and MRI-T1. NSST-CGWO 

and EJAYA-NSST also showed competitive outcomes 

across some metrics, while DWT-PCA and NSST-

Xception appeared to be less effective based on the given 

evaluation criteria. 

Table 5.Comparison of quantitative outcomes across various methods for sarcoma (CT-MRI-T1) 

Methods EI NMI STD C SSIM 

NSST-CGWO 73.42 0.908 60.08 0.800 0.749 

DWT-PCA 57.16 0.760 52.48 0.753 0.615 

NSST-Xception 58.65 0.834 57.36 0.784 0.640 

VMD 60.99 0.827 58.59 0.798 0.711 

EJAYA-NSST 71.22 0.857 59.04 0.799 0.718 

Proposed 76.45 0.922 62.31 0.915 0.905 

 

As outlined in Table.6,NSST-CGWO  achieved moderate 

to high values for EI,NMI,C,STD, and SSIM, confirming 

the effective preservation of edges. However, its C and 

STD values were lower compared to the proposed 

method. DWT-PCA method showed lower values across 

all metrics compared to other methods, indicating poor 

performance. Similarly, the NSST-Xception method also 

exhibited lower values across all metrics compared to the 

proposed method, with slightly better values than DWT-

PCA for EI,NMI, and SSIM. VMD performed 

moderately well across all metrics, with relatively higher 

values compared to DWT-PCA and NSST-Xception. The 

EJAYA-NSST method achieved moderate to high values 

for EI,NMI, and SSIM, like NSST-CGWO and VMD. 

However, its C and STD values are lower compared to 

the proposed method. The proposed method 

demonstrated the most superior performance among the 

compared methods for CT and MRI-T2 fusion for speech 

arrest diagnosis, with higher values across most 

evaluation metrics. Other methods showed varying 

degrees of performance, with NSST-CGWO and VMD 

also showed competitive results across some metrics. 

DWT-PCA and NSST-Xception appeared to be less 

effective based on the given evaluation criteria. 

Table 6.Comparison of quantitative outcomes across various methods for speech arrest (CT-MRI-T2) 

Methods EI NMI C STD SSIM 

NSST-CGWO 69.50 1.054 61.62 0.793 0.740 

DWT-PCA 53.78 0.864 38.08 0.741 0.510 

NSST-Xception 56.68 0.900 46.67 0.781 0.661 
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VMD 58.31 0.985 60.76 0.789 0.735 

EJAYA-NSST 63.93 1.003 61.24 0.790 0.736 

Proposed 74.64 0.915 64.94 0.925 0.912 

 

The comparison study clearly shows that for all datasets, 

the suggested approach continuously performed better 

across all assessment measures. This confirms the 

effectiveness of the proposed method in efficiently 

fusion MRI and CT images while preserving both hard 

tissue and soft tissue details, thereby enhancing 

diagnostic accuracy. 

5. Conclusion and Future Works 

This paper has introduced an innovative framework for 

multimodal image fusion, using the strengths of both 

EWT and MGOA. The method improves the robustness 

of the fusion while circumventing common issues 

associated with image fusion. By employing the 

combination of EWT and MGOA, the proposed method 

exhibits promising outcomes. EWT facilitates time and 

frequency localization, while the optimization algorithm, 

MGOA finds adaptive weights for merging high-

frequency subbands. Additionally, the integration of low-

frequency subbands and the LEM fusion rule further 

enhances fusion performance by minimizing redundancy, 

enhancing contrast, and preserving edges.The suggested 

fusion method's appropriateness for precise and efficient 

clinical diagnosis is highlighted by a qualitative 

evaluation of fused images. The quantitative evaluation 

confirms that the proposed method successfully retains 

essential features from both source images while also 

providing complementary information. Comparative 

analysis reveals that the EWT-MGWO method yields 

superior outcomes across all metrics. Future research 

directions could focus on refining feature-level fusion 

methods.Exploring the application of other metaheuristic 

algorithms in medical image fusion. Furthermore, 

investing the potential of machine learning and deep 

learning approaches in medical image fusion. 
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